
MATHEMATICAL DESCRIPTION OF BACTERIAL

TRAVELING PULSES

NIKOLAOS BOURNAVEAS, AXEL BUGUIN, VINCENT CALVEZ, BENOÎT
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Abstract. The Keller-Segel system has been widely proposed as a model
for bacterial waves driven by chemotactic processes. Current experiments on
E. coli have shown precise structure of traveling pulses. We present here an
alternative mathematical description of traveling pulses at a macroscopic scale.
This modeling task is complemented with numerical simulations in accordance
with the experimental observations. Our model is derived from an accurate
kinetic description of the mesoscopic run-and-tumble process performed by
bacteria. This model can account for recent experimental observations with
E. coli. Qualitative agreements include the asymmetry of the pulse and transi-
tion in the collective behaviour (clustered motion versus dispersion). In addi-
tion we can capture quantitatively the main characteristics of the pulse such as
the speed and the relative size of tails. This work opens several experimental
and theoretical perspectives. Coefficients at the macroscopic level are derived
from considerations at the cellular scale. For instance the stiffness of the sig-
nal integration process turns out to have a strong effect on collective motion.
Furthermore the bottom-up scaling allows to perform preliminary mathemat-
ical analysis and write efficient numerical schemes. This model is intended as
a predictive tool for the investigation of bacterial collective motion.

1. Introduction

Since Adler’s seminal paper [1], several groups have reported the formation and
the propagation of concentration waves in bacteria suspensions [8, 32]. Typically,
a suspension of swimming bacteria such as E. coli self-concentrates in regions
where the environment is slightly different such as the entry ports of the chamber
(more exposed to oxygen) or regions of different temperatures. After their for-
mation, these high concentration regions propagate along the channel, within the
suspension. It is commonly admitted that chemotaxis (motion of cells directed
by a chemical signal) is one of the key ingredients triggering the formation of
these pulses. We refer to [38] for a complete review of experimental assays and
mathematical approaches to model these issues and to [3] for all biological aspects
of E. coli.

Our goal is to derive a macroscopic model for chemotactic pulses based on a
mesoscopic underlying description (made of kinetic theory adapted to the specific
run-and-tumble process that bacteria undergo [2, 31]). We base our approach on
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recent experimental evidence for traveling pulses (see Fig. 1). These traveling
pulses possess the following features which we are able to recover numerically:
constant speed, constant amount of cells, short timescale (cell division being
negligible), and strong asymmetry in the profile.

We describe as usual the population of bacteria by its density ρ(t, x) (at time
t > 0 and position x ∈ R). We restrict our attention to the one-dimensional case
due to the specific geometry of the channels. The cell density follows a drift-
diffusion equation, combining brownian diffusion together with directed fluxes
being the chemotactic contributions. This is coupled to reaction-diffusion equa-
tions driving the external chemical concentrations. In this paper we consider the
influence of two chemical species, namely the chemoattractant signal S(t, x), and
the nutrient N(t, x). Although this is a very general framework, it has been shown
in close but different conditions that glycine can play the role of the chemoat-
tractant [35]. Similarly, glucose is presumed to be the nutrient. The exact nature
of the chemical species has very little influence on our modeling process. In fact
there is no need to know precisely the mechanisms of signal integration at this
stage. The model reads as follows:

(1.1)





∂tρ = Dρ∆ρ−∇ · (ρuS + ρuN) ,

∂tS = DS∆S − αS + βρ ,

∂tN = DN∆N − γρN .

The chemoattractant is assumed to be secreted by the bacteria (at a constant
rate β), and is naturally degraded at rate α, whereas the nutrient is consumed at
rate γ. Both chemical species diffuse with possibly different molecular diffusion
coefficients. We assume a linear integration of the signal at the microscopic scale,
resulting in a summation of two independent contributions for the directed part
of the motion expressed by the fluxes uS and uN . We expect that the flux uS

will contribute to gather the cell density and create a pulse. The flux uN will be
responsible for the motion of this pulse towards higher nutrient levels. Several
systems of this type have been proposed and the upmost classical is the so-called
Keller-Segel equation [22, 28] for which fluxes are proportional to the gradient of
the chemical:

uS = χ(S)∇S , uN = χ(N)∇N .

In the absence of nutrient, such systems enhance a positive feedback which coun-
teracts dispersion of individuals and may eventually lead to aggregation. There
is a large amount of literature dealing with this subtle mathematical phenome-
non (see [34, 17] and references therein). Self-induced chemotaxis following the
Keller-Segel model has been shown successful for modeling self-organization of
various cell populations undergoing aggregation (slime mold amoebae, bacterial
colony,. . . ). In the absence of a chemoattractant S being produced internally,
this model can be used to describe traveling pulses. However it is required that
the chemosensitivity function χ(N) is singular at N = 0 [22]. Following the work
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of Nagai and Ikeda [30], Horstmann and Stevens have constructed a class of such
chemotaxis problems which admit traveling pulses solutions [19], assuming the
consumption of the (nutrient) signal together with a singular chemosensitivity.
We also refer to [38] for a presentation of various contributions to this problem,
and to [25] for recent developments concerning the stability of traveling waves
in some parabolic-hyperbolic chemotaxis system. In addition, the contribution
of cell division to the dynamics of Keller-Segel systems (and specially traveling
waves) has been considered by many authors (see [24, 15, 29] and the refer-
ences therein). However these constraints (including singular chemosensitivity or
growth terms) seem unreasonable in view of the experimental setting we aim at
describing.

An extension of the Keller-Segel model was also proposed in seminal paper
by Brenner et al. [6] for the self-organization of E. coli. Production of the
chemoattractant by the bacteria triggers consumption of an external field (namely
the succinate). Their objective is to accurately describe aggregation of bacteria
along rings or spots, as observed in earlier experiments by Budrene and Berg [8]
that were performed over the surface of gels. One phase of the analysis consists
in resolving a traveling ansatz for the motion of those bacterial rings. However
the simple scenario they first adopt cannot resolve the propagation of traveling
pulses. The authors give subsequently two possible directions of modeling: either
observed traveling rings are transient, or they result from a switch in metabolism
far behind the front. The experimental setting we are based on is quite different
from Budrene and Berg’s experiments (in particular regarding the dynamics):
for the experiments discussed in the present paper, the bacteria swim in a liquid
medium and not on agar plates. Therefore we will not follow [6].

On the other hand Salman et al. [35] consider a very similar experimental
setting. However the model they introduce to account for their observations is
not expected to exhibit pulse waves (although the mathematical analysis would
be more complex in its entire form than in [19]). Actually Fig. 5 in [35] is
not compatible with a traveling pulse ansatz (because the pulse amplitude is
increasing for the time of numerical experiments).

Traveling bands have also been reported in other cell species, and especially
the slime mold Dictyostelium discoideum [39]. Notice that the original model
by Keller and Segel [22] was indeed motivated by the observation of traveling
pulses in Dictyostelium population under starvation. This question has been
developped more recently by Höfer et al. [18] using the Keller-Segel model, as
well as Dolak and Schmeiser [11] and Erban and Othmer [13] using kinetic equa-
tions for chemotaxis. According to these models, the propagating pulse waves of
chemoattractant (namely cAMP) are sustained by an excitable medium. The cells
respond chemotactically to these waves by moving up to the gradient of cAMP.
Great efforts have been successfully performed to resolve the “back-of-the-wave
paradox”: the polarized cells are supposed not to turn back when the front passed
away (this would result in a net motion outwards the pulsatile centers of cAMP).
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Figure 1. Experimental evidence for pulses of Escherichia coli travel-
ing across a channel. The propagation speed is constant and the shape
of the pulse front is remarkably well conserved. Observe that the profile
is clearly asymmetric, being stiffer at the back of the front (see also Fig.
2). Cell division may not play a crucial role regarding the short time

scale.

Although we are also focusing on the description of pulse waves, the medium is
not expected to be excitable and the bacteria are not polarized. Nevertheless,
we will retain from these approaches the kinetic description originally due to Alt
and coauthors [2, 31]. This mathematical framework is well-suited for describing
bacterial motion following a microscopic run-and-tumble process.

A new class of models for the collective motion of bacteria has emerged recently.
It differs significantly from the classical Keller-Segel model. Rather than following
intuitive rules (or first order approximations), the chemotactic fluxes are derived
analytically from a mesoscopic description of the run-and-tumble dynamics at
the individual level and possibly internal molecular pathways, see [16, 10, 14, 12,
9, 34]. The scaling limit which links the macroscopic flux uS (or similarly uN) to
the kinetic description is now well understood since the pioneering works [2, 31].
Here we propose to follow the analysis in [11], which is based on the temporal
response of bacteria [7, 36], denoted by φδ in Appendix (A.8). Namely we write
these fluxes as:

(1.2) uS = χSJφ (−ǫ∂tS, |∇S|)
∇S
|∇S| ,

where ǫ is a (small) parameter issued from the microscopic description of mo-
tion. Namely ǫ is the ratio between the pulse speed and the speed of individual
cells (they differ by one order of magnitude at least according to experimental
measurements). The function Jφ contains the microscopic features that stem
from the precise response of a bacterium to a change in the environment (see the
Appendix (A.8)). It mainly results from the so-called ’response function’ at
the kinetic level that describe how a single bacterium responds to a change
in the concentration of the chemoattractant S in its surrounding environment.
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We give below analytical and numerical evidence that traveling pulses exist fol-
lowing such a modeling framework. We also investigate the characteristic features
of those traveling pulses at the light of experimental observations.

The experiments presented in the present paper will be described in more
details in a subsequent paper. Briefly, in a setup placed under a low magnifica-
tion fluorescence microscope maintained at 30 ◦C, we fill polymer microchannels
– section: ca. 500µm × 100µm, length ca. 1cm – with a suspension of flu-
orescent E. coli bacteria – strain RP437 considered wild-type for motility and
chemotaxis, transformed with a pZE1R-gfp plasmid allowing quantitative mea-
surement of bacteria concentration inside the channel. We concentrate the cells
at the extremity of the channel and monitor the progression of the subsequent
concentration wave along the channel. In particular, we dynamically extract the
shape of the front and its velocity (see Fig. 1).

Coupling the model (1.1) with the formula (1.2) results in a parabolic type
partial differential equation for the bacterial density ρ, such as in the Keller-
Segel system. It significantly differs from it however, as it derives in our case
from a kinetic description of motion. Especially the flux uS is uniformly bounded,
whereas the chemotactic flux in Keller-Segel model generally becomes unbounded
when aggregative instability occurs, which is a strong obstacle to the existence
of traveling pulses.

2. Traveling pulses under competing fluxes

2.1. Stiff response function: pulse wave analytical solutions. It is usually
impossible to compute explicitely traveling pulse solutions for general systems
such as (1.1). To obtain qualitative properties is also a difficult problem: we
refer to [30, 19, 29] for examples of rigorous results. Here, we are able to handle
analytical computations in the limiting case of a stiff signal response function,
when the fluxes are given by the expression (see the Appendix (A.8)):

(2.1) uS = χS

(
1 −

(
ǫ∂tS

∂xS

)2
)

+

sign (∂xS) ,

(2.2) uN = χN

(
1 −

(
ǫ∂tN

∂xN

)2
)

+

sign (∂xN) .

In other words, a specific expression for Jφ in (1.2) is considered in this section.
It eventually reduces to uS = χSsign (∂xS) as ǫ→ 0.

We seek traveling pulses, in other words particular solutions of the form
ρ(t, x) = ρ̃(x − σt), S(t, x) = S̃(x − σt), N(t, x) = Ñ(x − σt) where σ de-
notes the speed of the wave. This reduces (1.1) to a new system with a single
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variable z = x− σt:

(2.3)





−σρ′(z) = Dρρ
′′(z) − (ρ(z)uS(z) + ρ(z)uN (z))′ ,

−σS ′(z) = DSS
′′(z) − αS(z) + βρ(z) ,

−σN ′(z) = DNN
′′(z) − γρ(z)N(z) .

We prescribe the following conditions at infinity:

(2.4) ρ(±∞) = 0 , S(±∞) = 0 , N(±∞) = N± .

We impose σ > 0 without loss of generality. This means that the fresh nu-
trient is located on the right side, and thus we look for an increasing nutrient
concentration N ′(z) > 0. We expect that the chemoattractant profile exhibits a
maximum coinciding with the cell density peak (say at z = 0), and we look for a
solution where S ′(z) changes sign only once at z = 0. Then, the fluxes (2.1)-(2.2)
express under the traveling wave ansatz as:

uS(z) = −χS

(
1 − (ǫσ)2)

+
sign (z) ,

uN(z) = χN

(
1 − (ǫσ)2)

+
.

Integrating once the cell density equation we obtain,

Dρρ
′(z) = ρ(z) (uS(z) + uN(z) − σ) .

The flux uS takes two values (with a jump at z = 0), whereas the flux uN is
constant. Therefore the cell density is a combination of two exponential distri-
butions:

ρ(z) =





ρ0 exp (λ−z) , λ− =
−σ + (χS + χN )

(
1 − (ǫσ)2)

Dρ

> 0 , if z < 0 ,

ρ0 exp (λ+z) , λ+ =
−σ + (−χS + χN)

(
1 − (ǫσ)2)

Dρ

< 0 , if z > 0 .

This combination of two exponentials perfectly match with the numerical simu-
lations (Fig. 2).

2.2. Formula for the traveling speed. To close the analysis it remains to
derive the two unknowns: the maximum cell density ρ0 and the speed σ, given
the mass and the constraint that ∂zS vanishes at z = 0 (because S(z) reaches a
maximum).

On the one hand, the total mass of bacteria is given by M = ρ0(1/λ
−+1/|λ+|).

On the other hand the chemotactic field is given by S(z) = (K ∗ βρ)(z), where
the fudamental solution of the equation for S(z) is

K(z) = a1 exp(−a2|z| − a3z) , a1 =
1

2a2DS

, a2 =

√
a2

3 +
α

DS

, a3 =
σ

2DS

.
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Figure 2. (Top) Experimental evidence of a traveling pulse: time
snapshots of the full experiments described in Fig. 1. The density
profile is clearly asymmetric and preserved along the time course of
the experiment. Main contribution to growth takes place at the back
of the pulse. This suggests that nutrients are not totally consumed
by the pulse. The number of bacteria in the pulse is approximately
constant during the pulse course. (Bottom) A generic density profile
obtained with the model (1.1) (see also Fig. 3). The bacteria (plain
line) are attracted by a nutrient (dashed line) which is consumed. They
secrete in addition their own chemical signal (dash-dotted line) which
is concentrated at the peak location.
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To match the transition in monotonicity condition, the chemical signal should
satisfy S ′(0) = 0, that is (K ′ ∗ βρ)(0) = 0, which leads to

0 = ρ0

∫ 0

−∞

a1(a2 + a3) exp(a2z + a3z) exp(λ−z) dz

+ρ0

∫ ∞

0

a1(−a2 + a3) exp(−a2z + a3z) exp(λ+z) dz

0 = a1

(
a2 + a3

a2 + a3 + λ−
− −a2 + a3

−a2 + a3 + λ+

)
.

This leads to the following equation that we shall invert to obtain the front speed:

λ−

|λ+| =
a2 + a3

a2 − a3

,

−σ + (χS + χN )
(
1 − (ǫσ)2)

σ + (χS − χN)
(
1 − (ǫσ)2) =

√
4DSα + σ2 + σ√
4DSα + σ2 − σ

.(2.5)

From this relation we infer:

(2.6) χN − σ

1 − (ǫσ)2 = χS

σ√
4DSα + σ2

.

We deduce from monotonicity arguments that there is a unique possible traveling
speed σ ∈ (0, ǫ−1).

According to (2.6) the expected pulse speed does not depend upon the total
number of cells when the response function is stiff. This can be related to a
recent work by Mittal et al. [27] where the authors observe experimentally such
a fact in a different context (see Section 2.3 below). In the case of a smooth
tumbling kernel in (A.8), our model would predict a dependency of the speed
upon the quantity of cells. But this analysis suggests that the number of cells is
presumably not a sensitive biophysical parameter.

Observe that the speed does not depend on the bacterial diffusion coefficient
either. Therefore we expect to get the same formula if we follow the hyperbolic
approach of [11] in order to derive a macroscopic model. Indeed the main differ-
ence at the macroscopic level lies in the diffusion coefficient which is very small
in the hyperbolic system. Nevertheless, the density distribution would be very
different, being much more confined in the hyperbolic system. Furthermore, scal-
ing back the system to its original variables, we would obtain a pulse speed being
comparable to the individual speed of bacteria (see Appendix). This is clearly
not the case.
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2.3. Cluster formation.

Stiff response function. Mittal et al. have presented remarkable experiments
where bacteria E. coli self-organize in coherent aggregated structures due to
chemotaxis [27]. The cluster diameters are shown essentially not to depend on the
quantity of cells being trapped. This experimental observation can be recovered
from direct numerical simulations of random walks [21].

We can recover this feature in our context using a model similar to (1.1) derived
from a kinetic description. Following Section 2.1 we compute the solutions of (2.3)
in the absence of nutrient (assuming again a stiff response function). Observe
that stationary solutions correspond here to zero-speed traveling pulses. The
problem is reduced to finding solutions of the following system:

(2.7)

{
−Dρρ

′(x) + ρ(x)uS(x) = 0 , uS(x) = χSsign (S ′(x)) ,

−DSS
′′(x) + αS(x) = βρ(x) .

We assume again that sign (S ′(x)) = −sign (x). This simply leads to,

ρ(x) = ρ0 exp(−λ|x|) , where λ =
χS

Dρ

.

This is compatible with the postulate that S(x) changes sign only once, at x = 0
(the source βρ(x) being even). The typical size of the clusters is of the order λ−1,
which does not depend on the total number of cells. This is in good agreement
with experiments exhibited in [27]. The fact that we can recover them from
numerical simulations indicates that these stationary states are expected to be
stable.

General response function. Cluster formation provides a good framework for in-
vestigating the situation where we relax the stiffness assumption of the response
function φδ. Below φδ is characterized by the stiffness parameter δ through
φ′

δ(0) = −3/δ (see Appendix). Consider the caricatural model (in nondimen-
sional form):

(2.8)





∂tρ = ∂2
xxρ− ∂x (ρuS) , uS = −1

2

∫

v∈(−1,1))

vφδ(ǫ∂tS + v∂xS) dv ,

−∂2
xxS + αS = ρ .

We rewrite α = l−2,where l denotes the range of action of the chemical sig-
nal. We investigate the linear stability of the constant stationary state (ρ, S) =
(〈ρ〉, α−1〈ρ〉) where 〈ρ〉 is the meanvalue over the domain [0, L]. We introduce
the deviation to the stationary state: n = ρ− ρ, c = S − S. Then the linearized
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system writes close to (ρ, S):

(2.9)





∂tn = ∂2
xxn− ∂x (〈ρ〉ũS) , ũS = −1

2

∫

v∈(−1,1)

v2φ′
δ(0)∂xc dv =

∂xc

δ
,

−∂2
xxc+ αc = n .

The associated eigenvalue problem reduces to the following dispersion relation
for ξ = 2πk/L,

λ(k) = −ξ2 +
M

δL

ξ2

α + ξ2
.

Due to the conservation of mass, we shall only consider k ≥ 1. The eigenvalue
becomes positive if there exists k such that

M

δL
> α + ξ2 , or equivalently

M

2πδ
>

L

2πl2
+ k22π

L
.

Therefore the constant solution is linearly stable if the following condition is
fulfilled:

ML

2πδ
<

1

2π

(
L

l

)2

+ 2π .

The picture is not complete as we have not investigated the stability of the
non-trivial steady-state. However this indicates that the mass and the stiffness
parameter δ play important roles regarding cluster formation.

3. Numerical insights

We complete the theoretical analysis with some numerical simulations exhibit-
ing propagation of pulses (or not) in regimes where analytical solutions are not
available (see Fig. 3).

We opt for the following initial conditions in our numerical experiments: a
decreasing exponential function centered on the left side of the channel for the
cell density, no chemical signal, and a constant level of nutriment N0.

Parameters are issued from literature (see [35] and references therein) and
from the mesoscopic derivation of the model (see Appendix ’Parameters and
scales’). Adimensionalizing time and space yields the time and space scales being
respectively 10s and 200µm, such that the total duration of the computation
is approx. 1h, and the length of the computational channel is 4cm. We fix
the following parameters, Dρ = 1, χS = χN = 1, for the cell density equation;
DS = 2, α = 0.05 for the chemical concentration [35]. We assume in addition
DN = 0 for the sake of simplicity: the nutriment is not required to act as a
non-local signal (and we expect this coefficient to have very little influence on
the dynamics). By adimensionalizing further the system, we may choose M = 1,
γ = β = 1 without loss of generality. Finally the signal response function φδ

is chosen as follows: φδ(Y ) = −2/π arctan(Y/δ), with a stiffness factor δ. We
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Figure 3. (Top) Experimental results under abundant nutrient con-
ditions: M9 minimal medium supplemented with 4% glucose and 1%
casamino acids (both ten times more concentrated than in the case of
Fig. 5). (Bottom) Numerical simulations of system (1.1) in the case
of unlimited nutrient, and a stiff response function φδ. We observe the
propagation of a traveling pulse with constant speed and asymmetric
profile. The value of the speed and the features of the profile (combina-
tion of two exponential tails) perfectly match the traveling wave ansatz
analysis of Section 2. We use a semi-implicit upwind finite-difference
scheme performing a half-point discretization (in space) of the time de-
rivative of chemical species when computing the approximate fluxes.
Specific parameters are: δ = 10−3 and N0 = 10 (see Section 3 for the
other parameters).
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Figure 4. (Top) In this experiment, bacteria are cultivated at a con-
centration of 5.108 cells/ml in the same rich medium as in Fig. 3. After,
they are resuspended in LB nutrient to an OD600 of 3.108 cells/ml. We
interpret the absence of pulse propagation as following. Bacteria are
adapted to a rich environmnent before resuspension. Thus they are not
able to sense small chemical fluctuations necessary for clustering to oc-
cur when evolving in a relatively poor medium. (Bottom) Influence of
the internal processes stiffness. When the individual response function
φδ is not stiff, the effect of dispersion is too strong and no pulse wave
propagates, as opposed to Fig. 3. Specific parameters are: δ = 10−1

and N0 = 10 (see Section 3 for the other parameters). In mathematical
models of bacterial chemotaxis, it is commonly accepted that adaptation
of cells to large chemoattractant changes acts through the measurement
of relative time variations: S−1DS/Dt (see Appendix). In our context,
this is to say that the stiffness parameter δ is proportional to the chem-
ical level S. Hence after having dramatically changed the environment
and before bacteria adapt themselves, we can consider that the response
function φδ is not stiff.
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Figure 5. At low level of nutrient the cell population splits into two
subpopulations. A fraction remains trapped at the boundary (as a sta-
tionary profile) and a fraction travels accross the channel with constant
speed (see also Fig. 6). Specific parameters are: δ = 10−3 and N0 = 1
(see Section 3 for the other parameters).

Figure 6. (Left) Respective profiles for the bacterial density (plain
line), the chemical concentration (dash-dotted line) and the nutrient
concentration (dashed line) in the limited nutrient/stiff response func-
tion configuration described in Fig. 5 (δ = 10−3 and N0 = 1). (Right)
The net chemoattractive flux uS + uN is plotted. It clearly shows a
transition between the traveling wave (positive flux) and the equilib-
rium (negative flux) located at the left boundary.
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also keep the memory of the drift-diffusion limit performed in the Appendix, by
setting ǫ = 0.1. The only free parameters subject to variations are N0 and δ.

We can draw the following main conclusions from numerical experiments.

Influence of the stiffness of the internal response function. (Fig. 4).
When the stiffness assumption for the internal response function is relaxed, no

pulse propagation is observed numerically. Deriving the exact conditions that
guarantee the propagation of a traveling pulse seems to be a challenging task.
However we give below some heuristics for the particular choice φδ(Y ) = φ(Y/δ),
δ being a stiffness factor.

Although the chemotactic equation of (1.1) is significantly different from the
Keller-Segel model, they coincide as far as the stability of the homogeneous (un-
clustered) configuration is under question. We learn from Section 2.3 that the
stiffness parameter δ plays an important role in the stability of the homogeneous
solution. It is well known that the Keller-Segel system is subject to a bifurcation
phenomenon due to its quadratic, non-local nonlinearity. This is well understood
in two dimensions of space for instance [34, 17]. If some nondimensional param-
eter is small enough, diffusion dominates and no self-organization arises in the
system. On the contrary, self-attraction between cells overcomes diffusion when
this parameter is large, and yields the formation of a singularity (i.e. aggregation
point) [34].

Clearly the same kind of mechanism acts here (see Fig. 3 as opposed to Fig. 4).
However there is no mathematical argumentation to sustain those numerical and
intuitive evidence yet.

Limited versus non limited nutrient. (Fig. 5).
When the nutrient is limited in the experimental device (and conditions for a

pulse to travel are fulfilled) then only part of the bacterial population leaves the
initial bump. The solution seems to be the superposition of a traveling pulse and
a stationary state (such as in Section 2.3 in the absence of nutrient). Solitary
modes with smaller amplitudes may appear at the back of the leading one (not
shown). To predict which fraction of mass starts traveling turns out to be a
difficult question.

4. Conclusions and perspectives

We present in this article a simple mathematical description for the collective
motion of bacterial pulses with constant speed and asymmetric profile in a chan-
nel. The nature of this model significantly differs from the classical Keller-Segel
system although it belongs to the same class of drift-diffusion equations. Our
model is formally derived from a mesoscopic description of the bacterial density,
which allows for a more accurate expression of the cell flux. We are able to
compute analytically the speed of the pulse and its profile in the limit of a stiff
response function φδ. The theoretical pulse speed has some striking features: it
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does not depend on the total number of bacteria, neither on the bacterial dif-
fusion coefficient. This can be related to experimental evidence by Mittal et al.

[27] where bacteria self-organize into size-independent clusters. Our approach
can be summarized as follows: a nutrient is added to pull chemotactic clusters
of cells. This creates an imbalance in the fluxes which induces the asymmetry of
the traveling profile.

The next step would be to work at the kinetic level. Much has to be done for
the design of efficient kinetic schemes for the collective motion of cells subject to
chemotactic interactions. It would also be feasible to point out the dependency
of the tumbling operator upon some internal variable (e.g. the cytoplasmic con-
centration of protein CheY). This approach carries out the coupling between
an internal protein network and the external chemoattractant signals [37, 21].
Kinetic models are also relevant for describing this microscopic mechanism [12, 5]
(the network is basically transported along the cells’ trajectories). However the
increase in complexity forces to reduce the size of the network, and to use rather
caricatural systems mimicking high sensitivity to small temporal variations (ex-
citation) and adaptation to constant levels of the chemoattractant.

Assuming independent integration of the chemical signals constitutes a strong
hypothesis of our model. There exist two main membranous receptors trigger-
ing chemotaxis, namely Tar and Tsr. As the signals which act in the present
experiments are not perfectly determined, we have considered the simplest con-
figuration. To further analyse the interaction between the external signals, one
should include more in-depth biological description of the competition for a single
class of receptor [23].

Appendix A. Appendix: Kinetic models for chemotaxis and their

drift-diffusion limit

Kinetic framework. The classical theory of drift-diffusion limit for kinetic mod-
eling of bacterial chemotaxis is a way to compute the macroscopic fluxes uS, uN

in (1.1) [16]. Because we assume a linear integration of the different signals for
each individual, we restrict ourselves to the action of a single chemical species S.

The kinetic framework is as follows. A population of bacteria can be described
at the mesoscopic scale by its local density f(t, x, v) of cells located at the po-
sition x and with velocity v at time t. The kinetic equation proposed in the
pioneering works of Alt, Dunbar and Othmer [2, 31] combines free runs at speed
v, and tumbling events changing velocity from v′ (anterior) to v (posterior), resp.

according to the Boltzman type equation:

(A.1) ∂tf + v · ∇xf =

∫

v′∈V

T [S](t, x, v′ → v)f(t, x, v′) dv′

−
∫

v′∈V

T [S](t, x, v → v′)f(t, x, v) dv′ .
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The velocity space V is bounded and symmetric, usually V = B(0, c) or V =
S(0, c) (bacteria having presumably constant speed). As we deal with the ide-
alization of a two-dimensional phenomenon in one dimension of space, we shall
perform our computations for V = [−c, c], but the results contained in this paper
do not depend on this particular choice. Kinetic models of chemotaxis have been
studied recently in [20, 4, 5].

The turning kernel T describes the frequency of changing trajectories, from v′

to v. It expresses the way external chemicals may influence cell trajectories. A
single bacterium is able to sense time variations of a chemical along its trajectory
(through a time convolution whose kernel is well described since the experiments
performed by Segall et al. [36]). For the sake of simplicity we neglect any memory
effect, and we assume that a cell is able of sensing the variation of the chemical
concentration along its trajectory. Following [11], this is to say that T is given
by the expression

(A.2) T [S](v′ → v) = ψ

(
DS

Dt

)
= ψ (∂tS + v′ · ∇xS) .

The signal integration function ψ is non-negative and decreasing, expressing that
cells are less likely to tumble (thus perform longer runs) when the external chem-
ical signal increases (see Fig. 7 for such a tumbling kernel in the context of the
present application). It is expected to have a stiff transition at 0, when the direc-
tional time derivative of the signal changes sign [36, 37, 21]. Our study in Section
3 boils down to the influence of the stiffness, by introducing a one parameter
family of functions ψδ(Y ) = ψ(Y/δ).

Parameters and scales. The main parameters of the model are the total number
of bacteria M which is conserved, the maximum speed of a single bacterium
c = max{|v|; v ∈ V }, and the mean turning frequency λ0 = ψ0c

d (where d
denotes the dimension of space according to our discussion above). The main
unknown is the speed of the traveling pulse, denoted by σ. We rescale the kinetic
model (A.1) into a nondimensional form as follows:

t = t̃ t̄ , x = x̃ x̄ , v = ṽ c , V = cṼ , T = T̃ ψ0 .

We aim at describing traveling pulses in the regime x̄ = σt̄. Experimental ev-
idence show that the bulk velocity σ is much lower than the speed of a single
bacterium c. This motivates to introduce the ratio ǫ = σ/c. According to exper-
imental measurements, we have ǫ ≈ 0.1. The kinetic equation writes:

(A.3) ǫ∂t̃f̃ + ṽ · ∇x̃f̃ =
λ0x̄

c

{∫

ṽ′∈Ṽ

ψ̃
(
ǫ∂t̃S̃ + ṽ′ · ∇x̃S̃

)
f̃(t̃, x̃, ṽ′) dṽ′

−|Ṽ |ψ̃
(
ǫ∂t̃S̃ + ṽ · ∇x̃S̃

)
f̃(t̃, x̃, ṽ)

}
,

where ψ̃(z) = ψ(cz/x̄). Following the experimental setting (see Introduction, Fig.
1 and Fig. 2) and the biological knowledge [3], we choose the scales x̄ ≈ 200µm,
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Figure 7. Tumbling frequencies (at the mesoscopic scale) obtained
from the numerical experiment described in Fig. 5: the tumbling prob-
ability is higher when moving to the left (upper dashed line) at the
back of the pulse, whereas the tumbling probability when moving to
the right is lower (upper plain line), resulting in a net flux towards the
right, as the pulse travels (see Fig. 6). Notice that these two curves are
not symmetric w.r.t. to the basal rate 1, but the symmetry defect is
of lower order (10−3). The peak location is also shown for the sake of
completeness (lower plain line).

λ0 ≈ 1s−1, and c = 20µm.s−1. Hence λ0x̄/c ≈ 10. Therefore we rewrite this ratio
as:

λ0x̄

c
=
µ

ǫ
,

where the nondimensional coefficient µ is of order 1.

Drift-diffusion limit of kinetic models. To perform a drift-diffusion limit when
ǫ → 0 (see [16, 10, 9, 34], and [11, 14] for other scaling limits, e.g. hyperbolic),
we shall assume that the variations of ψ around its meanvalue ψ0 are of
amplitude ǫ at most. It writes in the nondimensional version as follows: ψ(Y ) =
1 + ǫφδ(Y ). Hence the chemotactic contribution is a perturbation of order ǫ of a
unbiased process which is constant in our case because the turning kernel does
not depend on the posterior velocity and the first order contribution is required to
be symmetric with respect to (v′, v). This hypothesis is in agreement with early
biological measurements. It is also relevant from the mathematical viewpoint as
we are looking for a traveling pulse regime where the speed of the expected pulse
is much slower than the speed of a single individual. This argues in favour of a
parabolic scaling as performed in this Appendix.
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The rest of this Appendix is devoted to the derivation of the Keller-Segel type
model in one dimension of space:

(A.4) ∂tρ+ ∂x (−Dρ∂xρ+ ρuS) = 0 .

Dislike the classical Keller-Segel model (used for instance by Salman et al. [35]),
singularities cannot form (excessively populated aggregates) with the chemotac-
tic flux uS given in (A.8) below. This is because the latter remains uniformly
bounded (see also Mittal et al. [27] where clusters emerge which are plateaux
and thus not as singular as described for KS system in a mathematical sense).

Sketch of parabolic derivation. We start from the nondimensional kinetic equa-
tion (A.3):

ǫ∂tf + v · ∇xf =
µ

ǫ

{∫

v′∈V

(1 + ǫφδ[S](v′)) f(t, x, v′) dv′

−|V | (1 + ǫφδ[S](v)) f(t, x, v)} ,
which reads as follows,

(A.5) ǫ∂tf + v · ∇xf =
µ

ǫ
(ρ(t, x) − |V |f(t, x, v))

+ µ

(∫

v′∈V

φδ[S](v′)f(t, x, v′) dv′ − |V |φδ[S](v)f(t, x, v)

)
.

Therefore the dominant contribution in the tumbling operator is a relaxation to-
wards a uniform distribution in velocity at each position: f(t, x, v) = ρ(t, x)F (v)
as ǫ → 0, where F (v) = |V |−11{v∈V } . Notice that more involved velocity pro-
files can be handled [10, 33], but this is irrelevant in our setting as the tumbling
frequency does not depend on the posterior velocity v.

The space density ρ(t, x) remains to be determined. For this purpose we first
integrate with respect to velocity v and we obtain the equation of motion for the
local density ρ(t, x) =

∫
v∈V

f(t, x, v)dv:

∂tρ+ ∇ · j = 0 , j = ǫ−1

∫

v∈V

vf(t, x, v) dv .

To determine the bacterial flow j we integrate (A.5) against v:

ǫ∂t

(∫

v∈V

vf(t, x, v) dv

)
+ ∇x ·

(∫

v∈V

v ⊗ vf(t, x, v) dv

)

= −µ|V |j − µ|V |
∫

v∈V

vφδ[S](v)f(t, x, v) dv .

We obtain formally, as ǫ→ 0:

(A.6) j = −∇x

(
ρ(t, x)

1

µd|V |2
∫

v∈V

|v|2 dv
)
− ρ(t, x)

1

|V |

∫

v∈V

vφδ[S](v) dv .
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Finally, the drift-diffusion limit equation (A.4) reads in one dimension of space:

(A.7) ∂tρ=

(
1

4µ

∫

v∈[−1,1]

|v|2 dv
)
∂2

xxρ+ ∂x

(
ρ

∫

v∈[−1,1]

vφδ (ǫ∂tS + v∂xS)
dv

2

)
. �

To sum up, we have derived a macroscopic drift-diffusion equation, where the
bacterial diffusion coefficient and the chemotactic flux are given by:

(A.8) Dρ =
1

4µ

∫

v∈[−1,1]

|v|2 dv , uS = −
∫

v∈[−1,1]

vφδ (ǫ∂tS + v∂xS)
dv

2
.

In the limiting case where the internal response function φδ is bivaluated: φδ(Y ) =
φ01{Y <0} − φ01{Y >0} , the flux rewrites simply as:

uS =
φ0

2

(
1 −

(
ǫ
∂tS

∂xS

)2
)

+

sign (∂xS) .

For the sake of comparison, we highlight the corresponding expressions which
have been obtained by Dolak and Schmeiser. In [11] authors perform a hyperbolic
scaling limit leading to the following chemotactic equation for the density of
bacteria:

∂tρ+ ∇ · (−ǫD∇ρ+ ρUS) = 0 ,

where D is an anisotropic diffusion tensor and the chemotactic flux is given by:

US =

(
1

A

∫

v∈V

v1

ψ(∂tS + v1∇S|)
dv

) ∇S
|∇S| ,

for some renormalizing factor A. The two approaches do not differ that much at
first glance (especially when ψ is bivaluated). Notice however that the “small”
ǫ parameter does not appear at the same location: in front of the diffusion co-
efficient in the hyperbolic limit and inside the chemotactic flux in the parabolic
limit.
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