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1. Introduction

Knowledge builds upon previous knowledge. This is true for most in-
novations nowadays, especially in high-tech industries such as molecu-
lar biology, plant biotechnology, semiconductors, and software. In some
cases, the innovation consists of an improvement of an older version of
the same good. In other cases, the research leading to the discovery of
the new good depends on the access to research tools, techniques and
inputs that were previous innovations themselves.

The sequential nature of innovation introduces the issue of how to
divide the revenues from the chain of inventions among the different
innovators. Suppose two innovations may be introduced sequentially.
If the first innovator receives a patent, she may obtain a claim over part
of the second innovator’s revenues. Then, the policy maker faces an
important trade-off: if the patent covering the first innovation is strong,
the second innovation may become unprofitable, but if that patent is
weak, it may provide low incentives to introduce the first innovation.

The literature on sequential innovation, pioneered by Scotchmer
(1991), has studied this problem in depth. Usually, this literature has
analyzed the optimal division of profits between two sequential inno-
vators. But what happens when a continuous sequence of innovations
exists, each building on all previous inventions?

Recent research has suggested the possibility that the accumulation
of claims on sequential innovations may generate a tragedy of the anti-
commons (Heller, 1998; Heller and Eisenberg, 1998). When too many
agents have exclusion rights over the use of a common resource, this
resource tends to be underutilized, in clear duality with the tragedy
of the commons in which too many agents hold rights of use and the
resource tends to be overused.

In our case, the anticommons could arise if too many patent hold-
ers have exclusive claims on separate components of the state-of-the-
art technology, creating an obstacle for future research. However, the
anticommons hypothesis has not yet been studied formally in a dy-
namic model with endogenous innovation. In particular, patents pro-
duce claims on subsequent innovations that may more than compensate
for the negative effect of having to pay licensing fees to previous in-
novators. Several interesting questions arise: what is the net effect of
patents on innovation incentives? How should policy parameters be set
to maximize social welfare?
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Two streams of literature provide partial answers to these questions.1

The literature on sequential innovation is mainly concerned with substi-
tute innovations, where later innovations are applications or improve-
ments of earlier innovations. This setting allows little room for studying
the effects of the accumulation of claims. On the other hand, the liter-
atures of complementary monopoly, patent thickets, and patent pools
study the problem of the accumulation of complementary patents, but
from a static point of view. As Shapiro (2001) states: “The generic
problem inherent in the patent thicket is well understood as a matter of
economic theory, at least in its static version.” The main contribution
of our paper is to develop a dynamic model to study how the accu-
mulation of complementary claims affects innovation incentives. We
relate the literature on sequential innovation to the static literatures
of complementary monopoly and patent pools. Extending the analysis
of complementary monopoly to a dynamic framework allows us to gain
relevant insights into the emergence of patent thickets and the net ef-
fect of different patent policy regimes on innovation at different stages
of industry maturity.

We present a dynamic model to study the division of profits between
sequential innovators when each innovation builds on several prior in-
ventions. An infinite sequence of innovations n = 1, 2, . . . exists, where
innovation n cannot be introduced until innovation n − 1 has been
introduced. Each innovation has a commercial value (the profit it gen-
erates as a final good), which is random and private information of the
innovator, and requires a deterministic cost of R&D to be developed.

Our model provides a good description of the innovation process
in several industries. For example, in the software industry, the first
programs were written from scratch and therefore built on little prior
knowledge. As more and more programs were developed, they pro-
gressively became more dependent on technologies the first programs
had introduced. According to Garfinkel et al (1991), modern software
programs contain thousands of previously developed mathematical al-
gorithms and techniques. Similar examples can be found in other high-
tech industries.

Formally, our model is a multi-stage game in discrete time with an
uncertain end. Interestingly, the probability of reaching the next period
is determined endogenously. The equilibrium concept we use is sub-
game perfect equilibrium with Markovian strategies (Markov perfect
equilibrium).

1Read section 1.1 for more details.
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In the first sections of the paper, we study equilibrium dynamics in
three scenarios: patents, no patents, and patent pools. With patents,
innovation becomes harder and harder with more complex innovations.
The probability of innovation goes to 0 as n → ∞. The probability
of innovation is higher than in the static case, but not high enough
to prevent the tragedy of the anticommons. Therefore, we show that
complementary monopoly inefficiencies, originally explored by Cournot
(1838), also extend to a dynamic framework where we remove the
bound on the social value complementary monopolists share, as we
explain in section 1.1.

Without patents, the probability of innovation is constant and de-
pends on the degree of appropriability of the innovation’s commercial
value in the final goods sector.

When patents protect ideas, the formation of a patent pool increases
the probability of innovation for all innovations. Interestingly, the prob-
ability of innovation with a pool is constant and higher than it would
be in the static case. This result strengthens the findings of Shapiro
(2001), Lerner and Tirole (2004), and Llanes and Trento (2009) for
static models.

We find that pools are dynamically unstable: the temptation to re-
main outside the pool increases as the sequence of innovations advances,
which means early innovators have more incentives than later innova-
tors to enter the pool. The design of a mechanism to solve the pool
instability problem, along the lines of Brenner (2009), is beyond the
scope of this paper. However, we find that a scheme in which each in-
novator buys all patent rights from the preceding innovator, instead of
paying only for the permission to use the idea, can replicate the patent
pool outcome. The complete sale of patent rights will therefore gen-
erate higher innovation than licensing. An alternative scheme, leading
to the same innovation outcome, is to allow subsequent competition
between the licensee and the original licensor. This alternative scheme
removes the monopoly power of all but the last patent, eliminating the
anticommons effect.

We study the optimal innovation policy that maximizes the expected
welfare of the sequence of innovations and find that innovation is sub-
optimal in the three policy regimes. In the no-patents regime, there is
a dynamic externality: innovators do not consider how their decisions
impact the technological possibilities of future innovators. In the two
other policy regimes, the inefficiency stems from asymmetric informa-
tion and market power: patent holders do not know the exact value of
the innovation, but they know its probability distribution. The asym-
metric information generates a downward-sloping expected demand for
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the use of ideas, and patent holders’ market power results in a price
for old ideas above their marginal cost.

We also show that the first best can be reached by decentralizing the
innovation decision and implementing a tax-subsidy scheme. Surpris-
ingly, this result holds even if the government and previous innovators
do not know the value of the innovation. With respect to the tim-
ing of the optimal transfers, we find that innovators should receive a
subsidy to innovate, and then be taxed with subsequent innovations.
Therefore, optimal transfers work in the exact opposite way as patents,
which require an innovator to pay previous inventors upfront and then
be compensated by following innovators.

These findings extend the results of Erkal and Scotchmer (2007),
who show that the scarcity of ideas has a non-trivial impact on the
optimal reward to the innovator. In this sense, the two papers are
complementary. While Erkal and Scotchmer show that the scarcity of
ideas affects the size of the optimal reward, we show that it also affects
the timing of this reward. Finally, we find that symmetric information
over the value of the innovation leads to the first best. We then turn
to the analysis of the optimal patent length.

With respect to the optimal patent length, we find that short patents
maximize the probability of innovation, because in our model, absent
any form of price collusion or agreement between patent holders, re-
ducing patent length is the only way to reduce the complementary
monopoly problem. This finding complements the findings of previous
papers that focus on the final goods sector and substitute innovations.

Another important finding is that the main results of the litera-
ture of complementary monopoly extend to a dynamic framework with
endogenous innovation. Also, patent pools composed of complemen-
tary patents are welfare improving with endogenous innovation. This
finding partially answers a question Lerner and Tirole (2004) posed
regarding the desirability of patent pools when their ex-ante effect on
innovation activity is taken into account.

1.1. Related Literature. We extend the literature on sequential in-
novation by analyzing the case in which patents generate cumulative
claims on subsequent innovations. This extension is important be-
cause it allows us to study the emergence of patent thickets. Many
papers of sequential innovations, such as Green and Scotchmer (1995),
Chang (1995), and Scotchmer (1996), analyze the optimal distribution
of profits between two sequential innovators. If the first innovation has
low commercial value (basic research for instance), granting the first
innovator a strong patent is optimal. This is not necessarily true in
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our model, where the accumulation of patents generates a problem of
anticommons.

Abstracting from transaction costs, or the possibility that one or
more patent holders refuse to license their ideas thereby blocking inno-
vation, the tragedy of the anticommons is similar to a complementary
monopoly problem, first analyzed by Cournot (1838). Cournot mod-
eled a competitive producer of brass who has to use copper and zinc as
inputs in production, and showed that, when two different monopolists
sell the inputs, the total cost of producing brass is higher than when
the same monopolist sells both inputs. Sonnenschein (1968) showed
that complementary monopoly is the dual of a duopoly model with
quantity competition and homogeneous goods, and Bergstrom (1978)
generalized this result to a general number n of inputs and any degree
of complementarity among them. Chari and Jones (2000) showed that
the market outcome in a complementary monopoly setting is increas-
ingly inefficient as the number of agents increases.

Recently Shapiro (2001) and Lerner and Tirole (2004) applied the in-
struments of complementary monopoly to the analysis of patent pools.
Their results reinforce the results on complementary monopoly: patent
pools (or, equivalently, a single monopolist owning all the patented in-
puts) reduce the cost of innovation when patents are complements and
increase the cost when patents are substitutes. Boldrin and Levine
(2005) and Llanes and Trento (2009) also made use of complementary
monopoly to show that, as the number of complementary patents in-
creases, the probability that a future innovation will be profitable goes
to zero.

All of these papers, although they make important contributions,
present static models. In other words, the first innovation has been
invented already, so patents and patent pools only affect the profitabil-
ity of introducing a second innovation. This structure introduces an
important asymmetry between previous and future innovations that
our dynamic model eliminates. We believe that adding a dynamic di-
mension is an important step towards a better understanding of the
mechanism of anticommons in sequential innovation.

In particular, one would expect the complementary monopoly prob-
lem to be weaker in a dynamic context for two reasons: first, in the
static model there is a limit on the revenues input producers share;
we eliminate this limit by extending the analysis to a dynamic frame-
work with potentially infinite innovations. Second, setting high license
fees increases the probability that the innovation chain, or a partic-
ular research line, will come to a halt: a patent holder would then
have an incentive to moderate the license fee to be able to reap part
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of the revenues of further innovations. We find that, in spite of these
two effects, the complementary monopoly problem is so strong that
innovation eventually becomes unprofitable.

Our paper is related to O’Donoghue et al (1998) and Hopenhayn
et al (2006), who also present models of cumulative innovation. How-
ever, Hopenhayn et al (2006) have no accumulation of claims since
only one patent is valid at any given time. O’Donoghue et al (1998),
on the other hand, have accumulation of claims but rule out comple-
mentary monopoly, as bargaining among patent holders is efficient by
assumption. Also, in both papers, innovations are substitutes: the in-
troduction of a new product automatically implies the disappearance
of old versions from the market. The substitutability between inno-
vation introduces a natural limit on appropriability and produces an
important trade-off, because granting a patent to the first innovator
limits what can be offered to the second innovator. In our paper, inno-
vations are complementary and do not compete with each other in the
final goods sector. This setting eliminates the appropriability problem.
In such a model, one would expect a patent system to perform well.
However, the opposite happens: granting too many patent rights on
sequential innovations produces a complementary monopoly problem
that hampers innovation.

Finally, our paper is also related to Menezes and Pitchford (2004),
who present a dynamic model of anticommons. Menezes and Pitch-
ford model the case of a buyer who has to combine complementary
assets from two sellers. Sellers may have an incentive to avoid entering
into negotiations with the buyer because they may get a higher share
of total surplus by negotiating after the buyer agrees with the other
seller. Holdout occurs if at least one seller is not present in the first
round of negotiations. The authors show that complementarity is a
necessary condition for holdout, and also that a rise in complementar-
ity leads to an increase in the possibility of holdout. In our case, the
accumulation of claims may lead to increasing delays in the agreement
between current and past innovators, furthering the welfare loss caused
by complementary monopoly.

2. The model

We study a model with an infinite sequence of innovations n =
1, 2, . . . Each innovation cannot be introduced until all previous in-
novations have been introduced. This innovation process reflects the
fact that earlier innovations do not have a solid background upon which
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to build, while further innovations become more and more indebted to
previous ones as the market matures.

At each stage, an innovator gets an idea of how to develop a particu-
lar innovation. If the innovator decides to perform the innovation, the
game continues and, in the following stage, another innovator will get
an idea for the next innovation. If the innovator decides not to intro-
duce the innovation, two things may happen: (i) with probability φ,
the game continues and in the following stage another innovator tries
to perform the failed innovation, and (ii) with probability 1 − φ, the
game ends and no other innovations are possible.

The parameter φ ∈ [0, 1] represents the degree of scarcity of ideas. If
ideas are more scarce (lower φ), each idea is more difficult to substitute,
and another innovator is less likely to have a different approach to
implement a failed innovation.

Let n, j represent the jth innovator trying to introduce innovation n
(j − 1 innovators have already tried to introduce innovation n without
success). At the beginning of the stage, the innovator gets an idea with
random value vn,j, which she may develop by incurring in a determin-
istic R&D cost of ε.
vn,j represents the revenues obtained by selling the new product in

the final-goods market. To concentrate on the effects of patents on
innovation activity, we will assume the innovator is a perfect price dis-
criminator in the final-goods market, which means the private value of
the innovation is equal to the social surplus the new product generates.

The value of the innovation is private information of the innovator.
Patent holders only know vn,j is drawn from a uniform distribution
between 0 and 1, with cumulative distribution function F (vn,j) = vn,j.

The innovator’s decision on whether to perform the innovation will
depend not only on vn,j and ε, but also on the licensing revenues and
cost that may arise depending on the particular patent regime under
analysis.

Given that at each stage the innovator will perform the innovation
with a certain probability, the game is a multi-stage game with uncer-
tain end, in which the probability that the game continues is deter-
mined endogenously.

3. Innovation with patents

In this case, patents with infinite length and breadth protect ideas
(we will relax these assumptions in section 10), which means each inno-
vator has to pay license fees to all previous inventors (patent holders),
in case she wants to introduce the innovation. The cost of innovation
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is the sum of the cost of R&D and the licensing fees paid to previous
innovators.

A patent of infinite length will also protect the new idea, which means
the innovator can request licensing fees from all subsequent innovators.
The total revenues of the innovation equal the commercial value of the
innovation plus future licensing revenues.

The timing of the game within each stage is the following: (i) The
n− 1 patent holders set licensing fees pin,j, (ii) Nature extracts a value
for vn,j from distribution F (vn,j), (iii) the innovator decides whether to
innovate (In,j = 1) or not (In,j = 0).

If the revenues from the innovation are higher than the cost, innova-
tor n, j will introduce the innovation, and in the next stage, innovator
n + 1, 1 will try to introduce innovation n + 1. If revenues are lower
than cost, innovator n, j will not introduce the innovation, and in the
following stage (reached with probability φ), innovator n, j+ 1 will try
to introduce innovation n based on a different approach. This innova-
tor n, j+ 1 will face the same n− 1 patent holders and will have a new
draw for the value of innovation, vn,j+1.

Let J in,j be the expected future licensing revenues of patent holder
i at trial j of innovation n, given that stage n, j has been reached.
Expressed in a recursive way,

J in,j = Prn,j (pin,j + β J in+1,1) + (1− Prn,j)φβ J in,j+1,

where Prn,j is the probability that innovation n is introduced at trial j,
given that n− 1 prior innovations have been introduced and that j− 1
trials to introduce innovation n have already failed. With probability
Prn,j, the patent holder gets the price pin,j plus the continuation value

of the first trial of the next innovation, J in+1,1, discounted by a factor
β ∈ [0, 1]. With probability (1 − Prn,j)φ, the innovation is not intro-
duced but the game continues, in which case the patent holder gets the
continuation value corresponding to the next trial of the current inno-
vation, J in,j+1, discounted by the factor β. β can be interpreted both as
the discount factor or, for a fixed discount factor, as the time between
innovations: lower values of β imply ideas arrive less frequently.

The innovator’s payoff is In,j(vn,j + βJnn+1,1 − cn,j − ε), where cn,j =∑n−1
i=1 p

i
n,j is the sum of licensing fees paid to previous innovators.

We will focus on Markov strategies. A strategy for player i speci-
fies an action conditioned on the state, where actions are prices and
the state is simply n, j. The equilibrium concept is Markov perfect
equilibrium, which implies future prices will be determined by a Nash
equilibrium in the subsequent games. Thus players understand that
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no action taken today can influence future prices and probabilities.
Current actions probabilistically affect state transitions through the
influence of current prices on the probability of innovation. We have
just proved the following lemma:

Lemma 1. J im,k does not depend on any action taken at stage n, j for
m > n and any j, k.

The game is solved recursively. The solution to the innovator’s prob-
lem is straightforward. Given vn,j and cn,j, the innovator forecasts
Jnn+1,1, and decides to innovate (In,j = 1) if the revenues from the
innovation exceed the cost of innovation:

In,j =

{
1 if vn,j + βJnn+1,1 ≥ cn,j + ε,
0 otherwise,

which implies that the probability of innovation is Prn,j = 1+βJnn+1,1−
cn,j − ε.

At stage n, j, patent holders want to maximize their expected licens-
ing revenues from stage n, j onwards. They know their decisions do
not affect J im,k for any k, j and m > n (they can only affect the proba-

bility that stage m, k is reached) and decide a licensing fee pin,j, taking
the decisions of the other patent holders as given. The patent holder’s
problem is

max
pin,j

J in,j = Prn,j (pin,j + J in+1,1) + φβ (1− Prn,j)J in,j+1.

From the first-order conditions we obtain that the optimal price

is pin,j =
1−ε+φβJin,j+1

n
. Bellman equations are easy to solve because

Lemma 1 implies current patent holders take future prices and innova-
tion decisions as given when setting their licensing fees.

Imposing symmetry, pin,j = pn,j and J in,j = Jn,j for all i. Also,
the problem at trial j is the same as the problem at trial k for any
j, k, which means Jn,j = Jn,k = Jn. Substituting the probability of
innovation, we get Prn = 1−ε

n
+ βJn+1 − n−1

n
φβJn, and substituting

this result into the expression for J in,j:

Jn =
1

1− φβ

(
1− ε
n

+ βJn+1 −
n− 1

n
φβJn

)2

.

Rearranging this expression,

Jn+1 =
1

β

(√
(1− φβ)Jn −

1− ε
n

)
+
n− 1

n
φJn,

which is a decreasing sequence converging to 0 as n→∞.
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The sequence in terms of probabilities is:

Pr2n+1 =
1− φβ
β

(
Prn −

1− ε
n

)
+
n− 1

n
φPr2n,

which is also a decreasing sequence converging to 0 as n → ∞. The
result is therefore that innovation gets harder and harder with more
complex innovations (those that build upon a larger number of previous
innovations).

The probability of innovation decreases with complexity because
patent holders do not take into account cross-price effects: patent
holder i sets the price of her patent by equating the marginal rev-
enue and the marginal cost of increasing her license fee. The marginal
revenue is simply the additional revenue in case the new innovation is
performed. The marginal cost is the reduction in expected demand,
and depends on the fact that – since all patents are essential for the
new innovation – increasing the price of patent i decreases the prob-
ability of innovation. Increasing the price of patent i will also reduce
the expected demand for all other inputs. But patent holder i will not
take this effect into account, generating the anticommons effect that
closely resembles the tragedy of the commons: patent holders ignore
cross-price effects and set prices that are higher than they would set if
they were coordinated (see section 5).

4. Innovation without patents

Suppose a policy reform completely removes patents. This change
affects innovation in two ways. First, the revenues of the innovator in
the final-goods sector will decrease as a result of imitation. Specifically,
assume that the innovator can only appropriate a fraction θ ∈ [0, 1] of
the consumer surplus the innovation generates. Second, innovators will
not pay licensing fees to previous innovators, nor will they charge for
the use of their ideas in subsequent innovations. Therefore, cn,j = 0
and Jn,j = 0 in the previous model.

The timing of the game is the following: (i) nature extracts a value of
the innovation vn,j, and (ii) the innovator decides whether to innovate.

The innovator will innovate if θ vn,j ≥ ε and will not innovate oth-
erwise. Thus, the probability of innovation is constant and equal to
1− ε/θ if θ > ε. If θ ≤ ε, then the probability of innovation is zero.

5. Patent pools

In this section, we analyze what happens when a collective institution
such as a patent pool sets licensing fees cooperatively. At each stage,
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the pool maximizes the future expected revenues of current patent
holders. The pool will set a symmetric price for all current patent
holders. Once an innovation is performed, the innovator becomes a
member of the pool in all subsequent stages. The first stage has no
pool because no innovation has been introduced (the pool plays from
stage 2 onwards).

The probability of innovation is Prn,j = 1+βJnn+1,1− (n−1)pn,j−ε,
and the pool’s problem is

max
pn,j

J in,j = Prn,j (pn,j + βJ in+1,1) + (1− Prn,j)φβ J in,j+1.

The difference with respect to the non-cooperative case is that the
pool recognizes cross-price effects, and therefore is encouraged to set
lower prices than in the no-pool case.

By symmetry, J in+1 = Jn+1. A higher Jn+1 fosters innovation in two
ways. First, it increases the innovator’s future revenues. Second, it
encourages the pool to set a lower price, because it increases the loss
of current patent holders if the sequence of innovations is stopped.

The equilibrium price is pn,j = 1−ε
2(n−1) −

n−2
2(n−1)βJ

i
n+1,1 + 1

2
φβJ in,j+1,

which is equal to the price a pool would set in a static model (see
section 9.3) minus an additional term arising from the pool’s concern
for keeping future revenues.

The probability of innovation becomes Prn = 1−ε
2

+n
2
βJn+1−n−1

2
φβJn.

Introducing price and probability in Jn, we get

Jn =
1

φβ(n− 1)

(
1− ε

2
+
n

2
βJn+1 +

n− 1

2
φβJn

)2

.

Rearranging this expression,

Jn+1 =
1

βn

(√
(1− φβ)(n− 1)Jn − (1− ε)

)
+
n− 1

n
φJn,

which is a decreasing sequence converging to 0 as n→∞.
The sequence in terms of probabilities is

Pr2n+1 =
2(1− φβ)

β

(
Prn −

1− ε
2

)
+ φPr2n,

which is a constant sequence such that

Prn =
1− φβ −

√
1− φβ

√
1− β + β(1− φ)ε

β(1− φ)

for n ≥ 2 and Pr1 = min{1, 2−2
√

1−β(1+ε(−1+φ))
√
1−βφ+βφ(−3+ε+φ(1−ε))

β(1−φ)2 }.
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6. Comparison

Figure 1 shows the evolution of the probability of innovation in
the three cases studied above: infinitely lived patents, no-patents and
patent pool. In the figure, β = 0.95, φ = 0.5, and the cost of R&D is
ε = 0.2, but the qualitative results discussed in this section hold for any
choice of these parameters. We consider θ = 1 (full appropriation) and
θ = 0.3 (the innovator appropriates 30% of the social surplus generated
by the new product) for the no-patents case.

Comparing the patent and no-patents cases, we can see that patents
increase the probability of the first innovations but decrease the prob-
ability of further innovations. The number of innovations for which
patents increase the probability depends on θ. For example, when
θ = 1, patents only increase the probability of the first innovation.
Nevertheless, even when θ = 0.3, the probability increases only for the
first two innovations. For patents to increase the probability of several
innovations, θ must be very small and close to ε (i.e., when very little
appropriability exists without patents).

When ideas are protected by patents, the formation of a patent pool
increases the probability of innovation. Figure 1 shows that, when
patents protect ideas, the probability of innovation is always larger with
patent pools than without it. Moreover, with a pool, the probability
of innovation does not go to zero as n→∞. The comparison between
patent pools and no-patents depends on ε and θ. When θ is low, a
patent pool increases the probability of all innovations. When θ is
high, the pool increases the probability of the first innovation, and
decreases the probability of all subsequent innovations.

7. Complete sale of patent rights

The tragedy of the anticommons stems from fragmented ownership
of complementary patents. In this case, the probability of innovation
decreases as more innovations are introduced, converging to 0 as n →
∞. The formation of a patent pool would alleviate this problem by
concentrating all pricing decisions on one entity. In this section, we
discuss a possible alternative solution, which is to enforce the sale of
complete patent rights instead of allowing the sale of individual access
rights through licensing fees. Other innovators can, in turn, purchase
these patent rights. In this case, innovator 1 would sell the complete
patent rights over innovation 1 to innovator 2 for a price r1. Innovator 2
then would sell the patent rights on innovations 1 and 2 to innovator 3
for a price r2, and so on. We will show that this mechanism eliminates
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Figure 1. Comparison of equilibria.

the coordination failure at the basis of the anticommons, and that it
replicates the innovation outcome under a patent pool.

The cost of innovation n, j becomes ε+rn−1,j, and expected revenues
vn,j + βJsn+1,1, where Jsn+1,1 are the expected revenues of innovator n
from selling the n patent rights to innovator n+ 1, 1.

The probability that innovation n is performed is Prn,j = 1 − ε −
rn−1,j + βJsn+1,1. At stage n, j, innovator n − 1 solves the following
maximization problem:

max
rn−1,j

Jsn,j = Prn,j rn−1,j + φβ(1− Prn,j)Jsn,j+1.

Solving the maximization problem, and given that the problem is the

same for any j, yields a price for patent rights rn−1 =
1−ε+βJsn+1+βφJn

2
.

The resulting sequence of probabilities of innovation is:

Pr2n+1 =
2(1− φβ)

β

(
Prn −

1− ε
2

)
+ φPr2n,

which is exactly the same sequence as with patent pools.
We have just proved that the complete sale of patent rights is equiv-

alent to a patent pool in our dynamic model. However, note that
implementing this scheme may be difficult when describing the nature
of innovations ex-ante is hard. For example, when selling the rights
over innovation n to innovator n+ 1, describing what innovation n+ 2
may be is difficult. In this case, complete contracts may be hard to
write, making patent pools easier to enforce.
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An alternative policy arrangement leading to the same result would
be the following: restoring the possibility of licensing access rights, but
at the same time allowing subsequent competition between the licensee
and the original licensor. In this case, if innovator n licenses the use
of innovation n to innovator n + 1, then innovator n + 2 can license
the use of innovation n from innovators n and n+ 1. Under this policy
arrangement, innovator n will only get positive revenues from licensing
her innovation to innovator n + 1 because, at stage n + 1, she is a
monopolist. After stage n + 1, she will face competition from other
innovators, and Bertrand competition will imply a licensing fee equal
to zero.

8. Endogenous patent pool formation

In section 5 we assumed all innovators, after innovating, automati-
cally join the patent pool. In this section, we endogeneize this choice,
by analyzing the incentives for innovator n − 1 to join the pool. In
particular, we compare the expected revenues from joining the pool
(Jn,j from section 5) with the expected revenues from setting the price
of her patent non-cooperatively (JOn,j).

We start with the non-cooperative choice. For expositional clarity,
let us refer to the patent pool members as insiders and to the non-
cooperative member as the outsider. The pool maximizes the expected
revenues of the insiders:

max
pin

J In,j = Prn,j (pIn,j + βJ In+1,1) + (1− Prn,j)φβJ In,j+1,

where pin,j is the cooperative price of an insider’s patent, and Prn =

1 + J In+1,1 − (n − 2)pIn,j − pOn,j − ε, with pOn,j denoting the price of the
outsider’s patent.

On the other hand, the outsider maximizes

max
pOn

JOn,j = Prn,j (pOn,j + βJOn+1,1) + (1− Prn,j)φβJOn,j+1.

From first-order conditions we know that JOn,j = (n−2) J In,j, meaning
that, if there is an outsider in equilibrium, she will have higher profits
than each of the insiders.

Now let us compare the expected revenues from not joining the pool
(JOn,j) with the expected revenues of joining the pool, given that every-
body else is in the pool (Jn,j from section 5). In equilibrium, deviating
from the pool produces and expected revenue of

JOn =
3(1− φβ)−

√
1− φβ

√
9− 8(1− ε(1− φ)) + φ

16β2(1− φ)2(1− φβ)
,
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which does not depend on n. If, on the other hand, innovator n − 1
decides to join the pool with the n−2 previous innovators, her expected
revenue will be

Jn =

(
1− φβ −

√
1− φβ

√
1− β + β(1− φ)ε

)2
(n− 1)(1− φβ)β2(1− φ)2

,

which is decreasing in n. This result is due to the fact that the patent
pool maximizes joint profits, thus keeping the total cost of innovation
constant. This constant amount must be divided among an increasing
number of insiders; therefore, the expected revenue of an insider is
decreasing in n and converges to 0 as n→∞. Therefore some innovator
n0 > 2 with incentives to deviate by remaining outside the pool always
exists.

Figure 2 illustrates this finding and shows the gains from deviating
from the pool as a function of n, for ε = 0.1, φ = 0.5, and β = 0.95.
The gains become positive after innovator 3, which means the fourth
innovator would gain by remaining outside the pool.

Figure 2. Gains from not joining the patent pool. ε =
0.1, φ = 0.5, and β = 0.95

Patent pools can improve innovation activity, but are dynamically
unstable. Early innovators have more incentives to enter the pool than
subsequent innovators. Brenner (2009) finds an elegant mechanism
to solve the instability problem for socially desirable patent pools in
a static model. We leave the design of an equivalent mechanism in
the context of a dynamic model for future research. Without such
a mechanism, however, patent pools are likely to be unstable. This
instability might explain why governments sometimes have to enforce
the creation of patent pools, as the U.S. government did in the radio
and aircraft industry, for example.
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9. Socially optimal innovation

The relevant measure of welfare is the expected social value generated
by the sequence of innovations. The social value of an innovation is
equal to the increase in consumer surplus minus the cost of the resources
spent in R&D. Therefore, when considering trial j of innovation n, the
social value generated is vn,j − ε if the innovation is performed, and 0
otherwise.

Consider the decision of performing innovation n, j. If the value of
the innovation is greater than the cost, obviously the innovation should
be performed. However, the social planner could still decide to perform
an innovation with negative social value, because in the opposite case,
the sequence of innovations will stop with a probability of 1− φ. The
decision will depend, therefore, on a comparison between the current
cost of performing an innovation with negative social value and the
expected future benefits of continuing with the chain of innovations.

Let Wm,k be the expected social welfare from stage m, k onwards.
Once we know the realization of vn,j, expected welfare is vn,j − ε +
β Wn+1,j if the innovation is performed, and β φWn,j+1 if the innovation
is not performed. Therefore, the innovation should be performed if
vn,j − ε+ β Wn+1,j ≥ β φWn,j+1.

Proposition 1 shows the socially optimal innovation policy.

Proposition 1 (Socially optimal innovation). To maximize expected
social welfare, innovation n, j should be performed if and only if vn,j ≥
v∗, where

v∗ =

{
0 if ε ≤ β

2
1−φ
1−β φ ,

β−1+
√
1−β φ
√

1−2β (1−(1−φ) ε−φ/2)
β (1−φ) if ε > β

2
1−φ
1−β φ .

Proof. Given the assumptions of the model, innovations vn,j and vm,k
are equivalent for any n, j,m, k. It follows that Wn,j = Wm,k = W ,
and the optimal decision is time-invariant: a value v∗ ∈ [0, ε] exists
such that innovation n, j should be performed if and only if vn,j ≥ v∗.
By definition, v∗ solves v∗ − ε + β W = β φW . Therefore, we need to
determine the value of W . In particular, Wm,k is given by

Wm,k = Pr(vm,k ≥ v∗) (E(vm,k − ε/vn,j ≥ v∗) + β Wm+1,k) +

(1− Pr(vm,k ≥ v∗)) β φWm,k+1.

Imposing Wm,k = Wm+1,k = Wm,k+1 = W , and solving for W , we get

W =
1− v∗

1− β (1− (1− φ) v∗)

(
1 + v∗

2
− ε
)
.
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Substituting this result into v∗ − ε+ β W = β φW , and solving for v∗,
we get the optimal policy stated in the proposition.

Proposition 1 implies that innovation will be suboptimal in the three
cases studied above. There are three reasons why this is so: dynamic
externalities, market power, and asymmetric information.

The dynamic externality is best described by analyzing the no-patents
case. Without patents, the innovator will perform the innovation when
vn ≥ ε/θ. Given that v∗ ≤ ε, the innovator may decide not to per-
form a socially desirable innovation, even if θ = 1, because she ignores
the effect of her decision on the technological possibilities of future
innovators. This effect is well known in the literature of sequential in-
novation (Scotchmer, 1991; Hopenhayn et al, 2006) and is similar to
the one found in the literature of moral hazard in teams (e.g., Holm-
strom, 1982), where each agent internalizes only his reward from the
effort exerted.

The solution to the first problem would require intertemporal trans-
fers. In section 9.1, we show that the first best can be reached by
decentralizing the innovation decision and implementing a tax-subsidy
scheme. Surprisingly, this result holds even if information is asymmet-
ric, that is, if neither the government nor previous innovators know the
value of the innovation.

In the patents and patent-pool cases, the inefficiency arises from
a different source: market power and asymmetric information. Be-
cause patent holders care about the stream of future licensing rev-
enues they will lose if the sequence of innovations stops, they internal-
ize the dynamic externality. However, asymmetric information implies
a downward-sloping expected demand for old innovations, and market
power implies inefficient pricing of patents, which leads to suboptimal
innovation. As the number of holders of rights on innovation increases,
the inefficiency due to market power increases (because of the com-
plementary monopoly), which is why the patent-pools case is more
efficient than the patents case.

In order to show the importance of the asymmetric information as-
sumption, in Section 9.2, we show that under symmetric information
there exists an equilibrium that reaches the first best.2 This means
that without asymmetric information, the dynamic externality could
be perfectly internalized, reaching the first best.

2A continuum of equilibria exists under symmetric information. Some of these
equilibria do not reach the first best, but the important fact is that some of them
do.
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9.1. Optimal transfers. In this section, we show that the first best
can be reached by decentralizing the innovation decision and imple-
menting a tax-subsidy scheme. This is a surprising finding, because it
does not require the government to know the value of the innovation in
order to be implemented. In addition, we find that the optimal timing
of the tax-subsidy scheme is as follows: innovators should receive a sub-
sidy if they innovate, and then be taxed when the following innovation
is performed.

The structure of transfers is the following: if innovator n, j decides
to innovate, she will have to pay a transfer tn to the innovator who
successfully performed innovation n−1, but she will also have the right
to receive a transfer tn+1 from the innovator who performs innovation
n + 1. Therefore, given vn,j, the innovator will innovate if vn,j − ε −
tn + β Jn+1,1 ≥ 0, where

(1) Jn+1,1 = Prn+1,1 tn+1 + (1− Prn+1,1) β φ Jn+1,2.

Proposition 2 shows the optimal intertemporal transfer that imple-
ments the first best.

Proposition 2. The optimal transfer is constant and equal to

t∗ =
(v∗ − ε) (1− φβ v∗)
1− β (1− v∗ + φ v∗)

.

t∗ ≤ 0 for any value of the parameters, and t∗ < 0 if and only if ε > 0,
φβ < 1.

Proof. The problems of innovators n, j and m, k are equivalent for the
social planner for any n, j,m, k, which means tn = tn+1 = t, and
Jn,j = Jm,k = J for any n, j,m, k. Given transfers, the probability
of innovation is Pr = 1−ε− t+β J . We want to make this probability
equal to the optimal probability, which is Pr∗ = 1 − v∗. The optimal
transfer then solves v∗ = ε+ t−β J . On the other hand, from equation
(1), we get J = (1−v∗) t/(1−φβ v∗). Substituting the latter expression
into the former, and solving for t, we get the optimal transfer stated in
the proposition. Finally, t∗ ≤ 0 because v∗ ≤ ε from Proposition 1.

Note that v∗ has a kink when ε = β
2

1−φ
1−β φ , so t∗ will also have a kink

at that point. An interesting feature of the optimal transfer is that it is
negative. Therefore, the innovator should receive a subsidy to innovate,
and be taxed with the following innovation. Most importantly, optimal
transfers work in the exact opposite way as patents, which require an
innovator to pay previous inventors upfront and then be compensated
by following innovators.
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9.2. Symmetric information. To analyze the reasons for inefficiency
in the different cases, in this section we study the effects of removing the
asymmetric information assumption while keeping the market power
assumption (i.e., past innovators are price-setters, whereas the current
innovator is a price taker).

At each stage, a value of vn,j is drawn from F (vn,j), and previous
innovators set the levels of licensing fees the innovator will pay, just
as in the basic model. The difference is that now, previous innovators
learn the realization of vn,j, and use this information when setting their
licensing fees.

In equilibrium, previous innovators will set a level of fees that will
leave the innovator indifferent between innovating or not. Otherwise,
one of the previous innovators could raise her fee without affecting
the innovation decision, thereby raising her profits. Therefore, any
sequence of prices such that

n−1∑
i=1

pin,j = vn,j − ε+ β Jnn+1,1

is an equilibrium.
Consider an equilibrium in which each innovator pays a fee only to

the previous innovator:

pn−1n,j = vn,j − ε+ β Jnn+1,1.

For the remainder of this section, let pn,j = pn−1n,j and Jn,j = Jn−1n,j . If
vn,j − ε+ β Jn+1,1 < 0, innovator n− 1 will not allow innovator n, j to
innovate (she can do this by setting any price above vn,j−ε+β Jn+1,1).
In case vn,j − ε+ β Jn+1,1 ≥ 0, on the other hand, innovator n− 1 will
allow innovation n, j only if pn,j ≥ β φ Jn,j+1. Proposition 3 shows that
in equilibrium, innovations will be performed only if they are socially
desirable.

Proposition 3 (Symmetric information). Under symmetric informa-
tion, the equilibrium in which each innovator only pays a licensing fee
to the previous innovator is socially optimal.

Proof. The problem at trial j is the same as the problem at trial j+ 1,
which means the lowest value of vn,j that innovator n−1 will tolerate is
constant. Let v̂ indicate this value. v̂ solves v̂−ε+β Jn+1,1 = β φ Jn,j+1,
and Jn,j+1 solves

Jn,j+1 = Pr E(pn,j+1/vn,j+1 ≥ v̂) + (1− Pr) β φ Jn,j+2,

where Pr = Pr(vn,j+1 ≥ v̂) = 1 − v̂, and E(pn,j+1/vn,j+1 ≥ v̂) =
1+v̂
2
− ε+ Jn+1,1. The problem for a different n and/or j is equivalent,
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so Jn,j = Jm,k = J for all n, j,m, k. Using this result in the above
equations, we obtain

v̂ = ε− β(1− φβ) J

J = (1− v̂)

(
1 + v̂

2
+ β φ J

)
+ v̂ φ β J.

Solving this system of equations for v̂ and J , we get that v̂ = v∗.

9.3. Static versus dynamic incentives. Previous models of comple-
mentary monopoly, sequential innovation, and patent pools were static
(Shapiro, 2001; Lerner and Tirole, 2004; Boldrin and Levine, 2005;
Llanes and Trento, 2009). Looking at what changes when we add the
dynamic dimension is interesting.

To see what happens in the static case, assume only one innovation
is under consideration. The innovation uses n−1 old ideas, which have
already been invented. If the innovation is performed, the innovator
obtains a value v from a uniform distribution between 0 and 1, and
incurs in a cost ε of R&D. The probability of innovation is Pr =
1 − ε − cn, with patents or patent pool and Pr = 1 − ε/φ without
patents.

With patents, the patent holder’s problem is to maximize Pr pi. As
a result, the equilibrium price is 1−ε

n
and the probability of innovation

is 1−ε
n

. We have shown that in the dynamic model, the probability

of innovation is 1−ε
n

+ βJn+1 − n−1
n
φβJn, with Jn, Jn+1 > 0. These

extra terms arise because the innovator gets licensing revenues from
future innovators. Dynamic incentives imply a higher probability of
innovation, but the increase is not enough to prevent the probability
of innovation from converging to 0 as n→∞.

A patent pool would consider cross-price effects, which would lead to
a price of 1−ε

2 (n−1) and a probability of innovation of 1−ε
2

. The probability

of the corresponding dynamic model is 1−ε
2

+ n
2
βJn+1 − n−1

2
φβJn, with

Jn, Jn+1 > 0. In this case, the extra terms arise due to not only the
future licensing revenues of the innovator, but also to the pool’s concern
with keeping the future licensing revenues of current patent holders.

With respect to the no-patents case, the profit-maximizing decision is
the same as in the dynamic case. Innovators will therefore perform the
innovation if φ vn ≥ ε, which leads to a probability of Pr = 1 − ε/φ.
However, in the dynamic case, innovation is suboptimal even when
φ = 1, which contrasts with the static case, where innovation is socially
optimal because no intertemporal link between innovations exists and
therefore neither does any externality.
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10. Finite patents

We have seen that with patents of infinite length, innovation is stifled
as n increases due to the complementary monopoly problem. In this
section, we ask whether appropriately reducing the length of patents
can prevent this problem.3

For simplicity, we assume φ = 0 and β = 1, which is the most
favorable case for patents: ideas are scarce and the discount factor is
small, so, in principle, society could largely benefit if innovators with
a low value for their inventions could get additional revenues from
charging other innovators.

Each stage corresponds to one period and only one innovation is
attempted at each period. If the innovator decides to introduce the
innovation, she obtains a patent for L periods. The innovator, there-
fore, has to pay licensing fees for L previous innovations, but she also
charges licenses to L future innovators.

The main difficulty of the present analysis is that, unlike in the
previous sections, the identity of the patent holders matters. The price
and future expected licensing revenues will be different for different
patent holders, depending on how long her patent lasts.

The innovator will introduce the innovation if the revenues from
innovation are larger than the cost:

vn +
n+L∑

m=n+1

pnm

m∏
k=n+1

Prk ≥
n−1∑
i=n−L

pin + ε,

which means the probability of innovation is

Prn = 1 +
n+L∑

m=n+1

pnm

m∏
k=n+1

Prk −
n−1∑
i=n−L

pin − ε.

The L current patent holders differ in their objective functions. Let
J in be the future expected revenues of patent holder i at stage n, given
that stage n has been reached. Then

J in = Prn(pin + J in+1).

The patent holder charging a license for the last time is patent holder
n− L, so Jn−Ln+1 = 0. The patent of n− L + 1, on the other hand, will

3We have also analyzed the effects of reducing the breadth of patents. For example,
suppose new inventions may infringe on old patents with certain probability. Within
our framework, the effects of reducing breadth are similar to the effects of reducing
patent length: a lower breadth implies that the innovator will have to pay fewer
licensing fees, but it also means fewer future inventions will infringe on her patent.
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last for one more period, so Jn−L+1
n+1 = Prn+1 p

n−L+1
n+1 . In this way, we

can construct the future expected revenues of the L patent holders.
The profit maximization problem is

max
pin

J in = Prn(pin + J in+1).

The first-order condition is −pin−J in+1+Prn = 0, so pin+J in+1 = Prn
and J in = Pr2n for all i, which also implies pn−Ln = Prn.

We are interested in stationary equilibria, which means Prn = Pr
for all n. Stationarity, together with the first order condition, implies
pin = Pr(1 − Pr) for i ≥ n − L. Substituting the equilibrium prices
into the probability of innovation, we get

Pr = 1 +
n+L∑

m=n+1

pnm

m∏
k=n+1

Prk −
n−1∑
i=n−L

pin − ε

= 1 +
L−1∑
m=1

Pr(1− Pr)Prm + PrPrL − (L− 1)Pr(1− Pr)− Pr − ε.

Solving for Pr, we get:

Pr =
L+ 1−

√
(L− 1)2 + 4Lε

2L
,

which is the stationary equilibrium probability of innovation.
Figure 3 shows the probability of innovation as a function of the

patent length for ε = 0.2. We can see the probability of innovation de-
creases with L, which means patents hurt more than benefit the inno-
vator, because the innovator has to pay licenses to the patent holders.
Future licensing revenues are uncertain, however, as they depend on
future innovations being performed.

Also note that Pr → 0 when L→∞ and Pr → 1− ε when L→ 0,
which corresponds to the previously analyzed patents and no-patents
cases (with θ = 1).

10.1. Revenues depend on patent length. We have assumed that
the revenues from selling the new product in the final goods market
are independent of patent length. In this subsection, we analyze what
happens when we relax this assumption. Assume the revenues of the
innovator are ψ(L) vn, with ψ′(L) ≥ 0, ψ′′(L) ≤ 0, limL→0 ψ(L) = ψ and
limL→∞ ψ(L) = 1. Here, ψ is the fraction of social surplus the innovator
would appropriate without any patent protection due to trade secrets
or first-mover advantages.
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Figure 3. Probability of innovation and patent length.

In this case, the innovator will innovate if

ψ(L) vn +
n+L∑

m=n+1

pnm

m∏
k=n+1

Prk ≥ ε+
n−1∑
i=n−L

pin.

Applying a procedure similar to that in the previous case, we obtain
the probability of innovation in the stationary equilibrium:

Pr =
L+ 1−

√
(L− 1)2 + 4Lε/ψ(L)

2L
.

The effect of patent length on the probability of innovation depends

on the functional form of ψ(L). Let ψ(L) = 1 − 1−ψ
(L+1)γ

, where γ mea-

sures the speed at which revenues grow when L increases. Figure 4a
shows that when ψ is more concave (γ = 1), the probability of innova-
tion first increases and then decreases with patent length. The optimal
length is positive and finite (in this case L = 1). Figure 4b shows that,
for a lower degree of concavity of ψ(L), completely removing patents
is optimal. Therefore, the results do not change significantly when the
revenues in the final-goods sector depend on patent length.

In this model, short patents therefore perform better than long patents.
O’Donoghue et al (1998) find that when patent breadth is infinite,
which is always the case in this model, long patents stimulate innova-
tion activity. These apparently different results arise because we are
looking for solutions to different problems. We analyze the effect of
patent policy on the complementary monopoly problem, disregarding
its effect on the final-goods market. O’Donoghue et al (1998) do ex-
actly the opposite. Therefore, our findings are not opposed to theirs,
but rather are complementary.
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(a) ψ = 0.2, ε = 0.1, γ = 1. (b) ψ = 0.2, ε = 0.1, γ = 0.1.

Figure 4. Probability of innovation as a function of
patent length.

11. Conclusion

In this paper, we build a dynamic model where the accumulation of
patents generates an increasing number of claims on cumulative inno-
vation. The model is intended to reproduce the central feature of inno-
vation activity in high-tech industries: new products are more complex
than old products, because they build on a larger stock of previously
accumulated knowledge.

We study the policy that maximizes expected social welfare and com-
pare it with the outcome of three patent-policy regimes: patents, patent
pools, and no patents. We find that, even abstracting from the mo-
nopolistic inefficiencies of patents, none of these policies attains the
optimum.

With patents, the innovator has to pay an increasing number of li-
cense fees to previous innovator. Asymmetric information on the value
of the innovation and uncoordinated market power of licensors create
an anticommons effect that reduces the incentives to innovate as inno-
vation becomes more complex. The anticommons effect is weaker than
in the static case, but it is still strong enough to drive the probabil-
ity of innovation to zero as the number of licenses grows. Enforcing
a patent pool solves the lack of coordination but not the asymmetric-
information problem. As a result, the outcome of patent pools is more
desirable but still does not achieve the first best. Eliminating patent
protection solves the two problems but introduce a non-internalized
externality: previous innovations set the foundations for future innova-
tions. Therefore the social cost of one innovation may be higher than
its instantaneous social value (the social value the innovation creates
per se), and yet the innovation may be socially desirable because it
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allows the development of further innovations. This is the standard
problem of basic research.

Then we study alternative solutions to the anticommons: (i) the
complete sale of patent rights of each innovator to the next one and
(ii) the possibility that the licensee will compete with the original li-
censor. Both alternatives exactly replicate the sequence of innovations
under the patent-pool regime. Another interesting result of the paper is
that patent pools are dynamically unstable, as the incentives to remain
outside the pool increase as the sequence of innovations progresses.

We also find the first best can be reached by decentralizing the in-
novation decision and implementing a tax-subsidy scheme, even if the
government and the previous innovators do not know the value of the
innovation. Also, when studying optimal patent length, we find that
short patents may increase innovation activity by alleviating the com-
plementary monopoly problem.

This paper shows that patent protection may be the wrong way to
provide incentives to innovation in complex industries such as elec-
tronics, software, and hardware. Enforcing patent pools or eliminating
patent protection would improve welfare, but still would not reach the
social optimum. We hope this paper will contribute to future research
on the design of an optimal innovation policy.
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