
Model-Based Bootstrapping on Classified Tensor 

Morphologies using Constrained Two-Tensor Model 

Abstract. In this study, fast and clinically feasible model-based bootstrapping 

algorithms using a geometrically constrained two-tensor diffusion model are 

employed for estimating uncertainty in fibre-orientation. Voxels are classified based 

on tensor morphologies before applying single or two-tensor model-based 

bootstrapping algorithms. Classification of tensor morphologies allows the tensor 

morphology to be considered when selecting the most appropriate bootstrap 

procedure. A constrained two-tensor model approach can greatly reduce data 

acquisition times and computational time for whole bootstrap data volume generation 

compared to other multi-fibre model techniques, facilitating widespread clinical use. 

For comparison, we propose a new repetition-bootstrap algorithm based on classified 

voxels and the constrained two-tensor model. White matter tractography with these 

bootstrapping algorithms is also developed to estimate the connection probabilities 

between brain regions, especially regions with complex fibre configurations.  

Experimental results on a hardware phantom and human brain data demonstrate the 

superior performance of our algorithms compared to conventional approaches.  

1 Introduction 

Bootstrapping of repeated diffusion weighted MRI data sets allows non-parametric 

estimation of uncertainty in the inferred fibre orientation [1]. Model-based bootstrap 

methods (wild bootstrapping [2] and residual bootstrapping [3]) using a single-data 

set have been presented as an alternative to repetition bootstrapping. Generally, the 

single diffusion tensor model does not correctly express the microstructure in voxels 

that contain more than one fibre orientation. Model-based and repetition-

bootstrapping fibre tracking methods using DTI can fail when fibre tracts pass 

through voxels containing complex configurations [4]. These configurations are 

characterised by disk-shaped (planar) forms of the tensor. The development of new 

models based on HARDI seeks to provide solutions to this problem [5-8]. HARDI-

based methods, including multi-tensor models [5] and Q-ball imaging [6], require 

longer acquisition times than conventional DTI and are generally not suitable for 

clinical applications. The high b values utilised in some cases increase sensitivity to 

subject motion, which is also undesirable for a clinical setting. Constrained spherical 

deconvolution [7] has shown good results when applied to relatively low angular 

resolution DW data, however, only orientational information can be obtained with this 

method. To solve some of the above problems, a geometrically constrained two-tensor 

model for resolving fibre crossings was introduced in [8]. 

More than a third of voxels in human white matter contain crossing fibre bundles at 

the current resolution of DWMRI, and these voxels challenge statistical models for 

tensor estimation and fibre tracking. Therefore, developing a proper bootstrap method 

for estimating fibre orientation in these voxels is important. Yuan et al. [4] showed 

that repetition and wild bootstrapping may fail to quantify the uncertainties in DTI 

derived parameters in oblate voxels. Therefore, to use bootstrap methods correctly, 

the morphology of a tensor must be known. The validity of model-based 
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bootstrapping strongly depends on the correct specification of the fitted model used to 

estimate tensors. This raises concerns about the validity of bootstrapping those fibre 

pathways that pass through voxels which containing different tensor morphologies. 

Our solution is to classify tensor morphologies before the application of bootstrap 

algorithms, which allows the use of appropriate tensor morphologies.  

In this work, fast and clinically feasible wild and residual bootstrapping algorithms 

for estimating uncertainty in fibre-orientation are presented based on a geometrically 

constrained two-tensor diffusion model. Voxels are classified based on tensor 

morphologies before applying single or two-tensor model-based bootstrapping 

algorithms. Probabilistic fibre tractography with these bootstrapping algorithms is 

also developed to estimate connection probabilities between brain regions, especially 

regions with complex fibre configurations. We evaluate the tracking algorithm 

quantitatively using a hardware phantom and human in vivo data. For comparison, a 

new constrained two-tensor repetition bootstrapping algorithm is developed based on 

the same morphology classification approach as used for model-based bootstrapping. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Two-tensor model-based bootstrap algorithms on classified tensor morphologies. 

2 Two-Tensor Model-Based Bootstrapping Algorithms 

The two-tensor model-based algorithms used in this study are illustrated by Fig.1. The 

detail of the individual steps are as follows. 

Step 1- Data Acquisition and Initial Tensor Fitting. Intensities of the measured 

diffusion-weighted signals are quantified for a single-tensor model by: 
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                                                          (1) 

where    and    are the signal intensities with and without diffusion weighting,   is 

the diffusion weighting factor,   the unit vector of the gradient direction,   the total 

number of experiments and   the diffusion tensor. Applying a log-transformation to 

Eq(1), the estimation of   becomes a well-known multiple linear regression form:  

                                                             (2) 

where   is a design matrix of different diffusion gradient directions,       is the 

product of the i
th

 row of   and  , and     is a random sample from the residuals of the 

original regression model. To estimate the tensor  , Eq (1) is solved by the following 

linear least squares (LLS) method.  

                                                                (3) 

The residuals from the LLS fit used to generate the model based bootstrap (MBB) 

samples in Step 4 are calculated from                                                             (4) 

Step 2- Classifying Tensor Morphology. The three types of degenerate tensors are 

isotropic (  =  =    ), oblate (          ), or prolate (           ) 

where    (i =1,2,3) are the three eigenvalues of the tensor   . To classify tensor 

morphologies (TM), we developed an algorithm based on three equalities described 

by Zhu et al. [9], where the algorithm sequentially checks whether each voxel in the 

image is isotropic (I), oblate (O), or prolate (P). This classifying algorithm uses a 

threshold αi (i=1-4), as described below.  

For each voxel    {  IF             THEN TM = I 

 ELSE IF              

          THEN IF             THEN TM = I 

                     ELSE TM = O 

          ELSE IF             THEN TM = P 

                    ELSE TM = I    } 

We use three invariants to characterise the shape of the tensor ellipsoids proposed by 

Westin et al. [10] to compare our classification algorithm. Westin et al. [10] defined 

three measures which describe how similar the diffusion ellipsoid is to the linear (  ); 
planar (  ); and  spherical (  ) case respectively. Two-tensor model-based algorithms 

were applied to oblate (TM=O) voxels and single-tensor model-based algorithms to 

the other voxels, because only planar voxels are amenable to two-tensor fitting. 

Step 3- Constrained Two-Tensor Model Estimation. A geometrically constrained 

two-tensor model [8] was used to find the two diffusion tensors and reduce the 

number of degrees of freedom in the original multi-tensor model [5]. 

       
     

                     
                                      (5) 

where    and     represent the tensor from each compartment, and   and       are 

the signal fractions from    and   . This model assumes that both fibre tracts are 

constrained in the plane spanned by the first two eigenvectors   and    from the 

single-tensor fit. Given the above constraint, two tensors    and    are described as  
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With the single-tensor fit determining the orientation of e3 and the minor eigenvalue 

λ3, the remaining free parameters are    and    , the angles subtended in the plane by 

the two principal directions and λ1 is the principal diffusivity which is assumed to be 

same for both fibre tracts. The gradient vectors are transformed into a 2-D coordinate 

system;     .  

      
  

  
         

                     
                                 (6) 

The equation becomes a system of non-linear equations and minimises to 

               
 

 , 

which gives the estimated tensor elements    ,     and the fraction   . The Levenberg-

Marquardt optimisation algorithm is used to estimate non-linear equations. In each 

gradient direction          , a residual    is calculated according to 

                                                                (7) 

Step 4- Model-based Bootstrap Sample Generation. The residual vector   from the 

single-tensor fit (Eq(4)) or two-tensor fit (Eq(7)) is used to generate the MBB 

samples. In order to resample the errors, the wild bootstrapping approach assumes 

symmetry in the distribution of residuals for a given data point, and a residual value, 

  
 , was randomly chosen and multiplied by -1 or 1(p=0.5) with replacement from the 

set of all residuals  . The residual bootstrapping approach assumes that all residuals 

have similar distributions and a residual value   
  randomly chosen among the set of 

all residuals  . Model-based resampling is then performed to construct many data sets, 

   or      
 :          

         
               for voxels with single tensor.  

       
            

   for voxels with two tensors. 

Resampling       
    

      
   and estimating    or   

  and   
  from    or      

  

are repeated for some fixed large number   to acquire   independent MBB samples.  
Step 5- Probabilistic Fibre Tractography. Having generated   tensor volumes, a 

4th order Runge-Kutta streamline tracking algorithm was used to propagate 

streamlines bidirectionally from seed points. The algorithm was repeated for   

volumes to generate   tracts for each seed point. Every voxel in a volume contains 

either 1 (single tensor) or 2 principal eigenvectors (two tensors) as appropriate for the 

tensor morphology of the particular voxel. If the seed point voxel has two tensors then 

two separate trajectories are generated from the seed point using two fibre 

orientations. The deterministic tracking algorithm then propagates the trajectories to 

the next position. If the next position contains two fibre orientations, the two principal 

eigenvectors are compared to determine which if either of the trajectories should be 

followed. We choose the fibre orientation which has the smallest angular difference to 

the principal eigenvector calculated from the previous position. 

3 Methodology 

Phantom Data: 3T DW-data were acquired from a physical phantom 

(http://www.lnao.fr/spip.php?article106) with 3x3x3 mm
3
 voxel resolution, b =1500 

s/mm
2
 and 64 diffusion directions. 

In Vivo Data: 3T DTI data were obtained on a healthy volunteer with 2x2x2 mm
3
 

voxel resolution using 32 diffusion-encoding gradient directions and b = 1300 s/mm
2
. 

The acquisition was repeated 8 times for repetition-bootstrap analysis. The diffusion-

weighted images were first corrected for bulk motion and eddy current distortions. 

http://www.lnao.fr/spip.php?article106
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 Two-Tensor Model-based Bootstrapping: We applied the model-based bootstrap 

algorithms, to the phantom data and the first of the eight repeated in vivo diffusion-

weighted datasets, described above, and generated 1000 MBB volumes. The voxels 

were classified based on the classification algorithm before applying single-tensor and 

two-tensor model-based bootstrapping algorithms. The probabilistic tractography was 

then applied to the MBB volumes of phantom-data from 4 pre-defined seed positions; 

the actual fibre structure from the seed position passing through the different complex 

fibre configurations as illustrated in Fig. 2. Fibre tracks were generated from user-

defined regions in in vivo data based on prior anatomical knowledge to delineate the 

corpus callosum (CC), superior longitudinal fasciculus (SLF) and corticospinal tract 

(CST). A comparison of the results of our method with that of the single-tensor 

residual and wild bootstrapping methods applied using the same starting points to 

extract the same fibre structures in the phantom and in vivo are presented. 

Performance Analysis: The phantom data was used to test the performance of the 

single and two-tensor model-based bootstrap probabilistic tracking algorithms. 

Performance measures were calculated as the error     in tract estimation, which is a 

function of distance   from the seed point. The distance    at point          , is the 

cumulative total of all Euclidian distances of neighbouring points along the curve up 

to the            from the seed point. The positive and negative distances are defined 

by the two directions of the curve from a seed point (Fig. 2). The error  
 
 at distance 

   is defined as the Euclidian distance between the ground-truth curve point at    and 

the resultant curve point at    from the seed point. The overall range of   is defined as 

the maximum   at both ends of the ground-truth curve. The ground truth curves and 

the curves of the four probabilistic methods, described above, from the 4 seed points 

of the phantom data were assessed.  From the 1000 probabilistic curves, average error 

values were computed for each method and for each seed point at 10 mm distance .  

Two-Tensor Repetition Bootstrapping: Repetition bootstrap methods were used to 

randomly generate samples for every voxel in each diffusion-encoded image of the in 

vivo data. In each iteration 5 samples were randomly sampled with replacement from 

the 8 data acquisitions. The signal for each voxel was calculated as the average of the 

5 selected samples. This procedure was repeated for each voxel and diffusion-

encoded dataset. The resulting data is one volume bootstrap sample. Single or 

constrained two-tensor models according to the morphology of the voxels, were fitted 

to the bootstrap data to estimate diffusion tensors for each voxel. A complete 

bootstrap tractography dataset was obtained by iteratively running the random 

sampling method 1000 times to generate multiple volume bootstrap data. Fibre tracts 

were generated using the same region and tracking threshold as the model-based 

bootstrap tracking. 

4 Results and Discussion 

Phantom Data: Fig. 2 shows the ground truth of the phantom, complex regions and 

Westin measures and our classification algorithm results. There was no major 

difference between the two methods except our algorithms (αi =14x10
-8

) identified 

more isotropic and planar voxels in the expected regions. Tracking results in the 

phantom data (Fig. 3) show performance differences in the bootstrap tractography 
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methods. The results of two-tensor model-based tracking are consistent with the 

ground truth and are able to solve the complex configurations and track properly. In 

Fig. 3A, ideally, one would expect the tractography trajectories starting from the seed 

point to cross regions 1 and 3; instead as they enter the fibre crossing region the fibre 

tracts diverge in the wrong direction. But Fig. 3A (d) shows that the trajectories 

correctly cross the region and tracts are similar to the expected ground truth. In Fig. 

3B, the seed point selected as a target shows the branching ability of the two-tensor 

model-based bootstrapping algorithm. The estimated pathways of single-tensor 

model-based bootstrapping (Fig. 3B(c)) have leaked and are dispersed, which makes 

the main pathway of connectivity more difficult to comprehend. Fig. 3C(d) and Fig. 

3D(d) illustrate the connection probability map resulting from probabilistic 

tractography using two-tensor residual bootstrap tractography. The tractography 

correctly follows the fibre direction through the fibre-crossing regions: Region 1(Fig. 

3C(d)) and Region 2 (Fig. 3D(d)), but not for the results of single-tensor residual 

bootstrap tractography.  

 

 

 

 

 

 

 

Fig. 2. (a) Ground truth and selected crossing regions (in red circles) and a branching region (in 

yellow rectangle) (b) Classification using Westin measures (linear (+), planar(*) or spherical 

(o) shape) and (c) Classification algorithm (d) Constrained two-tensor model estimation. 

 

 

 

 

 

 

 

 
Fig. 3. Tracking results from 4 seed points (seed points are illustrated in the red square) A, B, C 

and D. (a) Residual bootstrap results: Single-tensor (green) and Two-tensor (yellow) (b) Wild 

bootstrap results: Single-tensor (blue) and Two-tensor (salmon) (c) Probability map of single-

tensor residual bootstrapping (d) Probability map of two-tensor residual bootstrapping. 

Performance Analysis: Considering the plots of average error at different distances 

from the 4 seed points (Fig. 4), generally, the error increases with the distance from 

the seed point for all four methods. There is not a large difference between the 

residual and wild bootstrap tracking methods for either the single or two-tensor cases 

and it is difficult to claim that a particular method generates a higher or lower error. 

However, the residual bootstrap is generally consistently better than the wild 

bootstrap, especially in complex regions. Fig 4 shows that single-tensor bootstrapping 

errors largely increase with distance compared with two-tensor bootstrapping errors 
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after the tracts enter crossing regions (Region 1 ,2, and 3) in all cases, because single-

tensor fibre tracts diverge in the wrong direction (Fig.3A,C and D) in these regions.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Comparison of the four probabilistic tracking algorithms (single-tensor residual (SR) 

and wild (SW) and two-tensor  residual (TR) and wild (TW)) from four seed points A, B,C and 

D with the average error (in mm) at different distances from the seed point. 

In vivo Data: Figs 5-7 show individual probabilistic fiber trajectories in the region 

with complex fiber architecture. The seed points were placed at the centre of three 

well known fibre tracts; the CC, the SLF and the CST and all five tractography 

methods (Single-tensor residual (a) and wild (b) and two-tensor residual (c), wild (d) 

and repetition (e)) were initiated from these seed points.  

 

 

 

 

Fig. 5 shows that the five bootstrap tractography methods  are able to reconstruct 

the CC. Two-tensor bootstrap fibre tracking techniques were able to more accurately 

delineate the callosal radiation than single-tensor  bootstrap tractography. The two-

tensor model-based bootstrap tractography methods were able to traverse the regions 

of crossing fibres and connectivity observed throughout the lateral frontal and parietal 

lobes while single-tensor tracts only showed connectivity between the left and right 

superior frontal gyri of both hemispheres. 

 

 

 

 

 

Fig. 6 shows that two-tensor bootstraps are able to reconstruct a well defined tract 

through the SLF. Two-tensor bootstrap tractography shows more white matter 

connections passing through the seed point, demonstrating not only central parts of 

the SLF, but also fibres reaching more distally and links and projections to parts of 
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the inferior longitudinal fascicle, cingulum and links between subcortical areas with a 

much higher degree of dispersion, not observed in both single-tensor cases.  

 

 

 

 

 

 

Fig. 7 shows that bootstrap tractography is able to reconstruct the CST from the 

cortex to the spinal cord from a seed point placed in the internal capsule. Both single-

tensor results indicate that a number of streamlines erroneously cross and project into 

the contralateral hemisphere. Looking at the two-tensor tractography results there is 

generally a much higher degree of dispersion. Two-tensor residual, wild and 

repetition bootstrap produced very similar reconstructions of all three tracts and 

higher fibre dispersion values were observed compared to single-tensor bootstrapping 

results, especially as the tracts move further from the seed point.  

In summary, based on our experimental evaluations, the advantages of the 

proposed two-tensor model-based bootstrap algorithms are threefold. First, we can 

use data which is routinely available from clinical scans to implement this approach 

and unlike previous bootstrap methods with other multi-fibre modalities our 

algorithms show improved computational efficiency, making them clinically feasible. 

Secondly, our bootstrap algorithms are implemented on appropriate tensor 

morphology voxels to increase the validity of the probabilistic bootstrap distribution. 

Thirdly, our algorithms can accurately reconstruct fibre paths and are also able to 

recover complex fibre configurations.  
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