LINE SEARCH MULTILEVEL OPTIMIZATION AS
COMPUTATIONAL METHODS FOR DENSE OPTICAL FLOW
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ABSTRACT. We evaluate the performance of different optimization techniques
developed in the context of optical flow computation with different variational
models. In particular, based on truncated Newton methods (TN) that have
been an effective approach for large-scale unconstrained optimization, we de-
velop the use of efficient multilevel schemes for computing the optical flow.
More precisely, we evaluate the performance of a standard unidirectional mul-
tilevel algorithm - called multiresolution optimization (MR/OPT), to a bidrec-
tional multilevel algorithm - called full multigrid optimization (FMG/OPT).
The FMG/OPT algorithm treats the coarse grid correction as an optimiza-
tion search direction and eventually scales it using a line search. Experimental
results on different image sequences using four models of optical flow com-
putation show that the FMG/OPT algorithm outperforms both the TN and
MR/OPT algorithms in terms of the computational work and the quality of
the optical flow estimation.

1. INTRODUCTION

The problem of optical flow computation consists in finding the
2D-displacement field that represents apparent motion of objects in a sequence
of images. Many efforts have been devoted to it in computer vision and applied
mathematics [25, 35, 18, 3, 4, 11, 40, 44, 12, 10, 31, 27, 1, 2, 6, 32, 33, 36]. The
computation of optical flow is usually based on the conservation of some property
during motion, either the object’s gray level or their shape properties. In a vari-
ational setting, the problem is usually formulated as a minimization of an energy
function, which is a weighted sum of two terms: a data term coming from the
motion modeling and a smoothing term as a result of the regularization process.
For standard optical flow algorithms, the data term is usually based on a bright-
ness constancy assumption, which assumes that the object illumination does not
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change along its motion trajectory. The regularization process ensures that the
optical flow estimation problem is well-posed. Many regularization terms have
been investigated in the last two decades ranging from isotropic to anisotropic.
Isotropic smoothers tend to blur motion edges while the anisotropic ones require
additional computational resources.

Two strategies might be conducted for the numerical minimization of an energy
functional arising in a variational framework like above. The first one which is
called minimize-discretize is achieved by discretizing and solving the correspond-
ing Euler-Lagrange equations. In the second approach called discretize-minimize
one can use directly numerical optimization methods for solving a discrete version
of the problem. While the first approach has been commonly used for variational
optical flow computation, the second computational strategy has been less inves-
tigated in this context, to the best of our knowledge.

Adopting the first strategy, efficient algorithms have been designed to approx-
imate the optical flow. In particular, in [1, 2] the authors used a multiscale
approximation to solve the corresponding Euler-Lagrange equations using the
Nagel-Enkelmann regularization term [36]. Thus, they computed a series of ap-
proximations where each one solves a regularized version of the Euler-Lagrange
equations starting from the previous one while keeping the original grid fixed.
A different approach is proposed in [9, 41] where the authors use fixed point
iterations to solve the corresponding Euler-Lagrange equations, fully implicit in
the smoothness term and semi-implicit in the data term. Still, this fixed point
iteration leads to implicit equations and they linearize some of their terms using
a warping technique. The equations obtained are fully linearized using a lagged
diffusivity method [9, 41, 10]. The final linear system is solved using a linear
solver like a Gauss-Seidel type method, or a SOR method. The connections with
warping are detailed in [9, 41].

On the other hand, in order to develop efficient and accurate algorithms work-
ing in real time, there have been recent efforts to improve performance of optical
flow algorithms using multilevel techniques. We distinguish at this stage between
two classes of multilevel algorithms. The first one known as a coarse-to-fine
multiresolution uses a sequence of coarse grid subproblems to find a good ini-
tialization for the finest grid problem that avoids possible local minima. We
shall refer to this strategy in this paper by multiresolution. The second strat-
egy alternates between solution relaxations using the underlying algorithm and
solution corrections obtained from a sequence of sub-problems defined on coarse
grids. This leads to recursive algorithms like the so-called V- or W-cycle, which
traverse between fine and coarse grids in the mesh hierarchy. We will reserve
the term multigrid for it. In the case of elliptic PDEs - and for a wide class of
problems, multigrid methods are known to outperform multiresolution methods.

However, being straightforward to implement, multiresolution methods were
more used in computer vision and particularly for motion estimation; e.g. [18, 3,
42, 40, 44, 15]. For instance, Enkelmann [18] developed a coarse-to-fine algorithm
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for oriented smoothed optical flow. Also, Cohen and Herlin [15] used recently a
multiresolution technique with nonuniform sampling for total variation regular-
ization.

For the seek of optimal performance, multigrid schemes were developped to
solve the resulting Euler-Lagrange equations for both isotropic and anisotropic
regularizations, see [21, 45, 20, 27, 26, 12, 10] and references therein. The first
attempts are due to Glazer [21] and Terzopoulos [45] using standard multigrid
components. Improvement in performance were reported on simple synthetic
images and later on [42] standard multigrids were stated to be not appropriate due
to a possible information conflict between different scales. However, the method
was recently better adapted for optical flow computation by tuning the multigrid
components. In [20], an entirely algebraic multigrid approach was developed
for a weighted anisotropic regularization based model. A geometrical multigrid
based on Galerkin coarse grid discretization approximation was developped for
the classical Horn-Schunck method in [27]. This algorithm was extended and
paralelized in [26] for real time computation of vector motion fields for 3D images.
Another recent geometric multigrid investigation was presented in [12, 10] with
anisotropic regularization (a full account of it can be found in [10]).

All these works have considered data terms based on the brightness constancy
assumption, which lead to less accurate optical flow fields when the image se-
quence contains illumination variations in the temporal domain, which may be
often found in real images. In [14], a model is proposed for illumination invariant
optical flow computation, previously introduced in [17] in the context of image
registration. The brightness constancy assumption is replaced by the assump-
tion that the shapes of the image move along the sequence. In this context,
the terms of the Euler-Lagrange equation corresponding to the data attachment
term which contains derivatives of the unit normal vector fields are highly nonlin-
ear. They will not produce systems of equations with a symmetric and positive
semi-definite matrix (usually after linearisation), the basic systems to which the
previous multigrid methods for optical flow have been applied.

For that reason we follow in this paper the second strategy of discretize-
optimize that allows to handle such kind of variational problems. Instead of
computing the Euler-Lagrange equations of the energy model, discretizing and
solving them, our approach is based on the use of numerical optimization meth-
ods to solve the discrete version of the energy, be either based on gray level
constancy or shape properties. This leads to the need of developing efficient
algorithms for the numerical resolution of a large scale optimization problem.
Therefore only large scale unconstrained optimization methods are relevant to
solve this variational problem. One of them is the truncated Newton method
[16]. It requires only the computation of function and gradient values and has
then suitable storage requirements for large-scale problems. However, due to the



4 EL MOSTAFA KALMOUN, LUIS GARRIDO, AND VICENT CASELLES

intensive computations that are required to solve the energy minimization prob-
lem, only multilevel versions of the method (multiresolution and multigrid) are
expected to provide suitable performance.

In our context, the bidirectional multigrid scheme should be adapted directly
to an optimization problem. Current research is still ongoing in this direction
for solving some variational problems lacking a governing PDE in different fields.
Recently [38, 29], the multigrid strategy has been extended to optimization prob-
lems for truncated Newton methods. Motivated by variational problems lacking a
governing PDE, the multigrid optimization was derived from the Full Approxima-
tion Storage (FAS) [7] for nonlinear PDEs but applied directly in an optimization
setting. With regard to nonlinear multigrids, the MG/OPT algorithm includes
two safeguards that guarantee convergence: Bounds on the coarse grid correc-
tion that introduce a constrained optimization subproblem and a line search that
eventually scales the coarse grid correction treated as a search direction. In [29],
it has been shown that the coarse grid subproblem is a first-order approxima-
tion of the fine-grid problem. This justifies somehow the introduction of the two
safeguards. The first-order approximation suggests that the correction will be
only reliable near the restricted approximation and it relates at the same time
the MG/OPT to the steepest descent method. The latter connection indicates
that the coarse grid correction will not be typically a well-scaled descent direction
which, in turn, implies that a line search should be performed to adjust the scale
of the multigrid search direction. This may not be necessary as the MG/OPT is
near to convergence since in that case it will provide a Newton-like search direc-
tion for which a search step equal to 1 will be likely accepted. These connections
to both steepest descent and Newton method suggest that the MG/OPT will
perform well far and near the solution.

Our aim is to develop the MG/OPT method for the computation of optical
flow, a problem which is of considerable computational resource requirements.
To the best of our knowledge, the MG/OPT method is studied here for the
first time for optical flow computation. Several components of the MG/OPT
technique have been tuned for high efficiency and the algorithm is fully evaluated
with respect to one-way multiresolution optimization. The proposed numerical
strategy can be adapted to the minimization of other nonlinear energy functionals
like the illumination invariant model proposed in [14] or depth estimation in stereo
problems. Although they are an important motivation for the development of the
present techniques they will not be considered in this paper.

The outline of our paper is as follows. In Section 2, we start off with a review
of the variational formulation of the optical flow problem. In Section 3, we
recall the basics of the truncated Newton method. In Section 4, we present
multilevel algorithms applied to optimization problems. First, we discuss the
coarse-to-fine multiresolution strategy. Then, after recalling the idea of multigrid
for linear systems, we describe its application to optimization-based problems. In
Section 5, we outline some of the implementation details, namely the calculation
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of the objective functional for each of the four models considered in this paper, of
its Hessian computation and of the image derivatives. In Section 6, we report our
experimental results by considering three classical sequences of synthetic images:
the translating tree, the diverging tree and the Yosemite sequences. In Section 7,
we conclude the paper and indicate future research directions.

2. VARIATIONAL MODELS FOR OPTICAL FLOW

Let us consider a sequence of gray level images I(t,z,y), t € [0,T], (z,y) € Q,
where @) denotes the image domain, which we assume to be a rectangle in R%2. We
shall either consider the case where t € [0,7], and the case where the sequence
is sampled at the times ¢t; = jAt, 7 =0,..., K.

Assuming that the gray level of a point does not change over time we may write
the constraint

1t 2(8), y(1)) = 1(0,2,y),
where (z(t),y(t)) is the apparent trajectory of the point (x(0),y(0)) = (z,y).
Differentiating with respect to t and denoting (u(t, x,y), v(t, z,y)) = (2'(t),y' (1))
we obtain the optical flow constraint

(2.1) I' +ul® +vl¥ = 0.

The vector field w(t, z,y) := (u(t, z,y),v(t, x,y)) is called optic flow and I*, I*, IV
denote the partial derivatives of I with respect to ¢, x, y, respectively. Clearly, the
single constraint (2.1) is not sufficient to uniquely compute the two components
(u,v) of the optic flow (this is called the aperture problem) and only gives the
component of the flow normal to the image gradient, i.e., to the level lines of
the image. As it is usual, in order to recover a unique flow field a regularization
constraint is added. For that, we assume that the optic flow varies smoothly in
space, or better, that is piecewise smooth in (). This can be achieved by including
a smoothness term of the form

(2.2) R(w) ::/QG(VI, Vu, Vo) dzdy,

where G: R? x R? x R? — R is a suitable function. The case G = ||Vu||*>+ || Vv|?
corresponds to the Horn-Schunk model [25], the case G =trace((Vw)T D(VI)Vw)
corresponds to the Nagel-Enkelmann model [36], the case G = /|| Vul|2 + || Vv]|?
or G = ||Vul| + || V|| correspond to total variation regularization models. For a
full account of this and the associated taxonomy, we refer to [46, 24].

Both data attachment and regularization terms can be combined into a single
energy functional

(2.3) / (I' + ul™ 4+ vI¥)?* dovdy + a/ G(VI,Vu,Vv)dzdy,

Q Q
where o > 0 is the regularization parameter weighting the relative importance of
both terms.
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In case of illumination changes, the gray level constancy assumption is violated,
and may be substituted by the constancy of the gradient [5, 41] which can be
expressed in differential form as

(w, VI*) =0

24 (w, V1Y) = 0.

Other cases include the constancy of the gradient direction [13] or the assumption
that the shapes of the image (identified as the level lines) move along the sequence
[14] (this assumption has been used in [17] in the context of image registration).
Higher derivative models have been studied in [41].

The above models (2.3), (2.4) do not take into account that video sequences
are sampled in time so that our data has the form [;(x,y) := I(t;, x,y), t; = jAt,
j =0,..., K. Without loss of generality, let us assume that At = 1. In that
case, the gray level constancy may be expressed as

(2.5) I (2, y) = Li(x + ui(z, y), y +vi(z, ),

where (u;(z,y),v;(z,y)) is the optical flow between images I,;_; and ;. As argued
in [1, 2] the linearized gray level constancy constraint (2.1) may not be a good
approximation in case of large displacements and the form (2.5) may be more
appropriate [10].

A corresponding energy functional can be obtained by combining the non lin-
earized form of the brightness constancy assumption and a regularization term.
For convenience, we assume that we want to compute the optical flow between
two images I (z,y) and Iy(z,y). We may write the energy
(2.6)

/ W (1(2,9) — B(@ + u(z,y),y +v(z,9)))?) dudy+a / G(VI, Vu, Vo) dady,
Q Q
where U: R — R is an increasing smooth function, and a > 0. Examples of
function G have been given above (see [46, 24, 10] for an account of the many
different possibilities).

Observe that the energy (2.6) is nonlinear and non convex. In order to develop
the basic numerical optimization methods, the variational optical flow problem
is set into the simplified minimization form:

(2.7) min f(w),

where f(w) := D(w) + aR(w). Here D denotes a given data term based on
either (2.1) or (2.6) and R denotes a regularization term being either quadratic
or the total variation. More precisely, we consider in this paper the case of
G = ||Vu|* + ||[Vv|]? or G = ||Vul| + ||[Vv|. We also consider ¥(s?) = s* for
|s| <~ and ¥(s?) =2 for |s| > 7.

As discussed in the introduction, we adopt the strategy discretize-optimize.
This means that we shall first discretize the objective functional and then solve
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a finite dimensional but large scale optimization problem. Therefore only large
scale unconstrained optimization methods are relevant to solve this variational
problem. One of these methods that requires only the computation of function
and gradient values and has suitable storage requirements for large-scale prob-
lems is the truncated Newton method [16]. We note that other choices of the
underlying optimization procedure - like the BFGS quasi Newton method, are
possible. The truncated Newton algorithm is embedded in a multilevel strategy,
both multiresolution and multigrid.

3. TRUNCATED NEWTON OPTIMIZATION

As it is well known, Newton methods are based on the second order Taylor ap-
proximation of the objective function to build an iterative process for approaching
a local minimum. The step s; to move from the current point wy, to a new iterate
W41 1S chosen to be a minimum of the quadratic model of f given by

1
(3.1) ar(s) = fr +gis+ §5THk57

where fr = f(wg), gr = g(wg) and Hy = H(wy). The Newton step si is then
obtained by solving the linear system

For large-scale problems, solving exactly this linear system will be very expen-
sive. Truncated Newton methods (TN) use rather an iterative method to find an
approximate solution to (3.2) and truncate the iterates as soon as a required ac-
curacy is reached or whenever (in case when the Hessian matrix Hj, is not positive
definite), a negative curvature is detected. One of the most well known iterative
methods within TN ones is the Preconditioned Conjugate Gradient algorithm
(PCG), see Algorithm 2, due to its efficiency and modest memory requirements.
In this context, we will refer to the process of finding the step s, as inner itera-
tions, while the process of updating wy using the computed s, will be called outer
iterations. Our discussion in the sequel depends on the use of the PCG method
as an inner solver.

Depending on how the step solution s of the quadratic model (3.1) is exploited,
two broad classes of algorithms are distinguished: line search methods and trust
region methods. Line search methods scale the step s, by a factor «a; that ap-
proximately minimizes f along the line that passes through wy, in the direction sy.
On the other hand, trust region methods restrict the search for s; to some region
By, around wy, in which the algorithm “trusts” that the model function g, behaves
like the objective function f. This paper focuses on the former, the line search
method, whereas the comparison between both methods (line search and trust
region) will be the object of future work.
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There are three components in the truncated Newton method related to speed-
ing up the convergence of inner iterations that might have a great impact on its
overall efficiency: a) the truncation criterion, b) the preconditioning strategy and
c¢) how to handle the case when the Hessian matrix is not positive definite. In-
deed, for the latter, one of the advantages of trust region over line search is that
negative curvature directions can be properly exploited. In the PGC algorithm
(Algorithm 2), the inner iterations are truncated as soon as a negative curvature
direction is detected, that is, when p]TH xP; is negative. In our case, we replace
the negative curvature test with the equivalent descent direction test [48], see
lines 8-11 of Algorithm 2. From our practical experience, the descent direction
test has a better numerical behavior than the negative curvature test.

For the other two components a) and b), we used a scaled two-step limited
memory BFGS [37] with a diagonal scaling for preconditioning the CG method,
and we truncate the inner iterations when the following criterion is satisfied:

||7"j||M,;1 < Ck||T0||M,;1’

where r; is the PCG residual at inner iteration j, Mj is the preconditioning
matrix and

(3.3) ¢, = max (0.5/(k +1), HrouMk_l)

which are both being provided at outer iteration k, and where

Il = yfreM T

The matrix M, ' may be computed easily if M} is updated using the BFGS
method [39].

Line search TN methods ensure that the new TN step s, provides a good
descent by performing a line minimization along this direction and then the new
outer iterate becomes:

Wi+1 = W + O Sk.
Exact line search is avoided due to expensive function evaluations and normally
a sufficient function decrease is obtained by imposing the Wolf’s conditions:

(3.4) fror < fr + 0104ng Sk

(3.5) Ghy1Sk = C2 Gf Sk,

where 0 < ¢; < ¢y < 1. In order to obtain a maximum decrease with a minimum
number of function evaluations, interpolating polynomials is usually employed.
Here in TN a cubic interpolation was used [34].

The algorithm associated to the outer iterations of the line search TN is shown
in Algorithm 1. The algorithm iteratively updates wy by computing a search
direction and performing a line search until a given tolerance is reached. In our
case we set tolerances on the gradient, €4, to detect local minima, and on the
function values and iterate values, €; and €, to detect convergence. Note also
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that the preconditionning matrix M} is updated here, which can be easily done
from previous values of wy, and g(wy), see [39].

Algorithm 1 Line Search Truncated Newton (outer iterations of TN)

1: Initialization wy, Mo = Id, €4, €5, €,
2: for k = 0 to maz_outer do
3 gr = Vf(xx)
if ||gx|| < €, then
exit with solution wy
end if
Compute s by calling Algorithm 2.
Perform a line search to scale the step s by ay.
Wg+1 = Wi + xSk
10:  Update My, by the BFGS formula
11 if [ fry1 — fu] < €f or ||wppr — wi|| < €, then

12: exit with solution wy,
13:  end if
14: end for

Algorithm 2 Preconditioned Conjugate Gradient (inner iterations of TN)

1: Initialization: 29 = 0, 79 = —gx, vo = M, "o, po = vo, € = 10710, (. (see (3.3))
2: for j = 0 to maz_inner do
3. // Singularity test

4. if (|rTv;| < e or [pF Hyp;| <€) then

5: exit with s, = z; (for j = 0 take s, = —gi)

6: end if

T a;=rv;/pl Hepy oz = 2 + oy

8: /| Descent Direction Test replaces Negative Curvature test
9: if (gfzj11 > gl'z; —€) then

10: exit with s, = z; (for j = 0 take s = —gx)

11:  end if

120 1 =15 —oiHip; v = Ml

13:  // Truncation test (note that ||Tk||M];1 =71 10j41)

14:if (r] v < Geggvo) then

15: exit with s, = 211
16:  end if
T T
170 By =1 —v) /v piv = v+ Bip;.

18: end for
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4. MULTILEVEL METHODS

Multilevel methods use a set of subproblems defined on coarser levels of reso-
lution in order to improve the convergence to the global optimum of (2.7) when
compared to using only one level of resolution. Using multiple levels of resolution
allows to deal, in the case of optical flow computation, with large displacements
and enables the convergence to the global minimum since some local minima may
disappear at sufficient coarse resolutions.

Let us denote with €2; the image domain at level i, where ¢ = 0...r, where
1 = 0 corresponds to the finest level of resolution and ¢ = r to the coarsest one.
Grid spacing at the coarser grid €2, is usually twice the spacing at the grid 2;.
Two approaches are currently widely used in the computer vision field, namely
the multiresolution and the multigrid methods. Both are explained below.

4.1. Multiresolution methods. Multiresolution methods have been applied
successfully in many computer vision and image analysis problems where the
problem can be expressed as a global optimization problem. Multiresolution
methods use a series of coarse to fine resolution levels to obtain an estimate
of the solution to the problem. An initial estimate is obtained at the coarsest
level. In our case, this estimate may be obtained by applying the TN algorithm
(see Algorithm 1). The estimate is then extended to the next level of resolution
where it is refined. This process is repeated until the finest level is reached, where
the final estimate is obtained, see Algorithm 3, where the MR (multiresolution)
method is shown. This function is called with M R(L — 1,211 ), where L is the
number of resolution levels and z_; o is the initial estimate on the coarsest.
The advantage of coarse-to-fine multiresolution is that a good initial guess
may be obtained for the finest grid problem by estimating a solution to the
problem using the coarser grids. However, for linear systems it is currently known
that one-way multilevel methods do not reach the optimal efficiency of standard
bidirectional multigrid methods, which are detailed in the next section.

4.2. Multigrid methods. Multigrid methods were originally developed to solve
elliptic PDEs and at present are known to be among the most powerful numerical
methods for improving computational efficiency of a wide class of equations. For
a classical reference on multigrids, we refer to [7, 8]. The main characteristic of
multigrid algorithms is based on the observation that different frequencies are
present in the error of the solution of the finest grid problem. Some algorithms,
called smoothers (such as Gauss-Seidel), are known to efficiently reduce the high
frequency components of the error on a grid (or, in other words, the components
whose “wavelength” is comparable to the grid’s mesh size). However, these al-
gorithms have a small effect on the low frequency error components. This is the
reason why the application of schemes like Gauss-Seidel to solve a problem, for
a given grid, effectively reduces the error in the first iterations of the procedure
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Algorithm 3 Multiresolution method

1: function MR(¢, z;0)

2: 1 = L — 1: coarsest level of resolution
3: x;0: initial estimate

4: repeat

5. Apply TN with initial estimate ;¢

6:  Let x;; be the result

7. if + > 0 then

8: // Prolonge current estimate to next finer level
9: Ti_10 = Pxi;

10:  end if

11: 1=1—1

12: until ¢ < 0

13: return xg

(due to smoothing of the high frequency errors) but then converges slowly to the
solution (due to smoothing of the low frequency errors).

One may observe that low frequency errors appear as higher frequencies on
coarser grids. The latter may be effectively reduced using a smoother in the
coarse grid. Moreover, smoothing at a coarser level has typically a much lower
cost than on finer ones. The core idea of multigrid is to use a sequence of sub-
problems defined on coarser grids as a means to accelerate the solution process
(by relaxation such as Gauss-Seidel) on the finest grid. This leads to recursive al-
gorithms like the so-called V- or W-cycle, which traverse between fine and coarse
grids in the mesh hierarchy. Since ultimately only a small number of relaxation
steps on each level must be performed, multigrid provides an asymptotically
optimal method whose complexity is only O(N), where N is the number of mesh
points.

4.2.1. Multigrid for linear systems. We recall first the basic of multigrid tech-
niques. We consider a sparse linear system which typically results from the
discretization of a partial differential equation on a fine grid €2; with a given grid
spacing h.

Let x;0 be an initial approximation of (4.1) and z; be the exact solution. The
first step of the algorithm consists in smoothing the error x; — z;( by applying
Ny iterations of a relaxation scheme S to (4.1) that has the smoothing property
[23]. Examples of the smoother S are Richardson, Jacobi or Gauss-Seidel. The
obtained smooth approximation z;; satisfies equation (4.1) up to a residual r;:

Airin = b — ;.



12 EL MOSTAFA KALMOUN, LUIS GARRIDO, AND VICENT CASELLES

The corresponding error equation is therefore given by
(42) Aiei =T,

where e; = x;; — z; is the unknown smooth error. Equation (4.2) is then solved
on a coarser grid ;1 with a grid spacing that has to be larger than h (typical
choice is 2h but other choices are possible). For this, the fine grid error equation
must be approximated by a coarse grid equation:

(43) Ai+1€i+1 =Tit1-

We need therefore to transfer the residual to the coarse grid and construct a coarse
version of the fine matrix. Let R be a restriction operator mapping functions
on €; to functions on ;41 (common examples are injection and full weighting,
see [8]). The coarse residual is given then by

riy1 = Rr;.

The coarse grid matrix may be obtained by re-discretization on §2;,, or by using
the Galerkin coarse grid approximation: A;,; = R A; P. Here P is a prolongation
(or interpolation) operator mapping functions from ;1 to Q; (standard examples
are linear and bilinear interpolation).

The result e;4q,. due to solving (4.3) is transferred back to the fine grid to
obtain:

€i = Pejt1.

With this approximation of the fine grid error, the approximate solution is cor-
rected to obtain:

Tio = Ti1 + €.

In order to damp high frequency error components that might arise due to the
interpolation, /Ny iterations of the smoother S are applied on the fine grid to
get the new iterate z; 3.

The coarse grid problem (4.3) has a lower dimension than the original problem
(4.1), but it must be solved accurately for each iteration which can be very costly.
In a typical multigrid with three levels or more, this problem is solved by calling
recursively the algorithm ~ times until reaching the coarsest grid, where we solve
(4.3) exactly with a negligible cost. The steps of this multigrid algorithm are
summarized in Algorithm 4.

The resulting x; 3 may be injected iteratively as initialization in Algorithm 4
until the residual on the finest grid

rig =0 — Aiwis

is smaller than a given tolerance.

Note that for the smoothing steps Ny and Ny, only the sum is important in a
convergence analysis. Typical values for the tuple (Ng, Ny) are (1,1),(2,1) and
(2,2). For the cycling parameter v, only the values 1 and 2 are commonly used.
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Algorithm 4 Linear Multigrid V-Cycle

1: function MG-cycle(i, A;, by, ;)

2 1: level

3 A;, b;: defines linear system to be solved
4 x;0: initialization

5: if 1 is the coarsest level then

6

7

8

9

Solve ;1 = A;'b; // Solve exactly
. else
ziq = S(wi0, Ai, bi, No) // Smooth with Ny iterations
D Tiy10=0
10 r;:=0b; — A1 // Residual
11: 71 := Rr; /| Restrict
122 Call MG(i 4+ 1, Ajy1, 7541, Tig10) 7y times // Recursive call
13:  Let e;41, be the returned value
14: e, = Pejy1. /| Extend
150 @0 :=x;1 + €. /| Apply correction step
16: @3 := S(wi2, Ai, by, N1) // Postsmooth with Ny iterations
17:  Return z; 3
18: end if

The so-called V-cycle corresponds to v = 1 and W-cycle corresponds to v = 2.
This is illustrated in FIGURE 4.1 for three levels.

An important variation of multigrids, which is known as the full multigrid
method (FMG) [7] or nested iteration technique [23], combines a multiresolution
approach with a standard multigrid cycle. The FMG starts at the coarsest grid
level, solves a very low-dimensional problem, extends the solution to a finer space,
performs a multigrid cycle, and repeats the process until a multigrid cycle is
performed on the finest grid level. In this way, a good initialization is obtained
to start the multigrid cycle on the finest level, which usually reduces the total
number of iterations required. The method is illustrated in FIGURE 4.1 for three
levels and using a V-cycle.

4.2.2. Multigrid for optimization problems. As commented previously, the multi-
grid strategy has been recently extended to optimization problems for both line
search methods and trust region problems. Previous works on non-linear multi-
grid methods applied the techniques directly to systems of non-linear equations
obtained by solving the first-order optimality conditions. This approach is not
suitable for problems that are not easily transformed into systems of non-linear
equations. Another possible way to use multigrid for optimization problems is to
apply the linear multigrid as inner iterations for solving the linear system (3.2)
for a given iterate wy. This idea implicitly assumes that Newton method is the
underlying optimization algorithm and that the Hessian matrices can be explic-
itly computed. Since many large-scale optimization algorithms only require the
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_ V-Cycle W-Cycle
i \/ \/\/
Coarsest
_ Full Multigrid with V-Cycles
Finest

Coarsest

FiGURE 4.1. V-cycle, W-cycle and FMG with V-cycle

computation of function and gradient values, it is less obvious how such multi-
grid algorithm can be applied. Moreover, solving the Newton equations using
multigrid may only lead to a better unilevel optimization algorithm as long as
the multigrid technique is not applied in the outer iterations.

We deal here with a multigrid algorithm that works directly with the optimiza-
tion problem enabling us to work with problems that are not easily transformed
into systems of non-linear equations. The multigrid line search optimization
(MG/OPT) strategy is described in the following.

As with multigrid for linear systems, in order to solve the optimization prob-
lem (2.7) over an original (finest) grid level i = 0, a sequence of optimization
subproblems are considered on nested coarser grids. Given a fine grid level 7 > 0,
let f; denote a representation of the objective function f on this level. Let w;
be an initial fine approximation to the optimization problem at level i. For the
finest level ¢ = 0, the optimization problem corresponds to the minimization of
fo, the finest representation of the objective function f. However, for a coarser
level 7, the optimization problem corresponds to the minimization of a function
h; that shall be specified later. The first step in the multigrid procedure is called
a pre-optimization phase (by analogy to pre-smoothing in linear multigrid) and
consists in applying N, iterations of an optimization procedure like truncated
Newton (in our case line search TN) to h; to obtain w; y,. As for nonlinear
multigrid, this w; n, is transferred to a coarser grid to obtain w;i10 = Rw; n,-
The residual at this level is given by

Tit1 = sz’+1(wz'+1,0) - Rth‘(wi,No)-

The function

(4.4) Riv1(Wiv1) = fir1(wig1) — T¢T+17~Uz‘+1
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is the function to be minimized on the coarse grid level i+1. We take hg := fo = f
on the finest level.

Assume that w; 1 . is a solution to the optimization of (4.4). The error between
wit+1, and the initial approximation w;; is called coarse grid correction. This
correction is extended back to level i,

SiNg = P(Wis1+ — Wit10)-

In an optimization context, this correction step used to update the current so-
lution w; n, to w; n,+1 is considered as a search direction called recursive to dis-
tinguish it from the direct search direction step that is computed by a given
optimization procedure on the same grid level.

Finally, in order to remove the oscillatory components that may have been
introduced by the correction step, one may finish with a post-optimization phase
by applying N; iterations of the optimization procedure (in our work line search
TN) to h; with initial guess w; ny+1, obtaining w; ny+n,+1-

The coarse optimization subproblem for h;,; can be seen as a first order ap-
proximation to the fine grid problem h; since their gradient coincide on w4 o:

Vhip1(wiz1,0) = V fiz1(Wig10) = rig1 = RV hi(w; ).

The first-order approximation suggests that the correction will be only reliable
near the restricted approximation and it relates at the same time the multigrid
optimization algorithm to the steepest descent method. The latter connection
indicates that the coarse grid correction will not be typically a well-scaled descent
direction which, in turn, implies that a line search should be performed to adjust
the scale of the recursive search direction. However, it can be demonstrated that
the multigrid algorithm is related to Newton’s method, in the sense that the re-
cursive search direction s; is an approximate Newton direction [29]. Accordingly,
in order to improve computational efficiency, the line search for a recursive di-
rection step s; is performed only if w;; + ays; with o = 1 does not reduce the
value of h;. That is, if h;(w;x + si) < hi(w; ) we update with w; g1 = w; x + ;.
Otherwise a line search is performed.

In [29] bound constraints are proposed for the optimization subproblem. In the
context of our work, we have seen that bound contraints may improve robustness
of the MG/OPT algorithm. These bound constraints may be implemented by
means of active sets [39]. However, in our case we have seen that we do not
need set up such bounds since the line search TN algorithm used to optimize the
subproblem h;,; already provides with similar constraints. Line search algorithms
does restrict the search at each iteration w;;  to an upper bound which depends
on the gradient norm values and thus ensure that the update w;i1 x+1 is not far
away from w;yq .

We have implemented the MG/OPT algorithm using a full multigrid method
(FMG) to solve the problem and the resulting algorithm will be denoted by
FMG/OPT. As for the linear case, the FMG/OPT starts at the coarsest grid
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level where enough TN iterations are performed, and prolongates the solution to
the next finer level ¢ where V; iterations of the MG/OPT cycle are performed.

Algorithm 5 shows the V-cycle algorithm used for FMG/OPT. At each iteration
the algorithm computes a step s; either directly using the inner iteration of the
TN method (Algorithm 2) on the current level, or recursively by means of the
multigrid strategy. However, as noted in [47, 22], the recursive call is useful only
if ||Rgi || is large enough compared to ||g; k||, where g;x = hi(w; ;) and k < Np.
Thus we restrict the use of a coarser level ¢ + 1 to the case where

(4.5) 1Rgikll > Fgllginl| and || Rgi k|| > €

for some constant x, € (0, min||R||) and where ¢, € (0,1) is a measure of first
order criticality for h;; 1. The latter condition is easy to check before trying to
compute a step at level 7 + 1.

5. IMPLEMENTATION ISSUES

The numerical algorithms line search TN, MR/OPT and FMG/OPT have been
implemented in C using MegaWave2 library. In this section, we provide details
about derivatives computation for both the objective function and the image.

5.1. Functional gradient calculation. The gradient of the objective function
in (2.7) is calculated analytically and given by

= v = = .
g f (fv Dv + aR’U
5.1.1. Horn-Schunck data term. For the linear data term we have
1
D(U,’U) = 5 Zw <|:II'LL17] + [y'UZ'J' + It:|2) .
2
where i (respectively j) corresponds to the discrete column (respectively row) of

the image, being the coordinate origin located in the top-left corner of the image.
The function 1 is used to enhance robustness with respect to outliers. In our

work we have used
2 .
o ot if|z] <~y
V() = { v?  otherwise,

where 7 is a given threshold. The gradient D for |z| < v is therefore given by
D:f] _ I* [I:EUL] + [y’UiJ’ + It]
Dy v [IFugg + Yoy + 1')
where D}, and Dy, refer to the partial derivative of D(u,v) with respect to
variables w; ; and v, j, respectively. Here I* IY I' are the spatial and temporal
image derivatives for which the computation is explained in Section 5.3. Note

that for || > v the gradient D is (D};, D{;)" = (0,0)7.

%37
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Algorithm 5 The V-cycle for the FMG/OPT algorithm

1: function MG/OPT-cycle(i, h;, w;p)

2 i: level

3 h;: coarse objective function at level i // hy = f
4 w; o: initial approximation to h;

5: if 1 is coarsest level then

6: task = optimize, N = max_outer

7
8
9

. else
. task = pre-optimize, N = N
. end if
10: ko=k=0
11: loop
12:  if task is optimize, pre-optimize or post-optimize then
13: Compute s, by calling Algorithm 2
14:  else
15: Wit1,0 = Rw; i, // Restrict
16: Tit1 = Vfi+1(wi+170) — Rth('LUl’k) // Restdual
17: hivi(wis1) = fir1(wis1) — r}llwiﬂ // Next coarse objective function
18: Call MG/OPT-cycle(i+1, hit1, wit1,0)
19: Let w;y1,+ be the returned solution
20: Sik = P(Wis1.+ — wiy10) // Correction step
21:  end if

22:  Perform a line search to scale the step s; by oy

23: Wiky1 = Wik + QG kSik

24:  Update M; 41 by the BEGS formula

25:  if |fiks1 — fir| < €f or ||wipr1 — wikl|| < €, then
26: return wj jy;

27:  end if

28: k:=k+1

29:  // Select next task to do

30:  if task is pre-optimize and (4.5) is satisfied then

31: task = recursive-call

32:  else if task is recursive-call then

33: task = post-optimize, N = Ny, kg =k
34:  end if

35: /| Check if mazimum number of outer iterations has been reached

36:  if (task is optimize, pre-optimize or post-optimize) and (k—ky = N) then

37: return w
38: end if
39: end loop
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5.1.2. Intensity constancy based data term. The nonlinear data term based on
the constancy assumption is as follows

D(u,v) = %Zlﬁ (i + wig, g +vig) = L(i, J))) -

The gradient of this functional for |z| <~ is given by
(D;{j) (TG i, g vig) [+ v, §+ i) = (0 )]
Di; L3 (i 4 iy, j 4 vig) L2 + wig, j + vig) — L(i j)]

5.1.3. Quadratic regularization term. Now we consider the regularization term
and start by the quadratic functional. We have

1
R(w,v) = 5 32 Vi)l P,
i,

1,3 i,J i,J 0,3
of u,v are computed by forward finite differences with a discretization step h,
that is, uf; = h™ ' (wis1; — wiy) and w); = b= (u; 511 — us;) (derivatives v* and
v¥ are computed similarly). The gradient of this functional is obtained as

(RZ]) L [y — Ui — Uigen — Ui — Ui
= .
R;),j W2\ dvij —vic1j — Vijo1 — Vig1j — Vijn
5.1.4. Total variation term. In this case we suppose that
R(u,v) =) |IVi;(u,v)l.
,L'7j

To overcome the problem of non-differentiability of the total variation, a widely
spread technique consists in approximating R by a differentiable function:

R(u,v) = Z (s
0,J

where ||V, ;(u,v)|| = \/(u“f )2+ (u! )2+ (vF)% + (v!)%2. The partial derivatives

where ¢;; = \/(uf])Q + (uf;)? + (vf;)? + (vf;)?> + p and p is a small positive
parameter. Using again forward finite differences, the gradient of the last ap-
proximation is given by

Y Yy

y S S W
Ri,j 1 [ iy " iy Vi

v -7 Yy y

Ry ; ho\ vy, | vl vt

wi—l,j wi,j—l wz,j
Another approximation of the total variation is given by

2] if |x] > p
R ~ vz j\ Uy h -
(u,v) ZXJ:SO;L(H J(w,v)[[) where ¢, () {$2/2M+H/2 otherwise.
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Theoretically, this approximation is twice better than the first standard approx-
imation. However, numerically in our implementaion, both approximations lead
to the same results.

5.2. Hessian calculation. For computing the Newton direction in the tuncated
Newton method, the linear conjugate gradient is a Hessian-free procedure (see
Algorithm 2) and needs only to supply a routine for computing the product of
the Hessian with Newton direction p. This matrix-vector product is computed
via forward finite differences:

Hw)p = g(w + ep) — g(w)

where € is chosen to be the square root of the machine precision divided by the
norm of w.

5.3. Image gradient calculation. Differentiation is an ill-posed problem [5]
and regularization may be used to obtain good numerical derivatives. Such regu-
larization may be accomplished with a low-pass filter such as the Gaussian, and
is essential for motion estimation [4, 43]. More recently, [19] proposes to use a
matched pair of low pass and differentiation filters as a gradient operator which
are the ones used in this work.

Usually, the derivative at an integer I, is computed by applying a separable
filter composed by a Gaussian filter (alternatively, a matched low pass filter) in
the y direction and the derivative of the Gaussian (alternatively, a matched deriv-
ative) is applied in the x direction. Conversely, the computation of the derivative
in the y direction at an integer point is performed by applying a separable filter
composed by a Gaussian (or matched low pass filter) in the x direction and the
derivative of the Gaussian (or a matched derivative) in the y direction.

For motion estimation applications it may be necessary to compute the gra-
dient at non integer points, since non integer displacements are allowed. This is
the case, for instance, of the nonlinear data term of Section 5.1.2. In such cases,
a simple way to proceed is a two step process: in a first step, the original image
is interpolated at the required points using a bilinear interpolation or an inter-
polation kernel such as [28], and then the derivative is computed using the latter
interpolated points. Another way to proceed is to first compute the gradient at
integer points and then apply an interpolation kernel over the gradient values
using these latter values. Both procedures are theoretically equivalent since dif-
ferentiation and interpolation are based on linear operators (and thus, they are
interchangeable). Let us call this approach as linear gradient interpolation.

In this work the computation of the gradient at non-integer points is done
by means of a shift in the Fourier domain. Moreover, rather than shifting the
image (or gradient) to obtain the interpolated values, the derivative filter taps
are shifted so as to obtain the filter coefficients that have to be applied on the
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FiGURE 5.1. Filter tap interpolation by means of a shift in the
Fourier domain.

integer image values in order to obtain the corresponding interpolated gradient
value.

Assume that the gradient and interpolation kernels are linear, shift-invariant
and separable. Such kernels may be found in [19]. Without loss of generality,
the interpolation problem in the Fourier domain can be thus restricted to one
dimension. Let us consider FIGURE 5.1 which shows the proposed technique. On
top several samples of a one dimensional signal are shown. Filter taps A are used
to obtain the gradient at integer points (in the example the filter A is centered
on z = 4), whereas filter taps B may be used to obtain the gradient at every non-
integer point half-way between two integer points (in the example the filter B is
centered on x = 4.5). The filter taps B are obtained from filter taps A by means
of a shift of 0.5 in the Fourier domain. They can be thus be applied directly on
the original data. We will call this procedure Fourier gradient interpolation.

FIGURE 5.2 shows an example in which a set of matched filters [19] of size 9 are
interpolated at non-integer points by a shift in the Fourier domain and by a linear
interpolation. Performing a linear interpolation on the filter taps in order to apply
them to the original data values is equivalent to the gradient linear interpolation
approach described above. Note that, as expected, the obtained filter taps are
different for both methods. The experimental section will show that Fourier based
interpolation leads to a better performance than linear interpolation, especially
in the multigrid approach.

In the two-dimensional case, if I* has to be computed at point (i + Ai, j+ Aj),
where (i,7) is an integer discrete image position and Ai < 1 and Aj < 1, the
matched low-pass filter in the y direction (respectively the matched derivative in
the x direction) is obtained by shifting the corresponding taps Ai (respectively
Aj) in the Fourier domain. A similar procedure is used to compute /Y at a
non-integer point.

The previous scheme has a high computational load if the Fourier shift has to be
applied to each non-integer position where one needs to interpolate the gradient.
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FIGURE 5.2. A set of matched filters of size 9 are interpolated at
non-integer points by a shift in the Fourier domain (black) and by
a linear interpolation (light gray).

The computational load can be reduced significantly if, at the initialization of
the optimization algorithm, the gradient is computed with the Fourier gradient
interpolation at all points of a grid of size h/D. Then, each time one has to
compute the gradient at a non-integer point a bilinear interpolation with the
neighboring pixels is used. The FIGURE 5.2 shows the case where D = 10.

6. EXPERIMENTAL RESULTS

To assess the performance of the proposed algorithms, we use three classical
sequences of synthetic images that consist of scenes of various complexity; namely,
the translating tree, the diverging tree and the Yosemite sequences. The reference
frame and the corresponding ground truth of the synthetic sequences are show in
Figures 6.1 and 6.2. The image size of the tree sequences is 150 x 150 while the
Yosemite sequence is of size 316 x 252.

Since we are more interested in the computational complexity of the proposed
algorithms, we compare first the CPU time needed by each numerical algorithm to
reach a similar accuracy using four optical flow models. All tests are performed
on a PC with a 2.0 GHz Mobile Intel DualCore processor and 1 GB RAM.
We compute also the number of functional and gradient evaluations that were
performed by each algorithm to reach the estimated optical flow. We measure
the overall number of function evaluations as

L—1
Ny
Ny ZO 7
where Ny, is the number of function evaluations performed by the optimization
algorithm at resolution level i. For the TN and our MR/OPT and FMG/OPT
algorithms, the function is evaluated during the line search procedure. F; is the

mesh resolution ratio of a given level ¢ with respect to the finest level 0. In this
work F; = 2%,
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FIGURE 6.1. On the top one frame of the original sequence is
shown. On the bottom the ground truth for the corresponding
translating (left) and diverging (right) is shown. Motion vectors
have been scaled by a factor of 2.5 for better visibility.

FIGURE 6.2. On the left the one frame of the Yosemite sequence
is shown. On the right the corresponding ground truth is depicted
where motion vectors have been scaled by a factor of 2.5 for better
visibility.

The number of gradient evaluations is defined in a similar manner. While
the function is only evaluated during the line search procedure, the gradient is
additionally evaluated during the inner iterations of the TN algorithm (i.e. the
Hessian computation). Thus, we expect the number of function evaluations to be
always lower than the gradient evaluations. Note also that the number of gradient
evaluations is more crucial to the overall computational work than that of the
objective function. Here one gradient evaluation is approximately equivalent
to two function evaluations when using quadratic regularization, while it takes
almost three times in the case of TV regularization.



MULTILEVEL OPTIMIZATION FOR OPTICAL FLOW 23

Moreover, we compare the quality of the optical flow estimations of the numer-
ical algorithms. For this, we measure the average angular error (AAE) and the
standard deviation (STD) of the estimated flow w® with respect to the ground
truth w°. For a given pixel (i,7), the angular error (AE) between the ground
truth motlon vector, wy ;, and the estimated flow, wy ;, is computed as:

—1 uljulj+vljvl]+1

Ve + (05)2 4+ 14 () P41

The average angular error is the mean of the angular error over all pixels N, of
the image

AE(wyf ;, wf ;) = cos

AAE(w,, we) =

’Lj7

The standard deviation is computed as

STD(we, we) = NL Z (AE(w,, we;) — AAE(wC,we))z.

np

i\j

Before going through the performance evaluation of multilevel optimization
algorithms, we first demonstrate the competitiveness of the adopted discretize-
optimize approach (numerical optimization) versus the standard optimize-
discretize approach (Gauss-Seidel) and also justify the selection of the chosen nu-
merical optimization algorithm. To this end, we compare the CPU time needed
to reach a similar AAE by the following algorithms: 1) the proposed line-search
two-step preconditionned truncated Newton algorithm approach (see Section 3),
called here TN1, 2) the line-search Quasi-Newton L-BFGS approach of [30], called
here QN. A positive-definite approximation to the Hessian is obtained at each
iteration wy, by storing the previous steps wy and the BFGS approach. Instead of
solving at each outer iteration the Newton equation, the L-BFGS method takes
advantge from the fact that the obtained BFGS preconditionning matrix is easily
invertible. Thus, in the L-BFGS approach the line 7 of Algorithm 1 is substituted
by s = M, 9. The proposed algorithm TN1 is also compared against 3) a line-
search L-BFGS precondionned truncated Newton method, called here TN2. This
corresponds to the same algorithm as TN1 but the L-BFGS preconditionning
approach [30] is used instead the two-step BFGS approach [37].
It should be noted that in these three numerical optimization algorithms (TN1,
TN2 and QN) the same line-search approach is used [34]. The previous algorithms
were compared using the linear data term and quatratic regularization, which
corresponds to the classical Horn-Schunck model. Thus we implemented also a
Gauss-Seidel Horn-Schunck smoother [25]. We call the latter algorithm GS.
The experimental results for the four algorithms (GS, TN1, TN2 and QN) are
shown in Table 6.1. Best results for QN were obtained using 4 steps, and TN2
was setup to the same number of steps for the preconditioner. As expected from a
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TABLE 6.1. CPU time needed by the approaches GS, TN1, TN2
and QN to reach similar accuracy for the Yosemite sequence using
the Horn-Schunck model.

Algorithm GS |TN1|TN2| QN

. Unilevel 4522 [ 8.90 | 9.36 | 17.20

CPU Time (8) |\ r1tiresolution | 10.74 | 5.21 | 5.65 | 9.50
AAE 740 | 6.81 | 6.82 | 6.85

linear relaxation scheme, Gauss-Seidel has problems near the solution and indeed
in the tests it can reach an AAE below 8.00 in less than 1 second but will get stuck
and does not reach the optimal solution. Overall, truncated Newton algorithms
perform better justifying the choice of the TN as the underlying optimization
smoother within multilevel algorithms to determine direct search directions. TN1
and TN2 perform almost the same with a slight better performance of TN1. This
algorithm will be used in the sequel as the smoother and will be denoted by OPT.

Now we report the performance evaluation of the unilevel, the multiresolution
and the multigrid optimization algorithms applied to estimate the optical flow
between two successive frames of the above three sequences. We have considered
four optical flow models as described above in Section 2 and Subsection 5.1. We
note that we use thresholding in all the data terms to remove outliers. In all
experiments we have considered L = 6 levels of resolution for multilevel algo-
rithms (multiresolution and multigrid). The stopping criteria for all algorithms
were set on the relative error of the objective function, the gradient norm or the
solution norm with a tolerance of 107°. For the MR/OPT algorithm, the maxi-
mum number of outer iterations was set to 10 iterations per each resolution for all
the optical low models except when using the nonlinear data term and the TV
regularization for which we use a maximum of 15 iterations. For the FMG/OPT,
we perform 2 or 3 V-cycles when using the nonlinear data term, while only 1
V-cycle is sufficient in the case of the linear data term. We note here that for the
purpose of a fair computational work comparison, we stop the outer iterations
once a similar accuracy on the optical flow estimation is reached. For all the
algorithms, the maximum number of innner iterations within the OPT method
was set to 20.

In Tables 6.2-6.4, we summarize the quality of the solution and the computa-
tional costs of the three numerical algorithms for four optical flow models. Model
1 refers to the linear data term plus the quadratic regularization; model 2 refers
to the nonlinear data term plus the quadratic regularization; model 3 refers to
the linear data term plus the TV regularization; and finally model 4 refers to the
nonlinear data term plus the TV regularization. In terms of the quality of the
solution, by comparing the unilevel algorithm versus the multilevel algorithms,
we note that the optical flow estimation of the four models is more accurate when
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TABLE 6.2. Comparison of computational work and optical flow
Estimation for two Frames of the translating tree sequence using
optimization algorithms OPT, MR/OPT and FMG/OPT. Time is
CPU time in seconds.

OPT MR/OPT FMG/OPT
Time | 11.91 2.73 0.98
Nf 69 15 12
Model 1 Ng | 572 133 37
AAE | 1.83 0.90 0.89
STD | 1.23 0.55 0.51
Time | 14.22 5.40 2.07
Nf 89 19 25
Model 2 Ng | 586 221 72
AAE | 0.27 0.23 0.23
STD | 0.29 0.22 0.22
Time | 27.78 4.90 2.40
Nf 95 15 21
Model 3 Ng | 1042 189 87
AAE | 1.54 0.77 0.75
STD | 0.86 0.47 0.42
Time | 35.32 10.25 4.08
Nt 125 35 46
Model 4 Ng | 1130 334 126
AAE | 0.20 0.20 0.20
STD | 0.18 0.18 0.17

computed using the latter algorithms for all the tested images. In this regard,
multigrid optimization has shown to provide a more accurate estimation than
multiresolution optimization if we take the average angular error as an accuracy
measure, see Tables 6.2-6.4.

In overall, the FMG/OPT algorithm performs at least twice better than the
MR/OPT algorithm and ten times better than the unilevel truncated Newton
algorithm; see Table 6.5. We notice also that the FMG/OPT algorithm is less
independent of the image size because it often takes similar number of function
and gradient evaluations while comparing across the same optical flow model.

7. CONCLUSION

Based on the discretize-optimize approach, we have applied different numerical
optimization techniques to variational models for optical flow computation. First,
we have shown the competitiveness of this strategy compared to the classical
optimize-discretize approach. Three Newton-based optimization algorithms were
superior to the Gauss-Seidel method when applied to the classical Horn-Schunck
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TABLE 6.3. Comparison of computational work and optical flow
estimation for two frames of the Diverging Tree sequence using
optimization algorithms OPT, MR/OPT and FMG/OPT. Time is
CPU time in seconds.

OPT MR/OPT FMG/OPT
Time | 14.56 4.10 0.72
Nf 64 16 10
Model 1 Ng | 695 209 27
AAE | 2.06 1.99 1.82
STD | 1.60 1.57 1.30
Time | 16.81 5.28 1.70
Nf 82 20 16
Model 2 Ng | 664 221 63
AAE | 2.08 2.07 1.90
STD | 1.95 2.09 1.85
Time | 26.59 6.61 1.06
Nf 128 20 11
Model 3 Ng | 1016 253 35
AAE | 249 2.46 1.59
STD | 1.86 1.95 1.17
Time | 31.60 14.73 3.26
Nt 133 96 30
Model 4 Ng | 997 492 97
AAE | 2.09 2.07 1.86
STD | 1.84 1.89 1.92

model. In particular, truncated Newton was shown to be a suitable unilevel
optimization algorithm and was chosen as the smoother for optimization-based
multilevel methods. We have then implemented the FMG/OPT algorithm based
on a line search strategy to scale the (direct) Newton or the (recursive) multi-
grid search direction. Several components of the MG/OPT technique have been
tuned for high efficiency and the algorithm has been fully evaluated with respect
to unilevel and (one-way) multiresolution optimization. Our experimental results
have demonstrated that the FMG/OPT algorithm can be effectively used for op-
tical flow computation. Using different models and images, we have observed
the FMG/OPT algorithm was faster and more accurate than both unilevel and
multiresolution truncated Newton. Further research will investigate the use of
line search multigrid versus trust region multigrid in the context of dense opti-
cal flow computation. The proposed numerical strategy can be adapted to the
minimization of other nonlinear energy functionals like the illumination invariant
model proposed in [14] or depth estimation in stereo problems.
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TABLE 6.4. Comparison of computational work and optical flow
estimation for two frames of the Yosemite sequence using line search
optimization algorithms (OPT, MR/OPT, FMG/OPT). Time is
CPU time in seconds.

OPT MR/OPT FMG/OPT
Time | 12.07 5.21 2.97
Nf 13 8 11
Model 1  Ng 161 60 26
AAE | 6.79 6.78 6.77
STD | 9.25 9.31 9.49
Time | 62.20 15.59 7.06
Nf 108 27 19
Model 2 Ng 680 167 67
AAE | 6.47 6.22 6.17
STD | 9.28 9.15 9.18
Time | 82.27 17.38 7.01
Nf 83 19 15
Model 3 Ng 856 188 81
AAE | 6.33 6.07 6.08
STD | 9.10 8.62 8.40
Time | 205.56 25.51 14.46
Nt 218 24 21
Model 4 Ng 1821 223 121
AAE | 5.75 5.49 5.45
STD | 8.92 8.57 7.90

TABLE 6.5. Global characteristics of OPT, MR/OPT and
FMG/OPT for optical flow models on all the three images. Nfg
is the total number of function and gradient evaluations.

OPT MR/OPT FMG/OPT
Model 1 To%ii;u;efg( g ot by 106
Model 2 Toéiltglmli]i’g( ? w0 ol i
ity Tl S
Modeld RIS RS Tl e
All models Tor;i;inliffg( K 5;1’;0?9,9 121’871629 4;)7:-);6
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