
Probabilistic Clustering and Shape Modelling of White 

Matter Fibre Bundles using Regression Mixtures  

Abstract. We present a novel approach for probabilistic clustering of white matter 

fibre pathways using curve-based regression mixture modelling techniques in 3D 

curve space. The clustering algorithm is based on a principled method for 

probabilistic modelling of a set of fibre trajectories as individual sequences of points 

generated from a finite mixture model consisting of multivariate polynomial 

regression model components. Unsupervised learning is carried out using maximum 

likelihood principles. Specifically, conditional mixture is used together with 

expectation-maximisation (EM) algorithm to estimate cluster membership. The result 

of clustering is the probabilistic assignment of fibre trajectories to each cluster and an 

estimate of the cluster parameters. A statistical model is calculated for each clustered 

fibre bundles using fitted parameters of the probabilistic clustering. We illustrate the 

potential of our clustering approach on synthetic data and real data.  

1 Introduction 

White matter (WM) fibre clustering is becoming one of the most important tasks in 

clinical neuroscience research and it allows to get insight about anatomical structures, 

perform clear visualizations and compute statistics across subjects. A number of 

algorithms have been developed for clustering and labelling WM fibre bundles in 

DTI. These algorithms can be categorised into deterministic and probabilistic 

approaches. Deterministic clustering algorithms assign each trajectory into only one 

cluster, which may lead to biased estimators of cluster parameters if the clusters 

overlap. Probabilistic clustering algorithms, on the contrary, deal with the inherent 

uncertainty in assigning the trajectories to clusters. Quantitative parameters can be 

estimated by a weighted average over cluster members and thus more robust results 

may be obtained, which are less sensitive to the presence of outliers.  

There are a number of deterministic methods [1-3] which use different distance 

measures as the similarity measure among the sequence of points which parameterise 

each fibre tract. This family of similarity metrics deals with sets of points rather than 

curves and so they discard directionality information. Partial overlapping of fibres is 

also not taken into account as a similarity feature. Wassermann and Deriche [4] have 

used a publicly available anatomical atlas in conjunction with a fibre similarity 

metric. However, this work requires prior knowledge of the WM fibre trajectories. 

Maddah et al. [5] proposed a probabilistic approach using a gamma mixture model 

and a distance map. This method assumes that the number of clusters is known and 

the approach requires manual user initialisation of the cluster centres. A problem for 

this approach was in establishing correspondence between points.   

While analysing fibre tracking curves geometrically is a promising notion, 

relatively little attention has been paid to this area, with a few exceptions. Some 

studies have been motivated by the problem of analysing the shapes of fibre tracts [6-

7], based on a geometric framework for studying the shapes of curves in 3-D. 
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Corouge et al.[8] proposed a framework for quantitative tract-oriented DTI analysis 

that includes tensor interpolation and averaging, using nonlinear Riemannian 

symmetric space. In this paper, we propose a new geometrical framework to 

automatically cluster WM fibres into biologically meaningful neuro-tracts 

probabilistically. We are interested in starting with given fibre trajectories and 

determining whether these trajectories can be naturally clustered into groups. We 

investigate the model-based clustering of fibre trajectories, where each cluster is 

modelled as a prototype function with some variability around that prototype. A 

distinct feature of this model-based approach to clustering is that it produces a distinct 

model for each cluster. Since we are estimating smooth functions from noisy data it 

will be natural to use a probabilistic framework. Specifically we use mixtures of 

polynomial regression models as the basis of clustering. A regression model for each 

fibre bundle is constructed after performing probabilistic clustering. 

Finite mixture models have been widely used for clustering data in a variety of 

application areas [5, 9-11]. Gaffney et al. employed mixtures of regression models to 

cluster cyclone curves [10] and hand movements [11]; although the curves were 

constrained to have the same length and were 2D. In contrast, we use multivariate 

clustering techniques to describe the three dimensional propagations of the fibre 

trajectories. These fibre trajectories vary in length. We use conditional mixture as it 

naturally allows for curves of variable length with unique measurement intervals and 

missing observations. The polynomial fit also takes advantage of smoothness 

information present in the data. Using this model, EM is performed to cluster the 

trajectories in a mixture model framework. The cluster membership of a particular 

fibre trajectory will primarily depend on how similar the trajectory shape is to each of 

the clusters. The algorithm is also capable of handling outliers in a principled way.  

2 Probabilistic Model for White Matter Trajectories 

2.1 Basic Definitions 

Let   be a set of   three-dimensional fibre trajectories, where each trajectory    is an 

     matrix containing the sequence of    3D points         in  . The associated 

     vector    of ordered points from 0 to      corresponding points of    and 

                In the standard mixture model framework, we model the 

probability density function (PDF) for a d-dimensional vector  , as a function of 

model parameters  , by the mixture density  

           

 

 

                                                           

in which                ,    (    
 
    ) is the k-th component weight and 

   is the k-th component density with parameter vector   . In this manner a finite 

mixture model is a PDF composed of a weighted average of component density 

functions. We use the mixture model framework for fibre clustering. Each trajectory 

   is generated by one of the components, but the identity of the generating 

component is not observed. The parameters of each density component         , as 

well as the corresponding weights   , can be estimated from the data using the EM 
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algorithm. The estimated component models,          are interpreted as K clusters, 

where each cluster is defined by a PDF. The set of trajectories is clustered to a 

number of subsets by assigning a membership probability,      to each trajectory,   , 

to denote its membership in the k
th 

cluster. The number of clusters, K, is defined by 

the user. Finally, each trajectory    is assigned to the cluster k with the highest 

membership probability, i.e. the cluster from which it was most likely generated.  

2.2 Model Definition 

We model the X directional position (similarly Y and Z) with a p-th order 

multivariate polynomial regression model in which the order    is the independent 

variable, which is assumed with an additive Gaussian error term. The three regression 

equations can be defined succinctly in terms of the matrix   . The exact form of the 

regression equation for       

                                                                   

where    is the standard          Vandermonde regression matrix associated 

with vector   ,   is a             matrix of regression coefficients for X,Y, and Z 

direction and    is an        zero-mean matrix multivariate normal error term with a 

covariance matrix  .  

We use the normal assumptions for    since it is the most straightforward 

computationally and is the common choice for additive noise in regression models. 

For simplicity, we make the assumptions that          
    

    
  , so that X,Y, and 

Z measurement noise term are treated as conditionally independent given the model.  

The conditional density for the i
th 

trajectory   is a multivariate Gaussian with 

matrix mean     and covariance matrix  . The parameter set            

                       

            
  
      

 

 
                                

We can derive regression mixtures for the trajectories by a substitution of Eq (1) 

with the conditional regression density components           , as defined in Eq (3).  

              
 
                                           (4) 

Note that in this model each fibre trajectory is assumed to be generated by one of K 

different regression models. Each model has its own shape parameters              
The full probability density V given U,         , is also known as the conditional 

likelihood of the parameter   given the data set both    and U to be written as 

                      
 
                

 
               (5) 

The model can handle the trajectories of variable length in a natural fashion, since 

the likelihood equation above (Eq (5)) does not require the number of data points. The 

product form in Eq (5) follows from assuming the conditional independence of the 

  ’s, given both the   ’s and the mixture model, since the fibre trajectories do not 

influence each other. 

2.3 EM Algorithm for Mixture of Regression 

E-step: In the E-step, we estimate the hidden cluster memberships by forming the 

ratio of the likelihood of trajectory    under cluster k, to the sum-total likelihood of 

trajectory    under all clusters:    
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                                                 (6) 

These     give the probabilities that the i
th

 trajectory was generated from cluster k.  

M-step: In the M-step, the expected cluster memberships from the E-step are used to 

form the weighted log-likelihood function: 

                                                            (7) 

The membership probabilities weight the contribution that the kth density 

component adds to the overall likelihood. The weighted log-likelihood is then 

maximized with respect to the parameter set  . 

Let            
, where    

 is an identity vector, and 

           
     

       
   be an     diagonal matrix. Then, we use    to 

calculate the mixture parameters 

                  ,                                       (8) 

   
        

 
          

    
 
 

                                         (9) 

and                                                     
 

 
                                                           (10) 

for k = 1,...,K. These update equations are equivalent to the well-known weighted 

least-squares solution in regression. 

3 Methods 

3.1 Implementation of Clustering Algorithm 

Initialization: Consider a set of n three-dimensional fibre trajectories in the X, Y and 

Z directions. Each trajectory    is an      matrix containing a sequence of    X, Y, 

and Z measurements; note that    may be different for each trajectory   . The 

associated      vector of times at which the    measurements were observed is 

denoted as   . The number of clusters K and the order of regression p. 

Algorithm 1 Regression Mixture clustering of fibre trajectories 

Input: Set of 3D trajectories          
  

Output: Probabilistic assignment of trajectories to clusters. 

1. Randomly initialize the membership probabilities     

2. Calculate new estimates for parameters        of the cluster model and mixing 

weights     from Eqns (8), (9) and (10) respectively using the current    .  

3. Compute the membership probabilities     using Eq (6) and the newly computed 

parameter estimates from the previous step. 

4. Loop to step 2 until convergence. 

5. Return the final parameter estimates (including mixing proportions) and cluster 

probabilities. Outliers are deleted from the set of trajectories using a threshold  .   

Handling outliers: It is assumed that each trajectory is assigned a membership 

probability     for each cluster k. There may be trajectories resulting from the 

tractography which do not resemble any of the regression equations or are not valid 

due to inaccuracies at the tractography stage. An outlier is identified by imposing a 

threshold on the membership probabilities. If the membership probability of a given 

trajectory in all clusters is less than the specified threshold t, that trajectory will be 

removed as for Maddah et al.[5]. 
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3.2 Synthetic Data Set 

The purpose of using synthetic data set is to demonstrate some of the basic features of 

our clustering algorithm, specifically, its ability to cluster a 3D data set  into multiple 

bundles accurately. We used the PISTE data sets [http://cubric.psych.cf.ac.uk/commondti] 

which simulates different geometrical structures and several complex pathway 

interactions. The DTI data were simulated using a spin-echo sequence with the 

following parameters: number of diffusion encoding directions = 30, b-

value = 1000 s/mm
2
, TE = 90 ms, NEX = 4 and voxel resolution: 1x1x1 mm

3
.  

Here we consider three example noise free and noisy (SNR=15) data sets: a 

branching fibre with individual FA in each branch, two orthogonally crossing fibres 

with individual FA on each fibre and two straight crossing fibres. The noisy synthetic 

example is intended to demonstrate the robustness of our clustering algorithm in a 

more hostile environment–one corrupted by additive noise, with complicated fibre 

structures, and having varying fibre tract lengths. For the three dimensional tract 

reconstruction, the single-tensor and two-tensor 4
th

 order Runge-Kutta method 

deterministic tractography were used for branching data and two crossing data 

respectively with a FA threshold of 0.15 and a curvature threshold 45
0
. The generated 

tracts were then clustered into the subdivisions using appropriate K value. In our 

component regression models for the synthetic data a cubic polynomial is used. This 

choice is based on the visual inspection of fitted-versus-actual trajectory data. 

3.3 In Vivo Data 

Data: 1.5 T DW data were acquired from four healthy adults with an image matrix of 

128x128, 60 slice locations covering the whole brain, 1.875x1.875x2.0 mm
3
 spatial 

resolution, b= 700 s/mm
2  and 41 diffusion directions. To correct for eddy currents and 

motion, each DW volume was registered to the non-DW volume of the first subject. 

Corpus Callosum Clustering and Modelling: The corpus callosum (CC) is the 

largest fibre bundle that connects the two hemispheres of the brain to allow 

communication between the two halves of the brain. Subdividing the CC into 

anatomically distinct regions is not well defined but is of much importance, especially 

in studying normal development and in understanding psychiatric and 

neurodegenerative disorders. Witelson [12] proposed a schematic for seven 

subdivisions of  CC as shown in Fig. 1.  

Fig 1. A schematic of Witelson corpus callosum subdivisions [12] 

based on the midsaggital slice: (1) rostrum (2) genu (3) rostral 

body (4) anterior mid-body (5) posterior mid-body (6) isthmus, 

and (7) splenium. We further divide the splenium into its upper 

and lower parts to give a finer model. 

CC Trajectories were reconstructed from in vivo data with the fourth-order Runge-

Kutta method deterministic tractography starting from the ROI specified by an expert, 

for all four subjects. A step size of 1mm was used. The tractography algorithm stops 

when it reaches a point with FA less than 0.1 or when a change in direction greater 

than 45
0
 occurs. Fibre trajectories for the four subjects were normalized to a common 

template i.e. to unit voxel size (128x128x60 matrix size and voxel size 1x1x1 unit). 

The CC tracts were then clustered into the subdivisions using K=8.  
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Model Selection:  It is important to make decisions about the optimal order of the 

fibre regression models, the most suitable type of trajectory pre-processing, and the 

number of clusters that best describes each fibre tract dataset for our method. We 

fitted regression mixture models with different orders of polynomial to randomly 

selected training sets of CC fibre trajectories. The experimental results were reported. 

The choice to use third-order polynomials for the regression models as opposed to 

other order polynomials was made for two reasons: (a) visual inspection supports this 

as a sufficient choice and (b) cross-validation also confirms third-order as the optimal 

choice in this case. We modelled X position with a cubic polynomial regression 

model in which time u is the independent variable,         
       

           
   , and likewise for the Y and Z directions. 

4 Results and Discussion 

4.1 Synthetic Data 

The Fig. 2,3 and 4 show the trajectories on original data(a), clustered trajectories(b), 

trajectories on noisy data (c) and clustered trajectories(d) of three selected fibre 

geometries. The results demonstrated the clustering algorithm to separate several fibre 

tracts into meaningful bundles accurately. The noise-free synthetic data results with 

complicated fibre tract structures demonstrate our clustering algorithm able to cluster 

a 3D data set into multiple bundles accurately. The noisy synthetic example results 

demonstrate the robustness of our clustering algorithm in a noisier environment.  

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2 In Vivo Data 

Fig. 5 shows the results of clustering approximately 700 trajectories from the CC into 

8 bundles for two subjects. The membership probability of the trajectories for each 

cluster is obtained and the trajectories in Fig. 5 are coloured based on their maximum 

membership probabilities. Results showed that our clustering method automatically 

differentiates CC subdivision fibre bundles consistently across subjects. As a product 

of the proposed clustering method, regression models of each fibre bundles are 

obtained in the X, Y, and Z directions. Averages of these quantities are then computed 

over each cluster for the four subjects. The characteristics (parameters of the cubic 

regression equation) of each cluster are illustrated in Table 1.  

(a) (c) (b) (d) 

Fig. 2 

(a) (b) (c) (d) 

Fig. 3 

Fig. 4 

(a) (b) (c) (d) 
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(a) (b) (c) 

(d) (e) (f) 

 

 

 

 

Fig. 5. Clustering of the CC from first two subjects viewed from a sagittal orientation: the 

original fibre tracts (a) and (c) are clustered into bundles (b) and (d) respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. (a), (c) and (e) show all the tracts, and (b), (d) and (f) are mean curves and fitted curves 

for the X, Y and Z directions respectively for subject 1. 

Fig. 6 (a), (c) and (e) show the X, Y and Z versus order U profiles for all of the 

tracks with mean curves for subject 1 respectively. The cluster groups are colour-

coded (the same colour is used as the corresponding cluster in Fig 5.), and the mean 

curves for each group are highlighted in bold. Mean curves were calculated up to 

U=70. The mean curve results in each direction show the fibre trajectory points, and 

how they each differ strongly with direction, especially the Y direction in this case. 

The mean curve results differ not only in shape but also in location. Fig 4 (b), (d) and 

(f) show the cubic polynomial regression models (dotted) fitted to the eight CC 

subdivision cluster trajectories. The results illustrate that the cubic polynomials 

provide the best fits among the regression models we considered. For each direction 

selected clusters are shown for clarity. 

In this study, we presented new techniques for clustering 3D curves into bundles, 

to remove outlier curves and to develop a technique for shape description of these 

bundles. Curve-based regression mixture models were used to perform probabilistic 

clustering of fibre trajectories in three dimensional space. The number of data points 

is not required for clustering as the modelling can handle curves with variable lengths. 

The preliminary results for the synthetic data and in vivo data demonstrate that the 

new clustering process is quite efficient for bundling sets of curves into anatomically 

meaningful fibre tracts. Cubic polynomials were found to provide the best fits for CC 

clustering and modelling among the regression models considered. We have estimated 

cubic regression equations for each cluster fibre bundle and the equations depending 

on the coordinate system and image matrix, which we used.  

Some of the WM trajectories are relatively small, and a successful clustering of 

them is heavily influenced by such factors as image quality, tractography method, and 

fibre tracking parameter. In the future, we will investigate how different tractography 

algorithms such as probabilistic tracking methods and HARDI methods affect the 

(a) (b) (c) (d) 
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WM fibre clustering procedures. The probabilistic framework allows for a variety of 

extensions and clustering different anatomical region which were not discussed in this 

paper. The number of clusters and the regression model of each anatomical region can 

be determined automatically. Future work directions include addressing these issues.  

 
 Rostrum Genu 

Rostral 

body 

Anterior 

mid body 

Posterior 

mid body 
Isthmus 

Upper 

splenium 

Lower 

splenium 

X    3.09e-4 4.43e-4 3.46e-4 3.74e-4 4.08e-4 3.81e-4 4.08e-4 4.31e-4 

   -0.0348 -0.0422 -0.0367 -0.0393 -0.0363 -0.0368 -0.0350 -0.3908 

   0.7618 0.8090 0.8246 0.9103 0.6254 0.7645 0.4964 0.6804 

   68.034 66.389 65.139 63.545 65.336 63.948 66.064 64.994 

Y    -8.8e-5 9.3e-5 4.99e-5 -8.6e-6 3.26e-5 -1.7e-6 1.00e-4 -2.2e-4 

   -0.0025 -0.0176 -0.0098 -0.0021 -0.0036 0.00053 0.0171 0.0338 

   0.6171 0.8134 0.4960 0.1942 0.1275 -0.0585 -0.6694 -1.335 

   38.215 45.839 53.604 61.118 67.807 74.985 87.812 100.66 

Z    -3.2e-5 8.41e-5 1.35e-4 1.59e-4 -2.6e-4 4.84e-6 8.61e-5 -3.8e-5 

   0.0093 0.00330 3.38e-4 5.17e-5 0.0392 0.0141 0.0138 0.00234 

   -0.5317 -0.4854 -0.6009 -0.6694 -1.4661 -0.9183 -0.5589 -0.0372 

   38.970 44.231 51.163 54.037 54.161 51.672 40.328 28.931 

Table 1 Cluster-wise average parameter measures for the sub-divided CC fibre bundles. 

References 
1. Gerig, G., Gouttard, S., Corouge, I.: Analysis of brain white matter via fiber tract modeling. 

Proc. IEEE Int. Conf. EMBS, 4421–4424 (2004) 

2. O'Donnell, Lauren, J., Westin, C-F.: Automatic tractography segmentation using a high-

dimensional white matter atlas. IEEE Tr. Med. Im., 26 (11), 1562–1575 (2007) 

3. Brun, A., Knutsson, H., Park, H.J., Shenton, M.E., Westin, C.-F.: Clustering fiber traces 

using normalized cuts. In MICCAI, 3216, 368–375 (2004)  

4. Wassermann, D., Deriche, R.: Simultaneous manifold learning and clustering: Grouping 

WM fiber tracts using a volumetric white matter atlas. In: MICCAI Workshops (2008)  

5. Maddah, M., Grimson, W.E.L., Warfield, S.K.: A unified framework for clustering and 

quantitative analysis of white matter fiber tracts. Med. Im. An., 12 (2), 191–202 (2008)  

6. Batchelor, P.G., Calamante, F., Tournier, J.D., Atkinson, D., Hill, D.L., Connelly, A.: 

Quantification of the shape of fiber tracts. Magn. Reson. Med., 55, 894- 903 (2006) 

7. Savadjiev, P., Campell, J.S.W., Pike, G.B, Siddiqi, K.: 3D curve inference for diffusion 

MRI regularization and fibre tractography. Medical Image Analysis 10, 799-813 (2006) 

8. Corouge, I., Fletcher, P.T., Joshi, S., Gouttard, S., Gerig, G.: Fiber tract-oriented statistics 

for quantitative diffusion tensor MRI analysis. Med. Image Anal., 10, 786–798 (2006) 

9. Smyth P., Ide K., Ghil M.: Multiple regimes in northern hemisphere height fields via 

mixture model clustering. J Atmos Sci 56(21), 3704–3723 (1999) 

10. Gaffney, S. J., & Smyth, P.: Curve clustering with random effects regression mixtures. In 

Proceedings of the Artificial Intelligence and Statistics Workshop (2003) 

11. Gaffney, S., and Smyth P.: Trajectory Clustering with Mixtures of Regression Models. In, 

Proc. Fifth Inter. Conf. Knowledge Discovery & Data Mining pp. 63-72 (1999) 

12. Witelson S. F.: Hand and sex differences in the isthmus and genu of the human corpus 

callosum. Brain, vol. 112, 799–835 (1989) 


