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The internet is a digital universe governed by algorithms, where numbers and the discrete 
operate to give the illusion of  a continuum.  Who can say where the internet is, even 
though it connects all of  us to a seemingly bondless expanse of  information?  When 
considering the topic of  this VIIth Congress on Ontology, I began to think about what 
existence means in this digitalized world.  Prior to 1987, my own research focused primarily 
on three figures:

Georg Cantor, who systematically developed set theory and o	
created an accompanying theory of  transfinite numbers;
Charles S. Peirce, the founder of  Pragmatism, who among many o	
other accomplishments developed a non-rigorous treatment of  
infinitesimals; and
Abraham Robinson, who introduced a rigorous theory of  o	
infinitesimals in the context of  model theory and mathematical 
logic.
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All were concerned with problems of  continuity and the infinite.  But beginning in 1987, 
my research has also turned to another very different world, at least in some respects, of  
mathematics—namely to the history of  mathematics in China, both ancient and modern.  
Consequently, I thought for this VIIth International Ontology Congress it might be 
worthwhile to explore briefly how the virtual environment created by the internet might 
be viewed from a Chinese perspective, and just to maintain the symmetry of  ancient and 
modern, I plan to consider the views on mathematics and ontology of  the 3rd-century Wei 
Dynasty Chinese mathematician Liu Hui of  the Warring States Period, with those of  the 
best-known living mathematician in China, Wu Wen-Tsun.

Extraction of  Roots and Approximations for the Square-Root of  2

If  we are interested in the connections between number and continuity, the first of  many 
related problems were discovered at their earliest by the ancient Greeks.  The Pythagoreans, 
who struggled with these concepts immediately come to mind—their initial hypothesis 
that all things could be expressed through numbers, by which they meant either whole 
numbers, the integers, or ratios of  integers, i.e. fractions, seemed reasonable enough.  
However, this fundamental assumption was soon challenged by the counter-intuitive 
discovery of  incommensurable magnitudes, and the realization that the numerical length 
of  some magnitudes could only be approximated but never determined exactly by any 
rational number or finite decimal fraction.
	 What did the ancient Chinese have to say about such lengths as the diagonal of  the 
square, or the ratio of  the circumference to the diameter of  the circle?  Basically, Chinese 
mathematicians operated in a digitalized world, a mathematics of  numbers rather than 
magnitudes.  The earliest approximation method we have from the most ancient yet-
known Chinese source, the 算数書 Suan shu shu (Book on Numbers and Computations, 
ca. 186 BCE) approximates the square-root of  a number as follows.  The example is from 
a problem devoted to方田 Fang Tian (Square Fields) [see Zhangjiashan 2001, p. 272; Peng 
2001, p. 124; Wenwu 2000, p. 82; and Dauben 2007b]:

[Problem 54]:  (Given) a field of  1 mu, how many [square] bu are there?  
(The answer) saysa: 14 15/31 [square] bu.  The method saysb: a square 
15 bu (on each side) is deficient by 15 [square] bu; a square of  16 bu (on 
each side) is in excess by 16 [square] bu.  (The method) says: combine the 
excess and deficiency as the divisor; (taking) the deficiency numerator 
multiplied by the excess denominator and the excess numerator times the 
deficiency denominator, combine them as the dividend.c  Repeat this, as 
in the “method of  finding the width.”d 
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______________________________________________________
a.	 This problems proceeds on the assumption that there are 240 bu2 to one mu.  

These were standard measures at the time the Suan Shu Shu was written, and the 
bu, a unit of  length, is not differentiated in the text by a special designation when 
it is used as a measure of  area, square bu, or bu2.  The mu, however, is a measure 
of  area, like the acre, and so the situation here is similar to calculating the number 
of  square feet or meters per acre.

b.	 The section of  the text is not really devoted to the “method” of  the problem, 
which actually begins with the following sentence.  What follows here is simply 
a statement of  the amount of  excess or deficiency with respect to one square 
mu (240 square bu) of  squares 14 and 15 bu on a side, respectively.  The actual 
“method” of  the problem is given in the following sentence.

c.	 This method reflects the way in which this problem is worked out on the counting 
board.  If  the numbers for the “deficiency” are put down on the left, those for 
the “excess” on the right, the top numbers are the lengths of  the two squares of  
sides 15 and 16 bu each; under these are their respective amounts of  deficiency or 
excess.  The layout:

	 deficiency numerator	 不足子 bu zu zi 	 15    16	 赢 子  y i n g  z i 	
excess numerator

	 deficiency denominator	 不足母 bu zu mu	 15    16	 赢 母  y i n g  m u 	
excess denominator

d.	 The appropriate method is actually found in the Qi Cong Problem 65: “Finding the 
Length,” rather than in the Qi Guang Problem 64: “Finding the Width.”  According 
to the method described here, using the method of  excess and deficiency to solve 
this problem leads to the following computation: (15×16+16×15)/(16+15) = 
480/31 = 15 15/31 bu [for additional details, see Dauben 2007b].

Here the square root of  240 is simply approximated using the method of  excess and 
deficiency, and while 15 15/31 is not an exact result, it is close enough to suit the needs 
of  the Suan shu shu. 

By the time Liu Hui wrote his commentary on the Nine Chapters in 263 CE, an algorithm 
had been developed to approximate square roots as precisely was one might wish.  Liu 
Hui appreciated the fact that some numbers have exact square roots, some not.  For those 
numbers for which an integer root could not be exhausted, there was a special term or 
expression,  不可開 bu ke kai (it cannot be extracted), i.e. it “does not end” or “it is not 
exact.”  For mathematicians who found 3 a good-enough approximation for pi, taking 3 as 
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the square root for √10 was perhaps also good enough.
	 But this was much too inaccurate for Liu Hui, who describes the following 
procedure for extracting the root of  a given number in his commentary on problem X 
in chapter Y of  the Nine Chapters.  Let the given number be N; let a be the largest integer 
such that a2=A<N.  To illustrate the method Liu Hui describes, the following diagram 
speaks for itself.  This diagram is from the 永樂大典 Yongle dadian (Yongle Encyclopedia, 
1403 CE), a massive Ming Dynasty compendium completed in the early 15th century; the 
illustration is meant to show how the square root of  N is to be extracted [Lam and Ang 
2004, p. 106].  

The first step just described is to determine the largest integer a that when squared is 
the unshaded square in the diagram such that a2=A<N.  The difference, N-A, is then 
represented by the shaded portion in the diagram.  One then finds the next largest 
integer b such that A+(2ba+b2) does not exceed N.  Then N-(A+(2ba+b2)) leaves another 
gnomon, and the algorithm continues analogously until one either finds an exact value for 
the square roof  of  N, in which case the algorithm stops, or one stops at some convenient 
point with a fractional root with a gnomon-remainder and the comment “bu ke kai”—it 
does not end, meaning no exact root has been found [Qian 1963, vol. 1, p. 150].  However, 
and this deserves emphasis: No proof  is offered that if  one chose to continue this process, 
an exact root might yet be determined, or not.
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Did Ancient Chinese Mathematicians Know that √2 is Irrational?

Recently, some historians of  Chinese mathematics have suggested that by virtue of  his 
reference to “bu ke kai,” Liu Hui was not only aware of  the limitations of  square root 
approximations, but he was also aware that some magnitudes were in fact incommensurable.  
This argument was first made by Alexei Volkov in the West [Volkov 1985], by the Chinese 
historian of  mathematics Li Jimin in the East [Li 1990], and most recently and forcefully 
by Karine Chemla and Agathe Keller [Chemla and Keller 2002].

In commenting on the case when a given number N for which the square root is sought is 
not exhausted by the square root algorithm, Liu Hui considers fractional approximations, 
“one of  which he finds to be always smaller (a+(A-a2)/2a+1) and the other always larger 
(a+(A-a2)/2a), than the root,” [Chemla and Keller 2002, p. 103].  Chemla and Keller then 
quote Liu Hui as follows:

One cannot determine its value (shu, i.e., the value, the quantity of  the root).  
Therefore, it is only when “one names it with ‘side’” that one does not make 
any mistake (or, that there is no error) (emphasis ours) [Qian 1963: 15], 
[Chemla and Keller 2002, p. 117].

“Shu” here means “number”—but all this suggests is that Liu Hui appreciated the fact 
that his algorithm had failed to determine an exact value for the root; this is not, however, 
the same as proving that the root is actually irrational.  With the above passage in mind, 
Chemla and Keller continue with their commentary as follows:

We deduce that, in this case, the root being sought has a “value,” a 
“quantity” (shu), even if  it cannot be expressed in a way that “exhausts 
the inner constitution” of  the magnitude considered with respect to unit.  
Note that our interpretation of  the impossibility of  “exactly” “exhausting 
the inner constitution” above fits with Liu Hui’s discarding of  fractional 
quantities as a possible result in such cases here.  Moreover, the only 
solution for stating the value in an exact way is to introduce a way of  
naming it, as “side of  N.”  However, one can also express the inner 
constitution of  the magnitude with respect to unity approximately, by a 
pair of  integers [Chemla and Keller 2002, p. 117].

Clearly Liu Hui appreciates that the lü or ratio of  numbers he obtains to approximate the 
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root does not in fact serve to do so exactly.  But all that he knows from this is that the 
ratio or lü he has constructed, meant to express the ratio of  the side to the diagonal of  the 
square, does not  give a precise value for the ratio of  the actual magnitudes in question.  
What Liu Hui in fact says is that:

If by extraction, (the number) is not used up, this means that one cannot extract (its 
root).  You must then call it (the number with side (面 mian) [Qian 1963, p. 150].

What the Pythagoreans did in establishing the existence of  incommensurable magnitudes 
was to assume that all magnitudes could be expressed as the ratio of  two numbers a/b.  
Then, probably by an anthyphairetic argument, they found that there were cases in which 
given two magnitudes, a common unit could not be found.  This is analogous to the 
assumption that the ratio 1/3, when computed, would lead to some finite results, but 
instead, 1/3 in its decimal expansion is .3333…, bu ke kai.  But this “bu ke kai” does not 
prove the existence of  irrational quantities, for 1/3 is clearly rational, but the division it 
represents never terminates, it never ends.
	 What is missing from this account is any argument, not to say “proof ”—that 
incommensurable magnitudes or irrational numbers exist.  Liu Hui never proves (or 
argues) that there is no lü for √2.  This is an ontological problem that proved, as we know, 
to be of  profound significance for the ancient Greeks.1

1	  	 Perhaps Chemla and Keller, despite their arguments to the contrary, admit as much when they 
write: “This helps to make clearer the statement in Liu Hui’s commentary that comes closest to an as-
sertion of the irrational character of some ratios between magnitudes” (Chemla and Keller 2002, p. 117, 
emphasis added).  Somewhat later in their paper they also admit that “The sharp demarcation that ancient 
Greek mathematical authors made between number and magnitude and that relates to this treatment of 
irrationality is not to be met with in ancient Chinese and Indian texts” [Chemla and Keller 2002, p. 122].  
Realizing that there were magnitudes for which they could associate no corresponding rational number, 
the Greeks knew their arithmetic of ratios of whole numbers was incomplete.  Had Chinese and Indian 
mathematicians dealing with square and cube roots also understood that there were geometric magni-
tudes for which there were no corresponding numerical equivalents in their system of numbers and ratios 
of numbers, they should have articulated a similar distinction.  That they did not may in part be explained 
by the fact that the Chinese had no clear concept, mathematically, of magnitude in the sense that Euclid, 
for the most part, develops his principles of geometry, i.e. the Elements, in terms of magnitudes and not 
arithmetic, the limitations of which were dramatically revealed by the discovery of incommensurable 
magnitudes.  For details on this subject, see “Does the Nine Chapters Include the Concept of Irrational 
Number?” [in Xu 2005, p. 62-89].
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The Pythagoreans’ Discovery of  Incommensurability

How was incommensurability discovered?  Kurt von Fritz, in examining both the Greek 
construction of  the pentagon or pentagram, argued several decades ago that in either 
case, an infinite descent argument proceeds to establish the existence of  incommensurable 
magnitudes [von Fritz 1945].  The process is based on the Euclidean algorithm, anthyphairesis, 
namely given two homogenous magnitudes A > B, subtracting the smaller from the larger 
gives a remainder C.  If  C > B, subtracting B from C leaves a remainder D.  If  C < B, 
subtracting C from B leaves a remainder D’.  The process continues in this manner, and 
in the case of  numbers, the algorithm terminates in a finite number of  steps yielding the 
greatest common divisor of  the two numbers.  Euclid proved these results in Book VII, 
propositions 1 and 2 in the Elements.  In Book X, proposition 3, the same is established 
for commensurable magnitudes, resulting in the greatest common measure between the 
two magnitudes (for details, see [Knorr 1975, p. 29]).  In the case of  incommensurable 
magnitudes, however, this process proceeds ad infinitum, and no common multiple will ever 
be reached, since the algorithm never terminates, but proceeds always proceeds to yield the 
same ratio of  incommensurable magnitudes.
	 According to von Fritz, this was how the ancient Pythagoreans originally must 
have discovered the existence of  incommensurable magnitudes, specifically from their 
construction of  the regular pentagon or pentagram, and their realization that if  two 
magnitudes are in mean and extreme ratio, applying the Euclidean algorithm, subtracting 
the smaller from the larger to find a greatest common measure, led to a succession of  
magnitudes always in the same mean and extreme ratio.  Consequently, the anthyphairesis 
in this case continues with no end.  Thus any two magnitudes in mean and extreme ratio 
were necessarily incommensurable, and there was no least common multiple of  the two 
magnitudes because there was no end to the anthyphairetic algorithm.  
	 In considering the diagram of  inscribed pentagons and pentagrams on the right, the 
diagonal AB and side BC are in mean and extreme ratio, meaning that AB is the mean 
proportional between BC and their sum AB+BC, or equivalently, BC:AB=AB:(AB+BC), 
or AB2=BC(AB+BC).  Realizing that the point E divides the diagonal AB into mean and 
extreme ratio, and that the ratio of  the diagonal EF and the side DE are also in mean and 
extreme ratio, continuing this process always leads to another and another, and indeed, to 
an infinite sequence of  inscribed figures whose sides and diagonals are always in mean and 
extreme ratio, ad infinitum.



Ontology Studies 8, 2008  266

			 
	 If  we now apply the Euclidean algorithm in hopes of  finding a unit that will serve as a 
common multiple of  both AB and BC, or EF and DE, we will generate an endless series 
of  pentagons/pentagrams where EF:DE (in the diagram above) will always be in the same 
ratio as that of  AB:BC.  If  AB and BC, or EF and DE were in numerical ratio, or were 
commensurable, the Euclidean algorithm generating successively inscribed pentagons 
or pentagrams would terminate after a finite number of  steps, yielding their common 
measure.  The fact that this does not happen means that magnitudes in mean and extreme 
ratio are incommensurable. Thus the Euclidean algorithm will never come to an end, and 
there will not be a common unit magnitude that may serve as a multiple of  both AB and 
BC or EF and DE.
	 Slightly more than a decade after von Fritz advanced the idea that the ancient 
Pythagoreans discovered incommensurability via the anthyphairetic algorithm applied to 
two magnitudes in mean and extreme ration, Siegfried Heller suggested that it was more 
likely made as a result of  applying the same anthyphairetic process to the side and diagonal 
of  the square [Heller 1958].  
	 The outlines of  the argument may be seen with reference to the diagram below [from 
Knorr 1975, p. 32].  Applying the Euclidean algorithm to find a common magnitude to 
serve as a multiple of  both the side and diagonal, first subtract the length of  the side BF 
from the diagonal DF, and the remainder s′ is the side of  another square with diagonal 
d′.  Subtracting this side s′ from the diagonal d′ leaves another remainder s″, which 
again constitutes a square of  side s″ and diagonal d″.
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Since the side and diagonal of  the successive squares determined by this application of  the 
Euclidean algorithm are always in the same ratio, the algorithm will never reach a common 
magnitude that could be taken as the measure of  both the side and diagonal of  the square.  
Consequently, BF and DF must be incommensurable.  QED.
	 Wilbur Knorr, in his detailed study of  the problem of  discovery of  
incommensurability, however, understands the problem of  anthyphairesis in early Greek 
geometry somewhat differently:

The Pythagoreans employed the algorithm not as a theoretical device for proving the 
irrationality of the diameter, but as a practical device for approximating it.  But it is 
conceivable that the discovery of such an algorithm, yielding an infinity of values 
always approaching but never equaling the limiting value, might initially have been 
misconstrued as a proof [of] incommensurability [Knorr 1975, pp. 33-34].

Knorr prefers to understand the Greek’s discovery of  incommensurability in terms of  
the side and diagonal of  the square in terms of  the properties of  even and odd numbers, 
in the classic formulation given by Aristotle in Prior Analytics I.23, 41a29: “if  the side and 
diameter are assumed commensurable with each other, one may deduce that odd numbers 
equal even numbers; this contradiction then affirms the incommensurability of  the given 
magnitudes,” [Knorr 1975, p. 23].  Knorr also offers several ingenious interpretations of  
how a Pythagorean poof  might have proceeded, based upon the geometry of  the square 
and the ratio of  the side to the diagonal [Knorr 1975, p. 26-28].  In each case, the argument 
proceeds by contradiction, assuming the commensurability in question, just as Aristotle 
uses the example of  the ratio of  the side and diagonal of  the square to demonstrate the 
technique of  reasoning per impossible in the Prior Analytics.
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Liu Hui’s Proof  for the Volume of  the Right Square-Based Pyramid V=(1/3)abh

Like the Greek treatments of  algorithms to determine the ratio of  the side and diagonal 
of  the square, or those of  the pentagon or pentagram, involving applications of  the 
Euclidean algorithm that continue anthyphairetically ad infinitum, there is an interesting 
example to be found among Liu Hui’s comments in the Nine Chapters, an algorithm that 
does not terminate, “bu ke kai,”  but one that leads to a very different conclusion from the 
anthyphairetic case in Greek mathematics.  This concerns the Chinese determination of  
the volume of  the right pyramid with rectangular base, called a yangma.  Liu Hui knew that 
the formula V=(1/3)abh was exact (where a is the length and b the width of  the rectangular 
base of  the pyramid, and h the height as in the yangma below), but how to prove it?  

    

The argument runs something like this in the case of  the above diagrams.  The volume of  
two qiandu is clearly abh.  If  one qiandu is equal to one yangma (the square based pyramid) 
and one bienao, and if  the bienao is ½ a yangma, then the volume of  the yangma must be 
(1/3)abh.  The proof  that this is so proceeds by an “infinite descent argument.”  The 
yangma above, if  bisected at half  its height, can be broken down into the volumes C and 
D, where the volume of  C, equivalent to four qiandu, is exactly twice the volume of  the 
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two qiandu of  D.  Thus, to prove that the yangma is twice the bienao, it sufficies to show 
that the two remaining yangma volumes E are exactly twice the volume with respect to the 
two bienao F.  But it is easy to see that these volumes are similar to the initial yangma and 
bienao.  By bisecting the volumes E and F, Liu Hui reiterates the same argument, but with 
components half  as large each time.  As Jean-Claude Martzloff  puts it in his discussion 
of  Liu Hui’s method, “Thus, he obtains more and more portions of  the initial yangma 
which are themselves in the desired proportion.  The remaining parts decrease constantly 
and, after passing to the limit, he concludes that Y=2B,” [Martzloff  1997, pp. 284-285; 
see also Lloyd 1996, pp. 152-156, and Wu 2000, p. 60-61, and Chemla and Guo 2004, pp. 
396-398].  In this case, the process ad infinitium serves to establish the proposition, that 
since in all cases the ratio of  the yangma to bienao is 2:1, this suffices to establish the general 
proposition that the volume of  the pyramid is (1/3)abh.

Liu Hui and Approximations for the Value of  Pi

One last example will suffice here to illustrate how ancient Chinese mathematicians 
approached the non-terminating approximation of  certain ratios, namely of  the diameter 
to the circumference of  the circle.  Liu Hui notes that the traditional value was exactly the 
perimeter of  the hexagon inscribed in a circle of  unit diameter, and thus fell short of  what 
the actual value of  the circumference of  the circle should be.  To get a closer approximation, 
Liu Hui considered successively larger inscribed regular polygons, increasing from the 
6-sided to 12-sided to 24-sided all the way up to the 192-sided polygon for which he sowed 
that the ratio of  circumference to the diameter of  a circle must fall between 3.14 64/625 
and 3.14 169/625. 
	 Here, the diagram on the right from the 永樂大典 Yongle dadian (Yongle Encyclopedia, 
1403 CE) [Chapter 16,344, p. 8a] shows a figure accompanying Liu Hui’s commentary in 
the Nine Chapters, which shows how closely Liu Hui’s thinking was to the familiar Greek 
approach to the approximation of  pi taken by Archimedes.  As Liu Hui explains the 
argument in question: “The finer we cut the segments, the less will be the loss.  Cut further 
and further until unable to cut further.  Then [the polygon] will coincide with the circle and 
there will be no more any loss,” [translated by Wu Wen-Tsun 2000, p. 64].
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Wu Wen-tsun and the Mechanization of  Mathematical Proofs

It is generally agreed that the “golden age” of  ancient Chinese mathematics was reached 
in the Song and Yuan dynasties.  A good example of  the power and generality of  the 
methods achieved in this period is that of  Yang Hui (ca. 1238-1298) of  the late Southern 
Song Dynasty.  In commenting on the works of  one of  Yang Hui’s forerunners, Jia Xian, 
Wu Wen-Tsun explains:

According to Yang Hui’s works, there already occurred in Jia’s time 
some diagrams bearing the name of  Root-Extraction Basic Diagrams.  Such 
diagrams are actually the same as the so-called Pascalian Triangle of  
17th century.  Thus, it seems that Jia had freed himself  from geometrical 
considerations and, with the aid of  the root-extraction basic diagrams, had 
discovered his methods directly from a generalization of  the arithmetized 
Root-Extraction Shu of  his ancestors [Wu 2000, p. 22; note that Shu 
means “method”].
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But this was not all.  The fullest generalization of  algebraic methods in ancient 
Chinese methods came with the “tian yuan” or “heavenly element” method.  It was 
the mathematician Zhu Shijie who generalized this method to enable the solution 
of  simultaneous sets of  equations in as many as four unknowns.  As Wu Wen-tsun 
describes the method, he also accounts for the reason why it was limited to equations 
in no more than four unknowns:

The Chinese version of  the Pascal triangle shown on the left is from the四元玉鑑 Si Yuan 
Yu Jian (Jade Mirror of  the Four Unknowns, 1303) of  朱世杰 Zhu Shijie (1260-1320) 
[Guo and Guo 2006, vol. 1, p. 32].

For the actual computation at the time of  Zhu one had to place the 
coefficients of  various kinds of  terms of  polynomials in counting rods at 
definite positions of  the counting board.  This limited the method to at 
most four equations in four unknowns and only quite simple ones can be 
so treated.  However, that the method of  Zhu enjoys a general character 
which can be applied to arbitrary systems of  equations is quite clear [Wu 
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2000, p. 26].2

In his approach to the mechanization of  mathematics, Wu found a useful parallel in the 
methods of  Descartes, what he calls “Descartes’ Program,” which he compares with 
Chinese mathematics as follows:

In fact … it seems clear that Descartes had the attitude of  emphasizing 
on geometry problem-solving by means of  equations-solving rather than 
geometry theorem-proving, just in the same spirit of  our ancestors…  
In a word, it may be said that Chinese ancient mathematics in the main 
were developed along the way as indicated in Descartes’ Program, and 
conversely, Descartes’ Program may be considered as an overview of  the 
way of  developments of  Chinese ancient mathematics… [Wu 2000, p. 
32-33].

	  			 
2	  	 The limitation arises due to the delegation of unknowns to the four cardinal regions of the 
counting board, each corresponding to an unknown x,y,z,w (bottom, left, top, right), schematically, as 
follows:

				  
Wu also acknowledges that the method is subject to “great defects and required clarification.”  In fact, 
one of the main objectives of his book on Mathematics Mechanization was to “give a solid mathematical 
foundation of methods influenced by that of Zhu” [Wu 2000, p. 26]. 
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When the Notices of  the AMS announced the winners of  the 2006 Shaw Prize in October 
of  2006, the citation read as follows:

In the 1970s Wu turned his attention to questions of  computation, in 
particular the search for effective methods of  automatic machine proofs 
in geometry.  In 1977 Wu introduced a powerful mechanical method, 
based on Ritt’s concept of  characteristic sets.  This transforms a problem 
in elementary geometry into an algebraic statement about polynomials 
that lends itself  to effective computation.  This method of  Wu completely 
revolutionized the field, effectively provoking a paradigm shift.  Before 
Wu the dominant approach had been the use of  AI search methods, 
which proved a computational dead end.  

By introducing sophisticated mathematical ideas Wu opened a whole 
new approach that has proved extremely effective on a wide range of  
problems, not just in elementary geometry…  Under his leadership 
mathematics mechanization has expanded in recent years into a rapidly 
growing discipline, encompassing research in computational algebraic 
geometry, symbolic computation, computer theorem proving, and coding 
theory [AMS Notices 2006, pp. 1054-55].

The great success of  Wu Wen-tsun’s interest in mechanizing mathematics was to discover a 
means of  translating geometric problems into algebraic equivalents subject to algorithmic 
solutions.  This had long been a hallmark of  the Chinese mathematical mind-set, so to 
speak, from antiquity to the present, and in the present, it has been the transformation of  
those ancient mathematical procedures by Wu Wen-tsun that has led to new and profound 
methods of  proof  on the very same terms that rule in internet ontology.  By translating 
the terms of  a problem from the continuous space of  geometry to its algebraic equivalent, 
and then subjecting the latter to a suitable algorithmic interpretation, computers can 
then be programmed to provide computational verification.  This means of  proceeding 
algorithmically was one of  the great strengths of  ancient Chinese mathematics, and as 
Wu Wen-tsun has often acknowledged, it was in the methods of  his predecessors that he 
found inspiration for the very modern applications of  those methods in his own work on 
mechanical problem solving.  In this sense, therefore, Chinese mathematicians ancient and 
modern have long operated and in very productive ways continue to work in a highly digital 
world, where algorithmic thinking is a particularly successful approach to conceptualizing 
and solving mathematical problems.
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