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Abstract. Graph pebbling is a network model for studying whether or not
a given supply of discrete pebbles can satisfy a given demand via pebbling
moves. A pebbling move across an edge of a graph takes two pebbles from one
endpoint and places one pebble at the other endpoint; the other pebble is lost
in transit as a toll. It has been shown that deciding whether a supply can meet
a demand on a graph is NP-complete. The pebbling number of a graph is the
smallest t such that every supply of t pebbles can satisfy every demand of one
pebble. Deciding if the pebbling number is at most k is ΠP

2 -complete.
In this paper we develop a tool, called the Weight Function Lemma, for com-

puting upper bounds and sometimes exact values for pebbling numbers with
the assistance of linear optimization. With this tool we are able to calculate
the pebbling numbers of much larger graphs than in previous algorithms, and
much more quickly as well. We also obtain results for many families of graphs,
in many cases by hand, with much simpler and remarkably shorter proofs than
given in previously existing arguments (certificates typically of size at most the
number of vertices times the maximum degree), especially for highly symmetric
graphs.

Here we apply the Weight Function Lemma to several specific graphs, includ-
ing the Petersen, Lemke, 4th weak Bruhat, Lemke squared, and two random
graphs, as well as to a number of infinite families of graphs, such as trees,
cycles, graph powers of cycles, cubes, and some generalized Petersen and Cox-
eter graphs. This partly answers a question of Pachter, et al., by computing
the pebbling exponent of cycles to within an asymptotically small range. It
is conceivable that this method yields an approximation algorithm for graph
pebbling.
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1. Introduction

Graph pebbling is like a number of network models, including network flow,
transportation, and supply chain, in that one must move some commodity from a
set of sources to a set of sinks optimally according to certain constraints. Network
flow constraints restrict flow along edges and conserve flow through vertices,
and the goal is to maximize the amount of commodity reaching the sinks. The
transportation model includes per unit costs along edges and aims to minimize
the total cost of shipments that satisfy the source supplies and sink demands. At
its simplest, the supply chain model ignores transportation costs while seeking to
satisfy demands with minimum inventory. The graph pebbling model introduced
by Chung [7] also tries to meet demands with minimum inventory, but constrains
movement across an edge by the loss of the commodity itself, much like an oil
tanker using up the fuel it transports, not unlike heat or other energy dissipating
during transfer.

Specifically, a configuration C of pebbles on the vertices of a connected graph
G is a function C : V (G)→N (the nonnegative integers), so that C(v) counts the
number of pebbles placed on the vertex v. We write |C| for the size

∑

v C(v)
of C; i.e. the number of pebbles in the configuration. A pebbling step from a
vertex u to one of its neighbors v reduces C(u) by two and increases C(v) by one
(so that one can think of it as moving one pebble at the cost of another as toll).
Given two configurations C and D we say that C is D-solvable if some sequence
of pebbling steps converts C to D. In this paper we study the traditional case
in which the target distribution consists of a single pebble at some root vertex
r (one can peruse [14, 15, 17] for a wide array of variations on this theme). We
are concerned with determining π(G, r), the minimum number t of pebbles so
that every configuration of size t is r-solvable. Then the pebbling number of G
equals π(G) = maxr π(G, r). Alternatively, π(G) is one more than the maximum
s such that there is some root r and some size s configuration C so that C does
not solve r. The primary focus of this paper is to exploit this duality with newly
discovered algebraic constraints.

1.1. Calculating Pebbling Numbers. Given a graph G, configuration C, and
root r, one can ask how difficult it is to determine if C solves r. In [18] it was
determined that this problem is NP-hard. Subsequently, [19, 22] proved that the
problem is NP-complete, with [19] showing further that answering the question
“is π(G) ≤ k?” is ΠP

2 -complete (and hence both NP-hard and coNP-hard, and
therefore in neither NP nor coNP unless NP = coNP). Finding classes of graphs
on which we can answer more quickly is therefore relevent, and there is some
evidence that one can be successful in this direction. Besides what we share in
this introduction, we show later that many graphs can have very short certificates
that π(G) ≤ k.
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The r-unsolvable configuration with one pebble on every vertex other than the
root r shows that π(G) ≥ n, where n = n(G) denotes the number of vertices of
G. In [20] it is proved that graphs of diameter two satisfy π(G) ≤ n + 1, with a
characterization separating the two classes (Class 0 means π(G) = n and Class
1 means π(G) = n + 1) given in [5, 8]. One of the consequences of this is that
3-connected diameter two graphs are Class 0. As an extension it is proved in [11]
that 22d+3-connected diameter d graphs are also Class 0, and they use this result
to show that almost every graph with significantly more than n(n lg n)1/d (for
any fixed d) edges is Class 0. Consequently, it is a very (asymptotically) small
collection of graphs that cause all the problems.

Knowing the pebbling number of a graph and actually solving a particular
configuration are two different things, as even a configuration that is known to
be solvable (say, one of size equal to the pebbling number) can be difficult to
solve. Evidence that most configurations are not so difficult, though, comes in
the following form. The work of [2] shows that every infinite graph sequence
G = (G1, G2, . . . , GN , . . .) has a pebbling threshold τG : N→N, which yields the
property that almost every configuration CN on GN of size |CN | ≫ τ(N) is
solvable (and almost every configuration of size |CN | ≪ τ(N) is not). In papers
such as [3, 9, 10] we find that τG(N) is significantly smaller than π(GN) — for

example,
√

N as opposed to N for the complete graph KN , and roughly N2
√

lg N

as opposed to 2N−1 for the path PN . Moreover, the proof techniques reveal
that almost all of these solvable configurations can be solved greedily, meaning
that every pebbling step reduces the distance of the pebble to the root. So the
hardness of the problem stems from a rare collection of configurations.

With these results as backdrop, [1] presents a polynomial algorithm for deter-
mining the solvability of a configuration on diameter two graphs of connectivity
some fixed κ. Furthermore, [21] contains an algorithm that calculates pebbling
numbers, and is able to complete the task for every graph on at most 9 vertices.
Also, the proof in [7] that the d-dimensional cube is of Class 0 is a polynomial al-
gorithm (actually bounded by its number of edges n lg n). Along these lines, our
main objective is to develop algorithmic tools that will in a reasonable amount of
time yield good upper bounds on π(G) for much larger graphs, and in particular
decide in some cases whether or not a graph is of Class 0.

This latter determination is motivated most by the following conjecture of
Graham in [7]. For graphs G and H , let G H denote the Cartesian product
whose vertices are V (G H) = V (G)× V (H), with edges (u, x) ∼ (v, x) whenever
u ∼ v in G and (u, x) ∼ (u, y) whenever x ∼ y in H .

Conjecture 1. (Graham) Every pair of graphs G and H satisfy π(G H) ≤
π(G)π(H).

The conjecture has been verified for many graphs; see [13] for the most recent
work. However, as noted in [16], there is good reason to suspect that L L might
be a counterexample to this conjecture, if one exists, where L is the Lemke graph
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Figure 1. The Lemke graph

of Figure 1. Since L is Class 0, Graham’s conjecture requires that L L is also, but
it is a formiddable challenge to compute the pebbling number of a graph on 64
vertices. One hopes that graph structure and symmetry will be of use, but purely
graphical methods have failed to date. The methods of this paper represent
the first strides toward the computational resolution of the $64 question1, “Is
π(L L) ≤ 64?”. Certainly, these methods alone will not suffice2, but if they
produce a decent upper bound then the methods of [21] might be able to finish
the job.

1.2. Results. The main tool we develop is the Weight Function Lemma 2. This
lemma allows us to define a (very large) integer linear optimization problem that
yields an upper bound on the pebbling number. This has several important
consequences, including the following.

(1) The pebbling numbers of reasonably small graphs often can be computed
easily. Moreover, it is frequently the case that the fractional relaxation
suffices for the task, allowing the computation for somewhat larger graphs.

(2) It is also common that only a small portion of the constraints are required,
expanding the pool of computable graphs even more.3 One can restrict
the types of constraints to greedy, bounded depth, and so on, with great
success, seemingly because of the comments above. Potentially, this allows
one to begin to catalog special classes of graphs such as Class 0, (semi-
)greedy, and tree-solvable.

(3) The dual solutions often yield very short certificates of the results, in most
cases quadratic in the number of vertices, and usually at most the number
of vertices times the degree of the root. These certificates are remarkably

1Yes, I’ll pay if you beat me to it!
2We obtain evidence that π(L L) ≤ 108 in Theorem 10 — in fact, for one root r we show
π(L L, r) ≤ 68.
3We present some findings along these lines in Section 3.2, with graphs on 15 and 20 vertices.
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simple compared to the usual solvability arguments that chase pebbles
all over the graph in a barrage of cases. One can sometimes find such
certificates for infinite families of graphs by hand, without resorting to
machine for more than the smallest one or two of its members. This was
our approach in Section 3.3, for example.

(4) Our method gives trivial proofs of
(a) π(C2k) = 2k and π(C2k+1) = 2⌊2k+1/3⌋+1, which we write as ⌈(2k+2−

1)/3⌉, and

(b) C
(k)
n is Class 0 for k ≥ n/2(lg n − lg lg n), where G(k) denotes the

kth graph power of G (as opposed to the Cartesian power Gk). This
answers a question of [20], who defined the pebbling exponent of G
minimum such e = eπ(G) for which π(G(e)) = n(G). Thus eπ(G) ≤
n/2(lg n − lg lg n) (see Theorem 16), which is fairly close to the ob-
vious lower bound of n/2 lg n.

In this paper we apply the Weight Function Lemma to several specific graphs,
including the Petersen, Lemke, 4th weak Bruhat, Lemke squared, and two random
graphs, as well as to a number of infinite families of graphs, such as trees, cycles,
graph powers of cycles, cubes, and some generalized Petersen and Coxeter graphs.

2. The Weight Function Lemma

Let Pn be the path v1v2 · · · vn on n vertices. Then π(Pn) = 2n−1 is easily proved
by induction. In particular, any configuration of at least 2n−1 pebbles solves v1.
But one can say more about smaller v1-solvable configurations as well, with the
use of a weight function w. Define w on V (G) by w(vn−i) = 2i, and extend the
weight function to configurations by w(C) =

∑

v∈V w(v)C(v). Then a pebbling
step can only preserve or decrease the weight of a configuration. Since the weight
of a configuration with a pebble on v1 is at least 2n−1, we see that 2n−1 is a lower
bound on every v1-solvable configuration. In fact, induction shows that every v1-
unsolvable configuration has weight at most 2n−1 − 1, which equals

∑n
i=2 w(vi).

That is, this inequality characterizes v1-unsolvable configurations on Pn. The
Weight Function Lemma 2 generalizes this result on trees, and we explore the
applications of the lemma in the following sections.

2.1. Linear Optimization. Let G be a graph and T be a subtree of G rooted
at vertex r, with at least two vertices. For a vertex v ∈ V (T ) let v+ denote the
parent of v; i.e. the T -neighbor of v that is one step closer to r (we also say that
v is a child of v+). We call T a strategy when we associate with it a nonnegative,
nonzero weight function w with the property that w(r) = 0 and w(v+) = 2w(v)
for every other vertex that is not a neighbor of r (and w(v) = 0 for vertices not
in T ). Let T be the configuration with T(r) = 0, T(v) = 1 for all v ∈ V (T ), and
T(v) = 0 everywhere else. With this notation note that the path result above
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can be restated: C is v1-unsolvable if and only if C(v1) = 0 and w(C) ≤ w(T),
where T is the strategy T = Pn with associated weight function w.

Lemma 2. [Weight Function Lemma] Let T be a strategy of G rooted at r, with
associated weight function w. Suppose that C is an r-unsolvable configuration of
pebbles on V (G). Then w(C) ≤ w(T).

Proof. By contrapositive and induction. The base case is when T is a path,
which is proved above. Suppose w(C) > w(T), let y be a leaf of T , and define P
to be the path from y to r in T , with Py being the subpath from y to its closest
vertex x on P of degree at least 3 in T (or r if none exists). Denote by T ′ the
tree T − Py + x, and among all such r-unsolvable configurations, choose C to
be the one having largest weight on T ′. The restriction w′ of w to T ′ witnesses
that T ′ is a strategy for the root r, so induction requires that w′(C) ≤ w′(T′).
Likewise, the restriction wy of w to Py witnesses that Py is a strategy for the root
x. Because w(C) = w′(C) + wy(C) and w(T) = w′(T′) + wy(Py), we must have
wy(C) > wy(Py) which by induction means that the restriction of C to Py − x
solves x (and so x 6= r). Let Cx be the resulting configuration after moving a
pebble from Py − x to x. Since C is r-unsolvable, so is Cx. Now w(Cx) = w(C),
but w′(Cx) > w′(C), which contradicts the initial choice of C. 2

For a graph G and root vertex r, let T be the set of all r-strategies in G, and
denote by zG,r the optimal value of the integer linear optimization problem PG,r:
(1)

Max.
∑

v 6=r

C(v) s.t. w(C) ≤ w(T), and T ∈ T with witnessing weight function w.

We also let ẑG,r be the optimum of the relaxation, which allows configurations to
be rational. We will find the relation zG,r ≤ ⌊ẑG,r⌋ useful at times. The following
corollary is straightforward.

Corollary 3. Every graph G and root r satisfies π(G, r) ≤ zG,r + 1.

Proof. By definition, the pebbling number is one more than the size of the largest
unsolvable configuration. 2

Until now, one could only use trees in an individual manner: π(G, r) ≤ π(T, r)
for every spanning tree T rooted at r. The Weight Function Lemma allows one
to consider all subtrees rooted at r (not only spanning trees) simultaneously,
which we will see is significantly more powerful. One strength of the method is
that the relaxation frequently has an integer optimum. This means that the dual
solution will point out which tree constraints certify the result, and because the
dual problem has only n(G) − 1 constraints there are at most that many such
trees in the certificate. Experience has shown, however, that usually one can find
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a certificate with only deg(r) trees (or sometimes a few extra). We will see this
behavior starting in Section 3.

2.2. Basic Applications. We begin with the pebbling number of trees, whose
formula was first discovered and proved in [7]. View a tree T with root r as a
directed graph with every edge directed toward r. Then a path partition P of
T is a set of edge-disjoint directed paths whose union is T . One path partition
majorizes another if its nonincreasing sequence of path lengths majorizes that of
the other. A path partition is maximum if it majorizes all others. We can use
Corollary 3 to give a new proof of the following result of [7].

Theorem 4. For a tree T and root r we have π(T, r) =
∑

P∈P 2eP − |P| + 1,
where eP denotes the length (number of edges) of P .

Proof. We begin by showing that a maximum size r-unsolvable configuration
has pebbles on leaves only, and in fact on all leaves. Indeed, if C has a pebble
on the nonleaf x, then we define a pushback of C at x to be any configuration
obtained by removing the C(x) pebbles from x, adding 2C(x) + 1 pebbles to one
of the children of x, and adding 1 pebble to all other children of x. Certainly,
if C is r-unsolvable and has no pebbles past x (on the subtree of T rooted at
x, minus x itself), then the pushback will also be r-unsolvable, and thus satisfy
the constraints of PT,r. It will also be larger than C. The configuration C∗ that
places 2eP − 1 pebbles on the leaf of the path P ∈ P is one possible result of
pushing back the empty configuration, and so satisfies the constraints of PT,r.
Hence π(T, r) ≥ ∑

P∈P 2eP − |P| + 1.
For the upper bound we prove that C∗ is optimal by using induction to show

that the optimal configuration has 2eP − 1 pebbles on the leaf yP of P for every
P ∈ P. This is true if |P| = 1, so suppose |P| ≥ 2 and let Q denote one of the
paths in P whose leaf has the highest weight in w, with a tie going to one of the
shortest length. This is to guarantee that the graph T −Q+x, where x is the root
of Q, is a tree (i.e. is connected). In order to maximize the number of pebbles
that satisfy

∑

P∈P w(yP )C(yP ) ≤ ∑

P∈P w(P ) we would transfer as many pebbles
from yQ to other leaves as possible because their weights are at most w(yP ) and we
could add extra pebbles when the weight is smaller. But by induction on T−Q+x
we know from the constraint

∑

P∈P−{Q} w(yP )C(yP ) ≤ ∑

P∈P−{Q} w(P ) that each

C(yP ) ≤ 2eP − 1, with equality for all P 6= Q if and only if C is maximum.
Therefore, since w(P ) = w(yP )(2eP − 1) for all P ∈ P, we have

w(yP )C(yP ) ≤
∑

P∈P
w(P ) −

∑

P∈P−{Q}
w(yP )(2eP − 1)

= w(Q)

= w(yQ)(2eQ − 1) ,

which implies that C(yP ) ≤ 2eQ − 1. 2
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Figure 2. A solvable configuration (left) not recognized by any
tree strategy; a canonical strategy (center) used for certifying
π(Q3) ≤ 9; a simplified nonbasic strategy (right) that does the
same

A slight weakness of these tree constraints is that they do not classify unsolvable
configurations on trees the way that they do on paths. This is because they let
in a few solvable configurations. For example, consider the star on four vertices
with one of its leaves as root r. Then the configuration with 2 pebbles on each of
the other two leaves is r-solvable and satisfies all tree contraints. Since it is the
average of the two r-unsolvable configurations that place either 1 and 3 or 3 and
1 on those other leaves, it cannot be cut out by the tree constraints that don’t
cut out at least one of these two other constraints. In this case it doesn’t hurt us,
since the strategy bound yields π ≤ 5 and the actual pebbling number is 5, but it
can cause trouble on graphs in general. For example, we know that the 3-cube Q3

in Figure 2 has pebbling number 8, so that the shown configuration C is solvable
(pebbles from to top must be split in two directions in its solution). However,
no strategy recognizes its solution, and Corollary 3 yields only π(Q3) ≤ 9 (the
three rotations of the strategy in the center in Figure 2 certify this). One can
see where the aforementioned star appears in the Figure 2 configuration on Q3

and is exploited accordingly: moving pebbles from the 5 along one edge yields
a (3, 1) configuration, while splitting the moves along two edges yields a (2, 2)
configuration.

3. General Applications

In this section we illustrate the method more fully by presenting short proofs
of both known and new results. We begin by relaxing strategies in the following
way. We now use the term basic to describe the strategies as currently defined.
A nonbasic strategy will satisfy the inequality w(v+) ≥ 2w(v) in place of the
equality used in a basic strategy (see Figure 2). The following lemma shows that
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we can use nonbasic strategies in an upper bound certificate since they are conic
combinations of a nested family of basic strategies. Thus the use of nonbasic
strategies can simplify and shorten certificates significantly.

Lemma 5. If T is a nonbasic strategy for the rooted graph (G, r), then there
exists basic strategies T1, . . . , Tk for (G, r) and nonnegative constants c1, . . . , ck

so that T =
∑k

i=1 ciTi.

Proof. We use induction, as the result is true when T has two vertices since T
is basic then. Given T , let S be a basic strategy on the edge set of T , define c
to be the largest constant for which cS ≤ T , and denote T ′ = T − cS. Then
some vertex v of G satisfies cS(v) = T (v), so T ′ has fewer vertices than T . Also,
because S is basic, any vertex u whose unique ur-path contains v also satisfies
cS(u) = T (u), which means that T ′ is connected, and hence a strategy. Moreover,
T ′ is nonbasic since every nonneighbor x of r has T ′(x+) = T (x+) − cS(x+) ≥
2T (x) − 2cS(x) = 2T ′(x). By induction, T ′ is a conic combination of basic
strategies, and so therefore is T . 2

We use conic combinations of strategies to derive, for some α, the inequality
|C| =

∑

v 6=r C(v) ≤ α for r-unsolvable configurations C. From this we surmise

that π(G) ≤ ⌊α⌋ + 1. Instead of writing our strategies algebraically, it will
be somewhat easier to show them graphically. We will display them so as to
derive m

∑

v 6=r C(v) ≤ ∑

v 6=r mvC(v) ≤ mα for some sequence {mv}v with m =
minv mv, and let the reader divide by m. In fact, in many instances we will derive
mv = m for all v 6= r, which makes for the following observation.

Lemma 6. [Uniform Covering Lemma] Let T be a set of strategies for the root
r of the graph G. If there is some m such that, for each vertex v 6= r, we have
∑

T∈T T (v) = m, then π(G, r) = n(G). 2

3.1. Specific Graphs. It has been said in jest that every graph theory paper
should contain the Petersen graph, so we get it out of the way first.

Theorem 7. Let P denote the Petersen graph. Then π(P ) ≤ 10.

Of course, the vertex lower bound implies π(P ) = 10, but since the focus of
this paper regards upper bounds, we prove them only.
Proof. The 3 strategies shown in Figure 3 certify the result. 2

Without such nice symmetry, the Lemke graph requires a different certificate
for each possible root.

Theorem 8. Let L denote the Lemke graph and suppose r 6= v1. Then π(L, r)≤8.
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Figure 3. Petersen Class 0 certificate

Proof. We show the strategies for each root vertex in turn, below.
For r = v2:

For r = v3:

Without the edge v4v8, the resulting graph would view v3 and v4 symmetrically.
Using that symmetry, the solutions for r = v3 become solutions for v4.

For r = v5:

For r ∈ {v6, v7} we use the solutions from the case r = v5 given by the appro-
priate symmetry.
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For r = v8:

2

Because of the 3-cube-like configuration with (1, 1, 1, 5) on (v5, v6, v7, v8), the
best that our tree strategies can muster is π(L, v1) ≤ 9. Thus, to show that L is
Class 0 one must handle v1 by more traditional methods.

To illustrate that larger graphs can be tackled, we move on to one of order 24
that is not Class 0. Define the (weak) Bruhat graph of order m (see Figure 4) to
have all permutations of [m] as vertices, with an edge between pairs of permuta-
tions that differ by an adjacent transposition. One can recognize it as the Cayley
graph of Sm, generated by adjacent transpositions, and also note that B4 is the
cubic Ramanujan (expander) graph of [6]. Intuitively, expander graphs would
seem to have low pebbling numbers, but because B4 has diameter 6 we have the
lower bound π(B4) ≥ 64. We give here a fairly tight bound.

Theorem 9. Let B4 be the Bruhat graph of order 4. Then π(B4) ≤ 72.

Proof. Because the graph is vertex transitive, only one root must be checked.
The 3 strategies shown in Figure 4 certify the result. We combined them into
one figure, separated by edge styles. 2

Next we consider L L, the square of the Lemke graph L. Because L has
diameter 3, L L has diameter 6, and so π(L L) ≥ 64. Strategies deliver the
following upper bounds. Since the bounds are not that tight, we do not pursue
bounds for all 64 vertices, although it is likely (since v1 is the most problematic
root in L) that the upper bound of 108 works for all roots (r1, r2).
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Figure 4. Bruhat graph B4 (left) and strategies (right)

Theorem 10. Let L L be the square of the Lemke graph L. Then

π(L L, (r, r)) ≤
{

108 if r = v1 ,
96 if r = v8 , and
68 if r = v4 .

Proof. For r = v1 one can verify that a quarter of the sum of the four strategies
in Figure 5 yields the weights

T3 v1 v2 v3 v4 v5 v6 v7 v8

v1 0 8 8 1 4 1 1 2
v2 8 4 1 2 1 1 1 1
v3 8 4 1 1 1 1 1 1
v4 4 1 1 1 1 1 1 1
v5 1 2 1 1 1 1 1 1
v6 1 1 1 1 1 1 1 1
v7 1 1 1 1 1 1 1 1
v8 2 1 1 1 1 1 1 1

giving the bound of 63 + 4(7 + 3 + 1) + 1 = 108. One verifies that each Ti is a
strategy by making sure that each nonzero entry has a corresponding entry in its
column or row with at least twice its weight that is joined to it by an edge in the
appropriate copy of L.
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T1 v1 v2 v3 v4 v5 v6 v7 v8

v1 0 32 16 4 4 8
v2 4
v3 4 2 2 2 4
v4

v5 2 1 1 1 2
v6 2 1 1 1
v7 2 1 1 1
v8 1

T2 v1 v2 v3 v4 v5 v6 v7 v8

v1 0
v2 32
v3

v4 16 4 4 2 2 2 2
v5 4 2 1 1 1
v6 4 2 1 1 1 2
v7 4 2 1 1 1 2
v8 8 4 2 2 2 1

T3 v1 v2 v3 v4 v5 v6 v7 v8

v1 0
v2

v3 32 16 4 2 2 2
v4

v5 8 2 1 1 1 1
v6 4 2 1 1 1 1
v7 4 2 1 1 1 1
v8 4 2 1 1 1 1

T4 v1 v2 v3 v4 v5 v6 v7 v8

v1 0 32 4
v2 16 8 4 4 4 4
v3

v4 4 2 2 2 2
v5 2 1 1 1 1
v6 2 1 1 1 1
v7 2 1 1 1 1
v8 2 1 1 1 1

Figure 5. Strategies for L L at (v1, v1).

We use a similar argument when r = v8, using the strategies from Figure 6,
along with their transposes, and divide by 8 to obtain the bound 63+8(3+1)+1 =
96.

Likewise, for r = v4, the strategies and their transposes from Figure 7 yield an
upper bound of 63 + ⌊8(.6)⌋ + 1 = 68. 2

One can see where the improvement from 108 to 96 comes from. We obtain a
bound from a sum of strategies by dividing by the minimum weight, and since the
graph has diameter six, the maximum weight is at least 32. So we need to increase
the minimum weight as much as possible by including more strategies, but there
are diminishing returns. In the case of root (v1, v1), it has four neighbors, and so
a fifth strategy increases the maximum weight to at least 64. This is why the root
(v8, v8), having eight neighbors, fares better. On this basis one might expect the
root (v4, v4) to perform best. In fact, it does even better for a different reason: it
has eccentricity 4. It is amusing that the order of this graph is out of the range
of computing, while these strategies were found fairly easily by hand.

3.2. Random Graphs. Given our introductory comments and observations, we
also tested some modest sized random graphs. Let R15 denote the 15-vertex
graph given by the adjacency list
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T1 v1 v2 v3 v4 v5 v6 v7 v8

v1 1 2 2 4 4 4 4 8
v2

v3 8 8 16
v4

v5

v6

v7 8 8 8 4 32
v8 0

T2 v1 v2 v3 v4 v5 v6 v7 v8

v1 1 2 2 4 4 4 4
v2 2 4 4 8 8 8 8 16
v3

v4 32
v5

v6

v7

v8 0

T3 v1 v2 v3 v4 v5 v6 v7 v8

v1 1 2
v2

v3 4 8
v4 4
v5 16 4 8 32
v6

v7

v8 0

T4 v1 v2 v3 v4 v5 v6 v7 v8

v1 1 2
v2

v3 2 4 8
v4

v5

v6 8 16 4 32
v7

v8 0

Figure 6. Strategies for L L at (v8, v8).

([2, 4, 5, 6, 12, 13], [1, 3, 4, 8, 11, 12, 14], [2, 4, 6, 7], [1, 2, 3, 5, 7, 9, 14],
[1, 4, 6, 8, 11, 15], [1, 3, 5, 9, 13, 14], [3, 4, 11, 15], [2, 5, 10, 13, 14, 15],
[4, 6, 10, 11], [8, 9, 11], [2, 5, 7, 9, 10, 12, 15], [1, 2, 11, 13], [1, 6, 8, 12],
[2, 4, 6, 8], [5, 7, 8, 11]).

We generated this graph with edge probability .35. It has diameter three, with
10 of the vertices (including v9) having distance two from all others. We found
that R15 is at least nearly Class 0 as follows. Our simple certificate of 3 basic
strategies for the root r = v9 is below.

2x1 + 2x2 + 2x3 + 4x4 + 2x5 + 2x7 + x8 + x12 + x13 + 2x14 + x15 ≤ 20

2x2 + 2x7 + 2x8 + 4x10 + 4x11 + 2x12 + x13 + 2x15 ≤ 19

2x1 + 2x3 + 2x5 + 4x6 + x8 + x12 + 2x13 + 2x14 + x15 ≤ 17

We note that there are 20, 422 basic strategies of depth at most two rooted
at r. These were generated by our java code in a few minutes on my Core
2 Duo 2.66GhZ PC, with 2GB RAM and 250GB HD running Ubuntu linux
9.04. CPLEX software solved the resulting linear optimization problem instantly,
delivering a dual certificate of a conic combination of 11 of the strategies. By
hand, we grouped them according to their neighbor of r and were able to combine
each into a single nonbasic strategy. By trading weights between some of the
strategies, we arrived at the simplified certificate above. The certificate might
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T1 v4 v8 v7 v6 v5 v2 v3 v1

v4 0
v8 10 5 4 2 4 4 2
v7

v6

v5

v2

v3

v1

T2 v4 v8 v7 v6 v5 v2 v3 v1

v4 0
v8

v7 16 6 5 2 8 8 2 4
v6

v5

v2

v3 8 4 4 4 4 4 2 1
v1 2 2 2 2 2 1 1

T3 v4 v8 v7 v6 v5 v2 v3 v1

v4 0
v8

v7

v6 16 8 8 5 8 8 2 4
v5

v2

v3 2 4 4 2 4 4 2 2
v1 2 2 2 2 1 1

T4 v4 v8 v7 v6 v5 v2 v3 v1

v4 0
v8

v7

v6

v5 16 6 2 2 5 8 2 4
v2

v3 2 1 2
v1 1

T5 v4 v8 v7 v6 v5 v2 v3 v1

v4 0
v8

v7

v6

v5

v2 16 6 2 2 2 5 2
v3 2
v1 8 4 4 4 2 4 2 2

Figure 7. Strategies for L L at (v4, v4).

be more easily viewed in the table of coefficients, below, in which the sum of the
constraints appears below the line. Thus π(R15, v9) ≤ 15.









2 2 2 4 2 0 2 1 0 0 0 1 1 2 1 20
0 2 0 0 0 0 2 2 0 4 4 2 1 0 2 19
2 0 2 0 2 4 0 1 0 0 0 1 2 2 1 17
4 4 4 4 4 4 4 4 0 4 4 4 4 4 4 56
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The same upper bound of 15 was obtained for all other roots (see the Appen-
dix4) except for v10, for which we found π(R15, v10) ≤ 16. Note that R15 contains
the 4-cycle (v4, v3, v6, v9), with v9 adjacent to the root v10 — the same dreaded
configuration we discussed in Q3 obstructs us here: (1, 5, 1, 0). More to the point,
let C be the size 15 configuration (1, 1, 5, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1) on R15.
Because v3 is distance 3 from the root v10 and C is empty on the neighbors of
v10, the only way to move a pebble to the root involves splitting the pebbles from
v3 as in the dreaded configuration solution. Hence no strategy can detect the
v10-solvability of C. However, we can blend strategies with some case analysis
and slight amount of old fashioned analysis as follows.

Theorem 11. The graph R15 is Class 0.

Proof. As we have already shown that π(R15, r) = 15 for all r except for v10, it
suffices to prove that π(R15, v10). Let C be an r-unsolvable configuration, where
r = v10. We first consider the case that C contains a pebble on a neighbor of r.
In this case we have x8 + x9 + x11 ≥ 1, and the CPLEX certificate

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

333 0 0 0 0 0 0 0 −1 −1 0 −1 0 0 0 0 −1

80 2 0 2 3 0 4 0 0 8 0 0 0 2 2 0 23

37 2 0 2 4 2 4 0 0 8 0 0 0 1 2 0 25

50 2 2 2 4 2 3 2 0 8 0 0 0 0 2 0 27

3 2 4 2 2 0 1 0 8 0 0 0 2 4 4 0 29

1 2 4 2 2 0 2 0 8 0 0 0 2 4 0 3 29

136 2 1 2 2 4 0 4 0 0 0 8 4 2 0 2 31

25 2 3 2 2 4 2 4 0 0 0 8 4 0 0 2 33

4 2 4 2 2 3 0 0 0 0 0 8 4 2 0 4 31

37 2 4 2 2 1 2 0 8 0 0 0 2 0 4 4 31

127 2 4 2 0 1 2 2 8 0 0 0 2 4 4 4 35

1 2 4 2 2 4 2 1 0 0 0 8 4 2 2 4 37

1002 1003 1002 1002 998 1003 999 1011 1003 0 995 1000 1003 1004 1001 14692

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

shows that |C| ≤ 14. In this format, the left column holds the multipliers of each
constraint, and the bottom row is the result of the linear combination of them.
Division by 995 yields the result.

Thus we may assume that x8 + x9 + x11 = 0. Next we consider the case that
at most 5 pebbles are distance 3 from r; that is, x1 + x3 ≤ 5. Here we have the
certificate

4We should point out that whenever there are too many possible strategies to compute in a
reasonable amount of time and space — on random graphs with 30 vertices and diameter 4 it
was typical to crash memory after a day of running — one can generate a large collection of
strategies at random rather than by exhaustion and obtain optimal results far more quickly.
This was a useful speed up even for R20 with roots v3, v10, v12, v17, and v20.
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.

On the other hand, at least 7 pebbles at distance 3 from r yields the following
certificate.
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20 −1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 −7

1 2 4 2 0 0 0 0 8 0 0 0 0 0 4 3 23

5 2 0 2 4 1 0 0 0 8 0 0 0 0 0 0 17

3 2 0 2 0 0 4 0 0 8 0 0 0 1 0 0 17

2 2 0 2 0 1 4 0 0 8 0 0 0 0 2 0 19

3 2 4 2 0 4 0 0 8 0 0 0 0 4 4 1 29

1 2 4 2 0 1 0 0 8 0 0 0 0 0 0 4 21

5 2 0 2 0 0 0 4 0 0 0 8 4 1 0 2 23
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1

C
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C

C
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C
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C
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C

C

C

A

Hence we may also assume that x1 + x3 = 6, and so there are exactly 9 pebbles
on the 9 vertices at distance two from r if we assume that |C| = 15.

Now, v1 and v3 can both reach all neighbors of r, so if either x1 ≥ 4 or x3 ≥ 4
then we can place a pebble on any neighbor of r. This forces each vertex at
distance two from r to have at most, and hence exactly 1 pebble. Thus the
splitting of the 4 pebbles will place a pebble on r. This contradiction means that
x1 = x3 = 3.

Similarly, then, the pair of v1 and v3 can place a pebble on any neighbor of
r via a common neighbor, again forcing 1 pebble on every vertex at distance
two from r. However, this allows v1 and v3 to each place a pebble on the same
neighbor of r via disjoint paths.

This final contradiction shows |C| ≤ 14 again, finishing the proof. 2

Next we considered the random graph R20 having adjacency list

([6, 8, 11, 12, 14, 15, 16, 17], [4, 5, 6, 7, 8, 10, 15, 16, 17, 18, 19, 20],
[4, 6, 8, 12, 14, 20], [2, 3, 5, 6, 8, 9, 12, 15, 18, 19], [2, 4, 7, 12, 14, 15, 16, 18, 20],
[1, 2, 3, 4, 7, 8, 14, 15, 19], [2, 5, 6, 8, 11, 12, 13, 14, 15, 17, 18],
[1, 2, 3, 4, 6, 7, 10, 11, 14, 15, 17], [4, 10, 11, 13, 14, 17, 19, 20],
[2, 8, 9, 16, 18, 19, 20], [1, 7, 8, 9, 13, 14, 16, 18, 20], [1, 3, 4, 5, 7, 13, 16],
[7, 9, 11, 12, 19, 20], [1, 3, 5, 6, 7, 8, 9, 11, 18], [1, 2, 4, 5, 6, 7, 8, 19],
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[1, 2, 5, 10, 11, 12, 18, 20], [1, 2, 7, 8, 9, 19], [2, 4, 5, 7, 10, 11, 14, 16, 20],
[2, 4, 6, 9, 10, 13, 15, 17, 20], [2, 3, 5, 9, 10, 11, 13, 16, 18, 19]),

generated with edge probability .4. The graph has diameter two, does not have
the form of the Class 1 characterization, and so must be Class 0. Indeed, from the
9, 371 basic strategies of depth at most two for the root r = v1 (other roots had
between 8,000–28,000 such strategies), CPLEX delivered the following certificate
involving 16 of them (which we won’t bother to simplify) in Figure 8.

Theorem 12. The graph R20 is Class 0.

Proof. The certificate for π(R20, v1) = 20 is shown in Figure 8. The certificates
for all remaining roots are shown in the Appendix. 2

3.3. Graph Classes. Next we turn our attention to classes of graphs, and begin
with an extremely simple proof of the pebbling numbers of cycles, first proved in
[20].

Theorem 13. For k ≥ 1 we have π(C2k) = 2k and π(C2k+1) = ⌈(2k+2 − 1)/3⌉.
Proof. For both results we use two basic strategies: one path in each direction.
For even cycles the paths of length k will overlap in the vertex opposite the root.
This yields π(C2k) ≤ 2(2k − 1)/2 + 1 = 2k. For odd cycles with k ≥ 3 the paths
will be of length k + 3, which gives π(C2k+1) ≤ ⌊2(2k+3 − 1)/(22 + 23)⌋ + 1 =
⌊(2k+2 −1/2)/3⌋+1 = ⌈(2k+2 −1)/3⌉. For k ≤ 2, paths of length k +1 suffice. 2

Now we consider a generalization of the Petersen graph. For m ≥ 3 and d ≥ 2
define Pm,d to have vertices u and vi,X , where 1 ≤ i < m and X is a binary
k-tuple for 0 ≤ k < d. Furthermore, uvi,∅ is an edge for all i, and vi,Xvi,X−

is an edge for all i and nonempty X, where X− denotes the truncation of X
obtained from dropping its final digit. Finally, for every i and length d−1 X, we
include the edge vi,Xvi+1,X (addition modulo m), with the exception that when
i = m − 1 we use vm−1,Xv0,X+ instead, where X+ denotes the (d − 1)-tuple that
satisfies N(X+) = N(X) + 1, and N(X) is the natural number represented by
X in binary. Figure 9 shows the graph P5,2; it is easy to check that P3,2 is the
Petersen graph P . Also, Pm,d has diameter 2d when m > 3 and 2d − 1 when
m = 3.

Interest regarding these graphs comes from two sources. In [20] the problem
is raised of finding the minimum number e(n) of edges in a Class 0 graph on n
vertices. Because of the Petersen and Wheel graphs, we have e(n) ≤ 2n − 2.
Blasiak, et al. [4], show that e(n) ≥ ⌊3n/2⌋, and conjecture that e(n) = 3n/2 +
o(1). Furthermore, they believe that the graphs Pm,d are all Class 0 which, if
true, would prove the conjecture because it is 3-regular except for the central
vertex u, having degree m (with n = m(2d − 1) + 1). The graphs also appear in



A
L
IN

E
A

R
O

P
T

IM
IZ

A
T

IO
N

T
E

C
H

N
IQ

U
E

F
O

R
G

R
A

P
H

P
E

B
B

L
IN

G
1
9

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1469 0 2 1 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 2 0 9

623 0 0 0 2 0 4 0 0 0 0 0 0 0 0 1 0 0 0 2 0 9

473 0 0 0 2 0 0 1 4 0 2 0 0 0 2 0 0 0 0 0 0 11

191 0 0 2 1 0 2 2 4 0 2 0 0 0 0 2 0 0 0 0 0 15

1308 0 0 2 2 0 0 1 4 0 2 0 0 0 0 0 0 2 0 0 0 13

527 0 0 0 0 0 0 0 4 0 2 0 0 0 0 1 0 2 0 0 0 9

488 0 0 0 0 0 0 0 0 0 0 4 0 2 2 0 0 0 1 0 2 11

2012 0 0 0 0 0 0 0 0 2 0 4 0 2 1 0 0 0 2 0 2 13

2500 0 0 2 2 2 0 1 0 0 0 0 4 2 0 0 0 0 0 0 0 13

1250 0 0 0 0 2 1 0 0 2 0 0 0 0 4 0 0 0 0 0 0 9

221 0 0 2 0 0 0 0 0 1 0 0 0 0 4 0 0 0 2 0 0 9

45 0 0 2 0 0 0 0 0 2 0 0 0 0 4 0 0 0 1 0 0 9

4234 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2 0 0 0 1 0 4

2500 0 2 0 0 1 0 0 0 0 2 0 0 0 0 0 4 0 2 0 2 13

1031 0 2 0 0 0 0 0 0 2 0 0 0 0 0 0 0 4 0 1 0 9

551 0 0 0 0 0 0 2 0 2 0 0 0 0 0 0 0 4 0 1 0 9

0 0 10000 9999 9999 10000 10000 9999 9996 9999 9998 10000 10000 10000 9998 10000 10000 9998 9999 10000 10000 189985

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

F
ig

u
r
e

8
.

C
ertifi

cate
for

π
(R

2
0 ,v

1 )≤
20.



20 GLENN HURLBERT

Figure 9. The generalized Petersen graph P5,2.

Figure 10. The graph P8,2 and its main strategy T for root u.

[12] as n-vertex graphs having the fewest edges among those of minimum degree
3 and radius d. In fact, the intuition for the conjecture comes from this result.

Here, we are most interested in the graphs Pm,2 for m > 3. Note that Pm,2 has
rotational symmetry: the exceptional edges for k = 2 can be “rotated onward”
by swapping v1,0 with v1,1 in the drawing. This makes Pm,2 transitive on the set
{vi,X} for fixed length X. Thus, when calculating π(Pm,2), one only need consider
the three vertices u, v = v1,∅, and w = v1,0 as root.

Theorem 14. For all m ≥ 4 we have the following, where n = n(Pm,2) = 3m+1:

(1) π(Pm,2, u) = n,
(2) π(Pm,2, v) ≤ n + 5, and
(3) π(Pm,2, w) ≤ n + 17.

Proof. When the root is u, we use all rotations of the following basic strategy T
(see Figure 10). Let v1,∅ have weight 4, v1,0 and v1,1 have weight 2, and each of
their two neighbors have weight 1. Clearly, of the sum of all rotations of T has
weight 4 everywhere but u, and so the Uniform Covering Lemma applies.

When the root is v, we build slightly more complex strategies. First we use
the nonbasic strategy S, having weight 3 on v0,0 and v0,1 and weight 1 on each of
their neighbors. Next, write the rotations of T as T0, . . . , Tm−1. For j ∈ {0, 1, 2},
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Figure 11. The four strategies for root v in P8,2.

Figure 12. The four strategies for root w in P8,2.

we build the basic strategies Sj from these by combining all Ti (i 6= 0) with i ≡ j
mod 3, with the exception that if j = 1 and i = m−1 then we do not include the
vertices v0,0 and v0,1 twice. Moreover, each Sj includes weight 8 on u (see Figure
11). One quarter of the sum of these four strategies has weight 0 on v, weight 6
on u, and weight 1 everywhere else. Now the Weight Function Lemma (actually
Corollary 3) applies.

The description for the strategies when the root is w is almost identical to
that for root v (see Figure 12). In this case, one quarter of the sum of the four
strategies has weight 0 on w, weight 13.5 on v, weight 6 on u, and weight 1
elsewhere. 2

Next we define the generalized Coxeter p-graph C(p) for odd primes p = 2q+1.
Like the graphs Pm,d, C(p) has the potential (for p ≥ 5) to be a Class 0 graph
with fewer than 2n − 2 edges. Set Vi = {(i, j) | 0 ≤ j < p} and V = ∪q

i=0Vi,
so that C(p) has n = p(q + 1) =

(

p+1
2

)

vertices. Define the 2pq = 2n − 2p edges
(i, j)(i, j + 1) and (0, j)(i, j) for each 1 ≤ i ≤ q and 0 ≤ j < p. The vertices in
V0 have degree q and all others have degree 3, making C(7), the original Coxeter
graph, 3-regular. Here we show the following n + O(

√
n) bound.

Theorem 15. For every prime p ≥ 11 we have π(C(p)) ≤ n + 14q + 14.

Proof. First we exhibit the symmetry of G = C(p). To do so, we note that
the arithmetic that follows will be modular in q in the first coordinate, with the
speciality that we use the representative q in place of 0, and modular in p (as
normal) in the second. Let ρ be the automorphism that sends vertices (i, j) to
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(i, j + 1) for all 0 ≤ i ≤ q and 0 ≤ j < p. This is a rotation of the vertices within
each Vi. Let α generate Z∗

p and define σ to be the automorphism that sends
(0, j) to (0, αj) and (i, j) to (i + 1, αj) for all 1 ≤ i ≤ q and 0 ≤ j < p. While
permuting V0, the key aspect of σ is that it also permutes the sets of vertices
from Vi to Vi+1. Together, ρ and σ act transitively on V0 and on V0. This means
that we only need calculate π(G, (0, 0)) and π(G, (1, 0)). (It turns out that C(7)
is fully vertex transitive and so the root (0, 0) suffices.)

Next we define the q basic strategies Ti (1 ≤ i ≤ q) for the root r = (0, 0),
with each root child having weight 4. The child of r in Ti has weight 4 and two
children, (i, i) and (i,−i). We describe the descendents of (i, i) only, as those of
(i,−i) are identical but with their second coordinate negated. The left subtree
under (i, i) is the path (i, 2i), (i, 3i), . . ., (i, qi). The right subtree under (i, i)
is a collection of q − 2 paths, starting with children (k, i) for 1 ≤ k ≤ q with
k 6∈ {i, (p ± i)/2}. The child (k, i) = (k, sk), for s = ik−1, and from it hangs the
path (k, (s + 1)k), . . ., (k, qk).

Now we look at the sum of the weights of vertices over all strategies, and by the
symmetries described above we need only consider the vertices (i, j) for i ∈ {0, 1}
and 0 ≤ j ≤ q. We note first that (0, j) is the grandchild of (j, 0) in Tj, and so
has weight 1. The left path under (1, 1) shows that vertex (1, j) has weight 22−j in
Ti. For j ≥ 3 we see that if k ≤ j then vertex (1, j) has weight 2k−j−1. Therefore,
except for the q weight 4 children of r and their 2q weight 2 children, every other
nonroot vertex has weight 1. This gives total weight (n−1)+(4−1)q+(2−1)2q,
implying that π(G, r) ≤ n + 5q.

Consider the other root r = (1, 0). Here we need many more basic strategies
— we will define Ti for i ∈ {±1}∪{2, . . . , q} — and the weights of the children of
r equal to 8 instead of 4. Similar to above, the strategy T−1 will be identical to
Ti except that the second coordinates will be negated. We will describe the first
four levels of each strategy explicitly, and their remaining levels implicitly. The
child of r in T1 is (1, 1), having children (1, 2) and (0, 1). From (1, 2) hangs the
path (1, 3) and (1, 4), while the children of (0, 1) are (2, 1), . . . (q, 1). The children
of each (i, 1) are (i, 1± i), subject to them not having already listed in some Tj ,
which we now describe. The child of r in Ti is (0, 0), which has the single child
(i, 0). The two children of (i, 0) are (i,±i), the two children of which are (i,±2i)
and (0,±i), correspondingly, with the exception that (i,±2i) does not appear in
Tq because it already appears in T±1 (as (q,±1)). At this point, there are q + 1
vertices of weight 8, q + 3 vertices of weight 4, and 4q − 2 vertices of weight 2,
with all other vertices having weight 1.

The remaining construction of the strategies proceeds in stages, with each new
vertex added with several fractional weights adding up to 1. In the first stage,
each vertex (a, b) that is adjacent to a current leaf (a, c) of some strategy is added
to that strategy as a child of (a, c), accounting for weight 1/2. The other 1/2
weight comes from adding it as a child of (0, b) as well. In each subsequent stage,
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every vertex (a, b) that is adjacent to a current leaf (a, c) is added as a child of
(a, c) in every strategy that contains (a, c), accounting for weight 1/2. The other
1/2 weight comes from adding it as a child of (0, b) as well.

Hence we obtain π(G, r) ≤ (n − 1) + 7(q + 1) + 3(q + 3) + 1(4q − 2) + 1 =
n + 14q + 14. 2

We note that the number of strategies for the root (1, 0) can be reduced when-
ever two strategies (not including T±1) share no vertices (other than (0, 0)). Thus
one can define the intersection graph Gp of the family of sets Wi, 2 ≤ i ≤ q, where
Wi = V (Ti)−{(0, 0)}. With chromatic number χp = χ(Gp), we obtain the upper
bound of n + 7χ + 7q + 21. For example, χp ≤ 1 when p ≤ 7. In those cases,
further improvements can be made as well, and it is not too hard to show that
π(C(5)) ≤ n + 6 and π(C(7)) ≤ n + 15.

Finally, we discuss powers of cycles. For a given graph G and integer k, we
denote by G(k) the graph on the same vertex set as G, with edges uv whenever
the distance distG(u, v) ≤ k in G. For example, G(n−1) = Kn for every connected
G, where n = n(G). Pachter, et al [20], define the pebbling exponent of G to be
the minimum e = eπ(G) for which G(e) is Class 0. Consequently eπ(G) ≤ n−1 for
all G. The problem raised in [20] is to find eπ(Cn). Here we prove the following.

Theorem 16. The pebbling exponent of the cycle Cn satisfies

n/2

lg n
≤ eπ(Cn) ≤ n/2

lg n − lg lg n
.

Proof. The lower bound follows from the general fact that π(G) ≥ 2diam(G) for all

G, along with the observation that diam(C
(e)
n ) = ⌈n/2e⌉. Therefore, a require-

ment for Class 0 is that n ≥ 2⌈n/2e⌉.

For the upper bound, we prove that π(C
(2k)
n ) = n for n = (2k+1)2k +3 = f(k).

Then we show that π(C
(2k)
n ) = n for f(k − 1) < n < f(k). Our method will be

to split the cycle into two identical paths with endpoints at the root r, and use
identical strategies on each one. We will invoke the Uniform Covering Lemma 6
to obtain the result.

In more detail, let us give a useful labeling of the vertices V of Cn as follows.
We partition V = ∪k+2

i=0 (Ui ∪ Wi) so that

• each Ui and Wi induces a path in Cn,
• U0 = W0 = {r},
• Ui+1 follows Ui when traversing Cn clockwise from r,
• Wi+1 follows Wi when traversing Cn counterclockwise from r, and
• Uk+2 = Wk+2.

The two identical paths mentioned above are seen to be U = ∪k+2
i=0 Ui and W =

∪k+2
i=0 Wi, where now we see that the term ‘split’ was a white lie because of the

overlap on Uk+2 = Wk+2. We will describe a family T of strategies on U with
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the property that, for some m (actually 2k+1) and all u ∈ ∪k+1
i=1 Ui, we have

∑

T∈T T (u) = m, while for all u ∈ Uk+2 we have
∑

T∈T T (u) = m/2. Then
we copy these strategies symmetrically onto W and, because of the overlap, the
Uniform Covering Lemma 6 applies.

Next we describe the vertices within each Ui. First, |Ui| = 2k for i ∈ {1, k+2},
and |Ui| = 2k − 2k−i+1 for 2 ≤ i ≤ k + 1 (thus n = (2k + 1)2k + 3). We clockwise
order the vertices of Ui = {vi,0, . . . , vi,|Ui|−1} in their natural order by subscript,
and will find it useful to identify vi,j with the encoding [i, bj ], where bj is the
k-bit binary representation of j (so that leading zeros are not suppressed). For
example, v3,6 is encoded as [3, 00110] in C355 since k = 5 in that case. Also,
the root r is encoded as [0, 0k], where we write xj to denote the concatenation
xx · · ·x of length j. Furthermore, we use the notation vj to mean some binary
word of length j, subject to context. That is, [1,vk] is always a vertex in U1 but
[2,vk] is not always in U2 — every vertex in U2 looks like [2, 0vk−1]. Moreover,
for 2 ≤ i ≤ k + 1, vertices in Ui look like everything but [i, 1i−1vk−i+1].

Now we describe a partially ordered set P that we will use to define our strate-
gies. The elements of P are the vertices U , and the covering relations are given
by

(1) [0, 0k] > [1,vk] for all vk,
(2) [1,vk−1x] > [2, 0vk−1] for all vk−1 and all x ∈ {0, 1},
(3) [i,vi−1vk−ix] > [i + 1,vi−1bvk−i] for all 2 ≤ i ≤ k, all vi−1 6= 1i−1, all

vk−i, and each x, b ∈ {0, 1},
(4) [i, 1i−20vk−ix] > [i + 1, 1i−10vk−i] for all 2 ≤ i ≤ k, all vk−i, and all

x ∈ {0, 1},
(5) [k + 1,vk] > [k + 2,vk] for all vk 6= 1k, and
(6) [k + 1, 1k−10] > [k + 2, 1d].

All other relations of P are determined by transitivity.
For z ∈ P , define its downset D(z) = {y ∈ P | y < z}. Notice that each

D = D([1,vk]) forms a tree in P . Indeed, simple induction shows that if vk =
v1 · · · vk then every vertex of Ui+1 in D has the form [i + 1,xiv1 · · · vk−i], where
xi is anything but 1i. This means that [i + 1, x1 · · ·xiv1 · · · vk−i] has exactly
one element from D that covers it, namely either [i, x1 · · ·xi−1v1 · · · vk−ivk−i+1] or
[i, x2 · · ·xiv1 · · · vk−ivk−i+1]. So no cycles exist in D.

For each vk, then, define the basic strategy T = T (vk) to have vertices {r} ∪
D([1,vk]), with edge zy whenever z > y is a covering relation in P . In order that

T is a strategy in C
(2k)
n we must verify that the distance d = dist(z, y) between z

and y in Cn is at most 2k. When z = r, we have y = v1,j for some 0 ≤ j ≤ 2k −1,
so d = j+1. When z = v1,j , we have y = v2,⌊j/2⌋, so d = 2k−⌈j/2⌉. When z = vi,j

and 2 ≤ i ≤ k + 1, then we can write j = h2k−i+1 + l for some 0 ≤ l < 2k−i+1.
From relation 3 or 4 we have y = v2,j′, where j′ = h2k−i+1 + b2k−i + ⌊l/2⌋ and
b ∈ {0, 1, 2}. Thus the greatest distance comes from relation 4, in which case
d = |Ui| − j + j′ = 2k − ⌈l/2⌉.
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Note that the characterization of elements in D([1,vk]) implies that each vertex
of Ui is in 2i−1 basic strategies when 1 ≤ i ≤ k + 1, and in 2k when i = k + 2.
Because each T is basic, this means that

∑

T T (v) = 2k+1 for all v ∈ Ui (resp.
Wi), 1 ≤ i ≤ k + 1, and 2k for v ∈ Uk+2 (resp. Wk+2). Now the overlap from
Uk+2 = Wk+2 gives sum m = 2k+1 for all v 6= r, and the Uniform Covering Lemma
6 applies.

Finally, whenever n is smaller than f(k) we simply erase sufficiently many
vertices of Uk+2 = Wk+2 (but don’t renumber any indicies/encodings), as they
are leaves in all strategies and so don’t destroy the uniform covering. When
such vertices are exhausted continue erasing vertices of Uk+1 ∪Wk+1 with similar
results. Since f(k) − f(k − 1) = 2k+1, no more considerations are necessary. 2

4. Remarks

In this paper we have shown several different strengths of the Weight Function
Lemma in combination with linear optimization, highlighting its versatility. It has
been used to compute upper bounds on and exact values of the pebbling number
of small graphs. It has also been successful in calculating the pebbling numbers of
much larger graphs than previous algorithms. For such graphs having too many
strategies than time allows to construct, the technique of creating a smaller set
of them at random seems to perform just as well. This is most likely due to the
property that nonoptimal solutions (derived from having fewer constraints) seem,
in most instances, to be near optimal (have the same floor function). In fact, by
restricting strategies to be breadth-first search, one obtains upper bounds on the
greedy pebbling numbers of graphs (which requires pebbling steps to move toward
the root). The method also yields results for many families of graphs, in many
cases by hand, with much simpler and remarkably shorter proofs than given
in previously existing arguments. This is especially so with highly symmetric
graphs. We note also that the technique can be used in conjunction with more
traditional arguments, as in Theorem 11, and it has delivered an array of upper
bounds, such as n, n+c, and n+o(n), most of which are the best known and might
possibly be best possible. It’s two main shortcomings are the inability to overcome
the kind of splitting structure found in cubes, for example, in which solutions
to some configurations require nontree solutions, and the difficulty in dealing
with large diameter, although success has been found with cycles and their graph
powers, in addition to Petersen and Coxeter generalizations. When the technique
gives upper bounds, it would be of great use to know how good the bound might
be. That is, does the Weight Function Lemma yield an approximation algorithm
for graph pebbling?

Question 17. Is there a constant c such that, for all graphs G and every root
r ∈ V (G), zG,r ≤ cπ(G, r)?
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For example, is c = 2? The cube Qd shows that it couldn’t be any smaller.

Theorem 18. For all d ≥ 1 and all r ∈ V (Qd) we have zQd,r < 2π(Qd, r).

Proof. We exploit the symmetry of Qd as follows. Because Qd is vertex transitive
we need only consider one root r. We identify V (Qd) with the power set of
{1, . . . , d} and take r = ∅. We define a single strategy T for r and then apply
every permutation of {1, . . . , d} to obtain other strategies. Finally we average
over this collection of strategies. The result will be that π(Qd) will be at most
one more than the sum of the weights in this average.

For each 1 ≤ k ≤ d such that 2k ≤
(

d
k

)

we define ak = ⌊
(

d
k

)

/2k⌋ and bk =
(

d
k

)

mod 2k. We form T by first taking a neighbor of r. This neighbor will be a set of
size 1, to which we assign the weight 2d−1 — this is step i = 1, with k = d−i. For
future steps i, while 2k >

(

d
k

)

, we continue adding a single neighbor, a set of size

i, to the current leaf of T, and assign the weight 2k. If 2k ≤
(

d
k

)

, however, we add

ak + 1 vertices to the current leaves: ak of these will have weight 2k and one will
have weight bk. All of these will be connected to leaves of weight 2k+1 and none
will be connected to leaves of weight bk+1. This is possible because the degree of
each vertex of size i − 1 is k + 1, and ak < (k + 1)ak+1 whenever k + 1 < d − 1,
so there are enough potential neighbors to accomplish this.

Hence we obtain weight 1 on average for vertices of size i for which 2k ≤
(

d
k

)

, and

weight 2k/
(

d
k

)

otherwise. This yields the bound zQd,r ≤ 1+
∑d−1

k=0 max{
(

d
k

)

, 2k} <
∑d

k=0

(

d
k

)

+
∑d−1

k=0 2k < 2d+1 = 2π(Qd). 2

If one restricts their attention to only polynomially many strategies, this linear
optimization technique becomes a polynomial algrorithm. It would be useful to
investigate how good the approximation can be under these circumstances.

5. Acknowledgements

We thank Andrzej Czygrinow for converting the author’s Maple code for gen-
erating all the tree strategies of a rooted graph into java.

References

[1] A. Bekmetjev and A. Cusack, Pebbling algorithms in diameter two graphs, SIAM J. Disc.

Math. 23(2)(2009), 634–646.
[2] A. Bekmetjev, G. Brightwell, A. Czygrinow and G. Hurlbert, Thresholds for families of

multisets, with an application to graph pebbling, Discrete Math. 269(1-3) (2003), 21–34.
[3] A. Bekmetjev and G. Hurlbert, The pebbling threshold of the square of cliques, Discrete

Math., 308(19) 19 (2008), 4306–4314.
[4] A. Blasiak, A. Czygrinow, A. Fu, D. Herscovici, G. Hurlbert and J. Schmitt, Sparse graphs

with small pebbling number, preprint.
[5] A. Blasiak and J. Schmitt, Degree sum conditions in graph pebbling, Australas. J. Combin.

42 (2008), 83–90.
[6] P. Chiu, Cubic Ramanujan graphs, Combinatorica 12(3) (1992), 275–285.



A LINEAR OPTIMIZATION TECHNIQUE FOR GRAPH PEBBLING 27

[7] F. R. K. Chung, Pebbling in hypercubes, SIAM J. Disc. Math. 2(4) (1989), 467–472.
[8] T. Clarke, R. Hochberg and G. Hurlbert, Pebbling in diameter two graphs and products

of paths, J. Graph Th. 25(2) (1997), 119–128.
[9] A. Czygrinow and G. Hurlbert, Girth, pebbling, and grid thresholds, SIAM J. Discrete

Math., 20(1) (2006), 1–10.
[10] A. Czygrinow and G. Hurlbert, On the pebbling threshold of paths and the pebbling

threshold spectrum, Discrete Math., 308(15) (2008), 3297–3307.
[11] A. Czygrinow, G. Hurlbert, H. Kierstead, and W.T. Trotter, A note on graph pebbling,

Graphs and Combinatorics 18 (2002), 219–225.
[12] P. Dankelmann and L. Volkmann, Minimum size of a graph or digraph of given radius,

Inform. Process. Lett. 109(16) (2009), 971–973.
[13] D. Herscovici, Graham’s pebbling conjecture on products of many cycles, Discrete Math.

308(24) (2008), 6501–6512.
[14] G. Hurlbert, A survey of graph pebbling, Congr. Numer. 139 (1999), 41–64.
[15] G. Hurlbert, Recent progress in graph pebbling, Graph Theory Notes of New York XLIX

(2005), 25–37.
[16] G. Hurlbert, General graph pebbling, Discrete Appl. Math., to appear (2010).
[17] G. Hurlbert, The Graph Pebbling Page,

http://mingus.la.asu.edu/~hurlbert/pebbling/pebb.html.
[18] G. Hurlbert and H. Kierstead, Graph pebbling complexity and fractional pebbling, unpub-

lished (2005).
[19] K. Milans and B. Clark, The complexity of graph pebbling, SIAM J. Discrete Math. 20(3)

(2006), 769–798.
[20] L. Pachter, H. Snevily and B. Voxman, On pebbling graphs, Congr. Numer. 107 (1995),

65–80.
[21] N. Sieben, A graph pebbling algorithm on weighted graphs, J. Graph Algorithms Appl.

14(2) (2010), 221–244.
[22] N. Watson, The complexity of pebbling and cover pebbling, arXiv:math/0503511 (2005).

6. Appendix

6.1. Certificates for R15. We list the missing certificates in order, with the all-
zeros column signifying the root. The format is the same as that for R15 at v10

in Section 3.2. No attempt was made to find the simplest set of strategies.
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