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NEAR-LINEAR DYNAMICS IN KDV WITH PERIODIC
BOUNDARY CONDITIONS

M. B. ERDOGAN, N. TZIRAKIS, AND V. ZHARNITSKY

ABSTRACT. Near linear evolution in Korteweg de Vries (KdV) equation with
periodic boundary conditions is established under the assumption of high
frequency initial data. This result is obtained by the method of normal form
reduction.

1. INTRODUCTION

This articles investigates the behavior of a class of solutions with high frequency
initial data of Korteweg de Vries (KdV) equation,

vy = OVV; — Vgga,

with periodic boundary conditions v(z + 27) = wv(z). We show that, see
Theorem 2.1 below, these solutions evolve near linearly, (i.e. like solutions of
Uy = —Ugqy) for large times.

On the real line, near linear behavior for dispersive PDEs, such as nonlin-
ear Schrodinger equation, nonlinear Klein-Gordon equations, KdV, etc., could
be expected. Indeed, in that case high frequency solutions will disperse over
a large subset of the real line weakening the nonlinearity. For example, under
some conditions, one can extend the L' — L> dispersive estimates for the linear
Schrodinger equation to NLS, see e.g. [5]. In the focusing case, linear evolution
could be destroyed by the mass concentration phenomenon as it leads to larger
nonlinear effects. However, such concentration cannot occur in the case of mass
subcritical nonlinearity. In short, there are two major reasons why on the real
line, the evolution of high frequency solutions in the mass subcritical NLS case
should be near linear: dispersive decay and absence of collapse.

For the KdV on the torus or a circle (periodic boundary conditions), the linear
solution is periodic in space and time and, thus, one does not have dispersive
decay. It is also generally believed that the solutions of KdV on the torus will
not be approximated by the linear solutions as time goes to infinity. Therefore,
it is somewhat surprising that, as we show in this paper, the evolution is still
near linear on a finite but large time scale. One can argue that a hint towards
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this behavior comes from Bourgain’s discovery of Strichartz estimates for periodic
case [1, 2]. In some way, the effect of dispersion for the periodic problem can be
interpreted as averaging of the nonlinearity over high frequencies.

On the torus there are other reasons, such as resonances, which could prevent
linear behavior. For NLS, see [4], such resonances cause faster phase rotation
while the behavior is still linear.

Our results are also motivated by the scattering problems for dispersive PDEs.
On the real line there are many results on scattering, which show that nonlinear
solutions tend to the linear ones as time goes to infinity. On the torus, however,
one does not expect scattering. For example, the absence of scattering was proved
rigorously for the cubic NLS on the two dimensional torus in [3]. Our statement
is different since we only claim linear behavior for large but finite time scale for
a special class of high frequency solutions. On the other hand, our near linear
solutions provide some scattering like behavior.

Although KdV with periodic boundary conditions is completely integrable, our
methods do not rely on integrability. We only use the conservation of momen-
tum, energy, and Hamiltonian. An interesting question is whether integrability
structure can be used to obtain more precise results on near linear evolution and
on a larger time scale.

Our work also suggests a new mechanism of formation of the so-called rogue
waves. Rogue waves (also called freak and giant waves) correspond to large-
amplitude waves appearing on the sea surface “from nowhere”. In the scientific
literature, the following amplitude criterion for the rogue wave is usually used:
its height should exceed the significant wave height (on the sea surface) by about
a factor of two [7].

There is a vast literature on rogue waves, see e.g. the survey paper [7| and
references therein, and many explanations have been proposed. Some scenarios
involve

e probabilistic approach — rogue waves are considered as rare events in the
framework of Rayleigh statistics

e linear mechanism — dispersion enhancement (spatio-temporal focusing)

e nonlinear mechanisms — in approximating models (e.g. NLS or KdV),
for some special initial data large amplitude waves can be created.

Linear mechanism of rogue wave formation is simpler since there are various
solutions leading to large amplitudes, while nonlinear mechanism requires very
special initial data. On the other hand, linear approximations are valid in the
small amplitude limit which is restrictive. This article shows that for KdV the
linear and nonlinear mechanisms can be combined into one since we describe a
large subset of initial data for which the solutions of KdV equation behave near
linearly.

Regarding the boundary conditions, our choice of periodic boundary conditions
is not the most realistic one but appropriate for a model problem. Indeed, while
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the sea surface is not periodic, one observes more or less similar pattern over
large areas.

We finally mention that it would be best to observe near-linear dynamics for
the full water wave problem, however, it is a considerably harder problem which
will be addressed in future work. We also limit our study to the one dimensional
problem.

2. MAIN RESULTS
We consider KdV equation
(1) Vg = 6UUJJ — VUgzx)

with periodic boundary conditions v(z + 27) = v(x) and we assume v € H*(S%).
In this case, KAV is well-posed [9] and can be written in Hamiltonian form

_aon
Cdx Ov’

(o

where the Hamiltonian is given by

(2) H(v) = /: (%vi - v3) dx

and %—Ij denotes L2 —gradient of H, representing the Fréchet derivative of H with

respect to the standard scalar product on L2, We also need to consider linear
part of KdV

UVt + Vggy = 07
with the solution given by
v(x,t) = eHo(x,0),

where L = —0,4,.
While KdV possesses infinitely many conserved quantities, we use the first
three: the above Hamiltonian, linear momentum

(3) P:i/WMxMx

—T

and kinetic energy
(4) K:/U%Mm

Theorem 2.1. Assume without loss of generality' that P = 0 and
(5) (-, 0)[lm < Ce™t, [o(,0) |12 < CeY/2

'One can reduce the case P # 0 to the zero momentum case P = 0 by a simple
transformation.
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for some C > 0 and for sufficiently small € > 0. Then for any t < g3t
o, 8) = e o(-,0) e < (1) €27,
where the implicit constant depends only on C' but not on e.

This Theorem follows from Theorem 2.2 below, which is proved by apply-
ing near-identical canonical transformations, so that the new Hamiltonian flow
is close to the linear one. This implies that the original Hamiltonian flow is also
close to the linear one.

Remark 2.1. Note that since the Hamiltonian (2) and the kinetic energy (4)
are conserved quantities, the bounds (5) imply |H(v(t))| < e72. This immediately
implies a uniform bound in time ||v||p S et

To prove our theorem we first apply the following transformation [6], which is
a weighted modification of Fourier transform

(6) v() = /Inle"u(n),

n#0
where n € Z\{0} and u(n) is a bi-infinite sequence of complex numbers. Since,
v(x) is real,

u(—n) = u(n).
In these new variables the Hamiltonian takes the form?

H=iY nfu(n)ju(-n)+i > /nimgng u(ng)u(ng)u(ns)

n>0 ni+nz+n3=0

(7) = A2+H3,

where Ay and Hj are the quadratic and cubic parts of the Hamiltonian. Equiva-
lently, in order to deal with the summation over all n # 0, we can write

i
Ay = 3 Z ndo(n)u(n)u(—n),
n#0
where o(n) := sgn(n). In this formulation u(m) and u(—m), with m = 1,2, ...
are conjugated canonical variables with the standard symplectic structure, so
that the Hamiltonian equations take the usual form

du(m)  OH
dt  Ou(—m)
du(-m)  OH
d  ou(m)’

2Below we will omit the absolute value sign | # | under the square root. It will be implicitly
implied for the rest of the paper.
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where m > 0. We also write these equations in a more compact form
du(m oH

) o) O

dt Ou(—m)

It is straightforward to verify that these are the correct equations, by applying

the change of variable (6) directly to KdV.
Now, we introduce a subset of [?

B P
X2 = {u e u(0) = 0,u(—=n) = a(n), [ulle < pv&, lully, < 2},
Z || Ju(k
k

where m # 0.

where

We will also need the norm
lull?, = 1P Ju(k)|?
k

Note that the hypothesis of Theorem 2.1 is equivalent to v € X7 initially in
time for some p > 0. By Remark 2.1, for any ¢ > 0, ||u(-,15)||l§/2 < e~ For the

initial data in this subset we prove that the evolution is near linear.

Theorem 2.2. Let p > 0 be fized. Assume u(-,0) € X? for sufficiently small
e>0. Then for any t < e 2t u(-,t) € X2 and
1

(8) lu(n,t) = €™ u(n, )|z iy S (8) €27

1/2 ~

Theorem 2.1 immediately follows from this one by applying the relation u(n) =
n)/+/|n|. To prove Theorem 2.2, we apply two canonical transformations @,
®}, . see the next section, so that u = u(q) = ®f, o Pj, (¢). The new Hamiltonian
is given by
H(q) = H(u(q)) = A2(q) + R(q),

where R stands for the reminder terms, and the equations take the form

(9) q(n) = in’q(n) + E(g)(n),
where

0
(10) E(q)(n) = 8q(—n)R7 n > 0.

The transformation is near-identical in the following sense:
Proposition 2.1. Ifu € X? or g € X, then
(11) [u(q) 2 Se'

where s € [0,3/2] and the implicit constant depends on p,s but not on . In
particular, for sufficiently small €, if ¢ € X?P, then u(q) € X2 and vice versa.

Y

The estimate for the error term is given by
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Proposition 2.2. If g € X? then the error term satisfies
(12) 1E(q)

where s € [0,1/2] and the implicit constant depends on p, s but not on .

2 § 51_8_

Y

Proof of Theorem 2.2. The proof follows easily from Propositions 2.1 and 2.2.
Indeed, multiplying (9) with the integrating factor e~°t and integrating from 0
to t, we obtain

t
(13) a(n, )™ — g(n,0) = / e E(g)(n)dr.
0
Next, by taking the ¢2 norm after multiplying both sides with ™!, we obtain

t
| et B | <14 |
0

lan,£) = 6 g(n, ) = \ p S It £

13

for s €[0,1/2] and t < e 2.
Then, using the triangle inequality, we estimate, for s € [0,1/2],

lu(n.t) = ™ “u(n, 0)|li: <

in?
< [lu(n,t) = q(n, Dz + lla(n. 1) — e q(n, 0) 2+
le"™q(n,0) = e u(n, 0) iz S ()"

~y

The first and the third estimates follow from Proposition 2.1 while the second
follows from the estimate on the equation (13).

This inequality for s = 0 implies that |[u(-, )|/, < 2py/€ for t < e~ V24, while
the conservation of Hamiltonian implies that ||u(-,t)|| 2, < 2pe~1. Therefore, u

stays in X2° up to the time ¢ < e~1/%*. This is important since our estimates for
the canonical transformations are only valid in the ball X¢?.

Moreover, for s = 1/2, the last inequality gives (8). This ends the proof of
Theorem 2.2. 0

Notation.

e We always assume by default that the summation index avoids the terms
with vanishing denominators, and that the summation indices do not
vanish. To illustrate this notation, consider the example

Z f(n1,n27n3) L Z f<n17n27n3)

ni+n2+n3z=0 nl(nl o n2> n1+ng+nz=0 ni (nl - nQ)

n170,n270,n37#0,n1 #ns2

e The expressions under the square roots are always taken over the absolute

values, i.e. /f :=+/|f].

e 0,F is the sequence %.
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e We use < sign to avoid using unimportant constants:
A < B means there is an absolute constant K such that A < KB. In
some cases the constant will depend on parameters such as s.
A < B(n—) means that for any v > 0, A < C,B(n — 7).
A < B(n+) is defined similarly.

o (n) =+1+n?

e We denote the kth derivative of H over the flow of F' by gk H, which is
defined iteratively as follows

¢OH:=H, g¢pH=g-H={HTF}, ¢il:={¢h'H F}, k=234,...

3. CANONICAL TRANSFORMATIONS

The goal of this section is to transform the Hamiltonian to a more convenient
(so called normal) form where the most essential (resonant) terms are left at the
low order. The non-resonant terms will be absorbed into appropriate canoni-
cal transformations. Resonant terms are those that are constant over the linear
Hamiltonian flow, generated by As, see the formal definition below. In this sec-
tion, the separation into the higher and lower order terms is formal as we will
not invoke any estimates, yet. The results of this section are not new and follow
closely the standard normal form calculations, see e.g. [6, 8].

Consider the change of variables u = u(q), generated by the time-1 flow of a
purely imaginary Hamiltonian F'. Namely, solve

dw(n) OF

(14) o= J(n)m, n # 0

with initial conditions
wlT:() =dq,

thus producing a symplectic transformation v = u(q) := ®%L(¢) = w|,=;. On the
other hand, we can write ¢ = ®.'(u). Let ®% be the time 7 map of the flow of
F'. Using Taylor expansion in 7, evaluated at 7 = 1, we have

(15)  HodL(q) = H(q)+ {H,F}(g)+...+ %{. {H, F},F},... F}q)

+/0 (1;_!T>k{.“{{H,F},F},...,F}o@;(q) dr,

where the Poisson bracket is defined as the derivative of one Hamiltonian function,
over the flow of the other one

(16) {A, B} =) a(n)

n#0

dA OB
Oq(n) 9q(—n)’




8 M. B. ERDOGAN, N. TZIRAKIS, AND V. ZHARNITSKY

Using the notation gk (H), see above, we can rewrite (15) as
(17) Hodl =
1 1 P1—7)*
H+gp.H+ ég%H—l— R Eg’}H—l—/ %(gfﬁlﬂ) o ®T. dr.
. 0 .

We choose the first transformation as a time-1 map of the Hamiltonian flow of
purely imaginary Hamiltonian function

F = Z Fi(ny, na, ng)u(ng)u(ng)u(ng).

ni1+n2+n3z=0

With this choice of symplectic structure, all Hamiltonian functions must be purely
imaginary. In particular, this Hamiltonian function is purely imaginary provided

7:1(—n1, —nNa, —n3) = .7:1(711, na, ns)-
Using (17) with k& = 2 we have
1 1 /[t
(18) Ho®p =H+gpH+ 5gfﬂH + §/ (1—7)*(g3, H) o ®F, dr.
0

Definition 3.1. The monomial My pny..n, = q(n1)q(nz)---q(ng) is called reso-
nant if it commutes with the linear flow, i.e.

(19) {As, M} = 0.

Otherwise, the monomial is called non-resonant. The sum of monomials is called
resonant (non-resonant) if all monomials are resonant (non-resonant). We will
write { } ={ }'+{ }™, where { }" represents resonant terms and { }™ represents
nonresonant terms.

Rewriting the Hamiltonian with H = Ay + Hs, we have
Ho®p =

1 1
Ao+ Hy+{Ao, i} + {Hs, F1} + 5{{/\2, F} R} + 5{{H3>F1}>F1} + Ry,

where

1 1
(20) Ry = 5/0 (1 7)2(g, H) o ®, dr.

We choose Fj so that to eliminate cubic non-resonant terms (in our case all cubic
terms are non-resonant)

(21) (Ao, P} + Hy = 0.

Then we have

1 1
(22) Hodp :A2+§{H3,F1}+5{{H3,F1},F1}+R1.
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It turns out that another transformation F5 that removes non-resonant terms in
{Hj3, F1} is required. For this purpose, we choose F; so that

(23) {Ag, Fo} + {H&Fl} = —{H&Fl = —ZZ lg(n
n#0

see (30). Applying (15) with & = 1, the new Hamiltonian takes the form
1 1
H [©) (I)ELFI @) (I)%Q :AQ + §{H3,F1} + 5{{H3,F1},F1} —|— Rl
1 1
+{A2, [5} + 5{{}[3, B} B+ 5{{{H37 P}, i}, Fo}

1
+ (R, B +/ (1= 7){{H o ®L , By}, By} 0 ¥, dr.
0

Using (23), we rewrite

(24) Ho®p, o®p, = Ay + R,
where
1 1
_Z—g‘(] + gF1H3+29F29F1H3+29F29F1H3
1
(25) F Ryt g Bt / (1 - 7)g2, (H 0 B, ) o B, dr.
0

and R, is given by (20).

3.1. Calculation of Fj. Straightforward calculations give
(26) {Ay, Fi} =i Z (n§ 4+ n3 4 n3)Fi(n1, n2,n3)q(n1)q(n2)q(ns).
ni+na2+nz=0

Note that under the restriction n; +ns+ns = 0, the sum of cubes can be factored
out

3 3 3
ny +ny + ny = 3ninans.

Thus, from (21) we have

O'(Tllngng)

3\ /T1M213 ’

whenever njngong # 0. Otherwise F(nq,na, ng) = 0.

(27) Fi(ni,ne,ng) = —
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3.2. Calculation of F;. We need to solve

1
(28) {Ag, F5} + §{H3’ ™ =0,

but first we need to distinguish the resonant and nonresonant terms of { Hs, F1}:
{Hs, F1} = {Hs, I} +{Hs, [}

Recall,
o(ninans)
F,=— ——"q(n n n
and
Hs(q) =1 Z Vninans q(ni)g(n2)g(ns).
ni1+nz2+n3=0

Now, we compute

0Hs 0OF
Ul 123 = 20050} )
——iows Y Vammdin) Y T (koG
n#£0 n1+n2+n=0 k1+k2—n=0 1f52m

=3 D[ Relmnaa(m)a(n)a(ns)a(m).

ni+ng+nz+nyg=0
n1+n2#0

The resonant terms are the ones satisfying n? + n3 + n3 + n3 = 0. Since we can
rewrite (under the restriction n; + ng + ng + ny = 0)

n} 4+ n3 +nj 4+ ni = 3(ny + n2)(ny + n3)(ng + na),

and nq +ny # 0, the resonant terms are the ones with ny +ns3 = 0 or ny+n3 = 0.
Therefore, the nonresonant terms are

{H;, )™ = —3i 3 "2 5 (ngna) a(m)a(ns)a(ng)a(na).

UEUZ
n1+n3#0,n94+n3#0,n1+n9#0
ni1+nz+nz+ns=0

On the other hand, the resonant terms are

{H?,,Fl}r:—?)i Z ("')—3i Z ()

n1+n3=0,n14+n9#0 ng+ngz=0,n14+n3#0,n1+n9#0
ni+na+nzg+ngs=0 ni+nz+nz+ngs=0

(29) = =30 Y o(mna)lg(n)Plgna)* =3i Y o(nina)lg(nm)Plg(ns)]*
n1+n27#0 n1tne#0

The resonant terms can be simplified as follows

(20) = =60 Y o(nna)lg(na)[*la(na)|* +3i ) la(n)[* =30y la(n)[*,

n1tngs#0 n#0 n#0
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since the first sum is equal to zero due to the cancellations
a(nlng) + U(-ﬂlng) =0
and [g(m)]| = [q(—m)|.
Therefore, we have
(30) {Hs, F\}" =30 ) _|q(n)|"
n#0

Next, we solve
{Ao, Fo} + %{H:a, £} =0.
By straightforward calculations, taking F, of the form
Fy= Y Falna,ng,ng,na)g(m)g(na)g(ns)q(na),
n1+na+nz+ng=0

we obtain

{A27 FQ} -
=1 Z (n} + n3 + n3 + nl) Fa(ng, ng, ng, na)q(ny)q(ne)q(nz)q(ny).

ni+nz2+nz+ngs=0

Therefore, Fo must satisfy the equality

3 /nin
3, 3, 3 3 12
(ny + ny + n3 + ny) Fa(ng, no, ng, ng) — 3

ngng

o(nsny) =0,

on the “non-resonant set”
NRy = {(ny,n2,n3,n4) € Z* ny +ny+ns+ng =0, ni’ —I—ng —l—ng +ni # 0}.
Thus,

niny ( ) 1
o\Nnghy )
nang ni +nj +nj +nj

3
(31) Fao(ni,ng,n3,ny) = 2
if (ny,n9,n3,n4) € NRy, and Fo = 0 otherwise.

4. PROOF OF PROPOSITION 2.1

We start with a-priori estimates for the derivatives of F} and F;. We need
these estimates also in the subsequent sections. Define the sequence

filgr, q2)(n) = — Z (7(7111—\/%7:3(11(711)(]2(”2)

so that
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Lemma 4.1. The following a-priori estimates hold,

111(q1, @2)llez_ S Nlaalle
1f1la @)l < llalle
i

lgzller,

1/2

el

[ fi(q, @)l S llallellglle,
||f1(CJ1,Q2)||1z ||Q1||z2 ||Q2||z +||611||é2 ||C.I2||e2

1/2 1/2°

Now, define the sequence

f2(q1, g2, q3)(n) = O, F»(n) = 8q8(}_?2n> —

oy e

n3+n1+n2—|—n3

n3n
nl q2 (”2)@3 (n3)

n+ni+nz+n3=0

Lemma 4.2. For any permutation (j1, j2, j3) of (1,2,3), and for any s € [—1,1],
we have

ollez, M1 llez, -

| fa(q1, 42, g3) 23 H(:ZJl

Moreover,
1ol a2 a)ll , S D Mg llez ,llazeles, s leg,

where the sum is taken over all permutations (1, j2,j3) of (1,2,3).

Now, we prove Proposition 2.1 using Lemma 4.1 and Lemma 4.2. The proof
of these lemmas will be given in the next section.

Proof of Proposition 2.1. Tt suffices to prove that @} is near identity for each
F = F) and F = F5 in the sense

g€ Xl = [|[®5(q) —qllee S, s€(0,3/2].

This is because [|®(q) » < ' implies that P4 (¢) € X2 and because
if ®}, and @, are near identity, then their composition, ®}, o @, , is also near
identity.

Note that in light of equation (14) we have

1oL (q) q||gz—H/ = gQ—Ha )

Applying Lemma 4.1 with ¢, = ¢ = w = ®%, (q) € Xf”, we obtain
1 f1(w, w)l|s2
1fi(w, )

2

which implies that @, is near identity.

0F,

= [If1(w, w)llez.

€2

IZANRIA



NEAR-LINEAR DYNAMICS IN KDV 13
Similarly, applying Lemma 4.2, with ¢; = ¢ = ¢3 = w € X? we have
3
||f2(w7 w, w)||12 5 €2

HfQ(wu w, rw)le3 S 8077
2

which implies that ®, is near identity.
Since (14) is time reversible, q);ll and @;21 are also near identity, which implies
that ¢(u) € X2 if u € XP. O

4.1. Proof of Lemma 4.1 and Lemma 4.2. We use the following lemma
repeatedly in the proof of Lemma 4.1, Lemma 4.2, and in the subsequent sections.
The proof is left to the reader.

Lemma 4.3. a) For any s,r € R, 1 < p,q < 0o and % —% >s—1r >0, we have
the embedding,

b) Let 1 < p,q,r < oo and % + % =1+ %, we have Young’s inequality,

[ ol < [Julliw[|v]|1a-

For the convenience of the reader we record the definition of the discrete con-
volution
uxv(n) = Z u(m)v(n —m) = Z u(n —m)v(m).
By a slight abuse of notation we also denote by u * v all the sums of the form
Y omu(m)v(£n — m). Young’s inequality holds true for all these convolution
products of functions.

Proof of Lemma 4.1. We begin with the second estimate. Note that

Therefore, for s < 1/2,
1]l ’(h IQ2 < H |\/_ |i]/2_\ N
!q |
S H—l N, S s, el

The second inequality follows from the first part of Lemma 4.3, and the third
inequality follows from Young’s inequality. Finally the last inequality is another
application of the first part of the aforementioned Lemma.
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To prove the first estimate, note that for s < 0,

| f1ll 2 ‘ |QI ‘ |CI1| |Cl2|
e ~ sl
lq |
< H_l Ve = H%H@_W}Iqﬂlﬁ_m

Again the second inequality follows from the first part of Lemma 4.3 and the
third inequality follows from Young’s inequality.

For the fourth estimate note that for s > 1/2, using |n|*"Y/2 < |ni|*~Y/2 +
Iny|*~1/2, we have

1A S (- al) (- 1721gD) () + (- 172 ql) # (- 1P gal ) ().
Therefore, for s > 1/2,

falle ST anl) = (12 1a2D ] + 1 172 al) = (- 1P el || .-
In particular, for s = 3/2, we have
1 fillez,, S N1(1- ) R e i ) 1 P TR e P R (R R )| P
SJ H| ' 1/2611”@2“‘ ’ |71/2Q2H51 + H| ’ |1/2QQH32H| ' |71/QQIH41

Slalle lelg, +lelle ol

For this estimate we first apply Young’s inequality and then the first part of
Lemma 4.3.

Finally to prove the third estimate, for fixed 6 > 0
1Al SN 1) = (- 172 1a0D) o + 1172 1al) * (- 10lae)) | 2
S 1 P 4| PR 2 P 1 PO
S lallellgz]le-

The derivation of this last string of inequalities follows as above using
Lemma 4.3. We only note that the last step follows if we choose 1,7 > 0 suffi-
ciently small with 1 depending on § > 0. O

Proof of Lemma 4.2. First note that by duality and interpolation it suffices to
prove the first statement for s = 1. To estimate [| 2|2 we use duality as follows

Ifalle = sup  [(f2, h)].

Il
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Note that for any permutation (71, j2, j3) the form (f2, h) on the right hand side
can be estimated by

Z |ning| 4+ [ning| + |nang| + [nens| + [nang| + |ngna| "
Vninanang|nd + n3 + nj + nil

X |gj, (n1)qj, (n2) @5 (n3) h(n4)|.

ni1+ne+nz+ng=0

Since ¢j, and ¢;, appear symmetrically on the right side of the inequality, it
suffices to estimate the following sum

Z \n1n2| -+ ]n1n4\ -+ |n2n3] —+ |n2n4|
Vminanzng|nd + n3 + ni + njl

The estimate for these summands are very similar to each other, therefore we
consider only two of them. The remaining estimates just recycle the arguments
below and will be omitted:

|51 (n1) @5, (n2) @5 (n3) h(ng) .

ni+na+nzg+ngs=0

Z |n2n3| -+ |n2n4\

VInenang|nd 4+ n3 + nd + nj

| 1G5, (1), (112) @5 (n3) (14 |

ni+nz+nz+ns=0

|n2|1/275|n3|1/276|n4|1/2

(32) = Z
n1+nz+nz+ngs=0 [n1[3/2 [nd 4 n3 + n§ +nj

h Ty
X ‘”1%1(”1)|n2!6%2(”2)|”3|6%'3(”3) ( >\
‘n2|1/2—5|n4’3/2
(33) + X
n1+n2+2n3+n40 |n1‘3/2|n3’1/2+5 ‘n? - n% - n§ - ni'
h(n4)
X |n1gj, (n1) Ina|’ g5, (n2)[ns)° gj, (ns) - k
After substituting ny = —n; — ny — ng, the multiplier in (33) takes the form
|n2\1/2_‘5 |n1 —+ ng + n3\3/2
|n1|3/2\n3|1/2+5 |n1 + Tlg“’fbl -+ nanQ + Tl3|
’n2’1/2—6 |n2‘1/2—6‘n2 +n3’1/2
™ naVE ng + nallng + naling + sl [mal32na V2 ng 4+ nollng + nal’

Note that |ns| < |n1 + ne||ny + ng||ne + nsl and |na| S [ni||ng + ne| under the
condition |ninang||ny + ne||lny + ngl|ne + ns| # 0. Using this we further bound
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the multiplier by

1 |n2 —l—n3|1/2
’n2n3|1/2+6 /n1|n2n3‘1/2+6 ’nl + n3‘
1 1 1

<
~ |n2n3|1/2+6 + /_n1|n3|1/2+5|n1+n3| T /_n1|n2|1/2+5|n3|5|n1+n3|

1 1 1
~ |ngng|1/2+0 + |nqng|L/2+0/2 + Inqng|1/246°

(34)

The last inequality follows from |ni| < |ns||ny + ns|. The contribution of the
first summand in (34) to (33) is

h(ny)

1
Z W‘nl%i (n1)|n2]° g5, (n2) |n31° 55 (n3)
ni1+ne+nz+ng=0

— 1 s ) h(—n1 — ny — n3)
-3 W\mqﬁww s (ma)lmsl g, () =
S llas g llelle, T el (na) s P ()|
T
n2,n3

S lgillezllgllellass e lhlle -

The first inequality follows from Cauchy-Schwarz in n; sum and the second follows

from Cauchy-Schwarz in ny,n3 sums since W is square summable. The

contribution of the other two summands in (34) to (33) can be estimated similarly.
Now we consider (32). After substituting ny = —n; — ny — ng, the multiplier
takes the form

|71277/3|1/2_(S |n1 + ng + 713|1/2

(71132 |0y + nal|ny + ngl[ng + ng|

Ingns| /2~ Ingns| /2~
™~ |na||ny + nallng + ngllng + na| - n1]?/2 |ng 4 nal|ng + nal|ng + ns|t/?
1 1

<
~ T2 + 12| 725y + ng |2 |0y + g + 12|20 03 P [1g + 13| /2

1 1
< .
~ Ing — ng| V2| ny + ng| + 12| /20 g[8 [ng + ng| /2
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We estimate the two terms separately. By summing first in n; and then using
Cauchy-Schwarz inequality in nq, ns, to estimate

1
X
Z ng — ng| /24| ny + ng|

ni,n2,n3

h(—m — Ngo — ’I’Lg)

x |n1gj, (1) |na2|° g, (n2)|n3]° gz (n3)

ni + No + N3

it is enough to bound

1
Z Ino — ng| 2|0y + ngl?”

n2,n3

But

1 1
= < .
2 72 — 13|72y + g2 2 220, + m2
ng,m

n2,n3

To estimate the second term by the above arguments it is enough to esti-
mate

> 1
n2|1129 |n3|28|ng + na|’

n2,n3

But

1 1 1 1
Z [na|120 |ng|28|ny + ng| o nzz |y |1+20 (; |n3]25|n2+n3])

n2,n3

and Holder’s inequality implies that

‘ 1
n2—|—n3

175 (2 +18) "Ml gy S 1157 122 < o0,

1+ (n3)

while the rest is summable in ns. This finishes the proof of the first assertion of
the lemma.

To prove the second assertion we use duality in a similar way. Since we
have a sum over all possible permutations in the right hand side of the inequality
it suffices to consider the following sum

Z |n1n3| -+ |n1n4\

\/W’n? —|—Tl§ +n§ +ni| ’qJI<n1>q.72<n2>q.73<n3> (774)’

ni+n2+ng+ns=0

- ¥ [125]'/%7° |4
ni+ng+nz+ng=0 |n1||n2|1/2+6 |n% + n% + ng + n§1|

h(n4)
X |n1|3/2qj1(nl)\n2|éq]'2(n2)|”3|6‘1j3(”3)‘n4|3/2
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+ > |na]? y
ni+ng+nz+ngs=0 |n1||n2n3|1/2+5 |7’L£1; + n% + ng + n2|

h(na)
X \"1|3/2(le(”1)!n2|6qu(”2)\n3|5qj3(”3)W‘

As above the proof follows from the following estimate for the multipliers:

3] '/2 =% |na?
mallna[ 7250 [+ + nd + 1] mallnans 7250 [ + i + nd + ]
1
To prove this inequality we first substitute ny = —n; — ny — ng to obtain

|n3|1/2’5|n1 + no + n3|

[na||na| /210 |ny + na|lny + nsl|ng + ns

|1+ o —|—n3|2
[n1|[nans| /20 Iny + naling + ns||ne + ng

|n3|1/2—5 |n3|1/2—6
™~ ne|V/249 g + nallng + ngline + ns| - |nal|nal/240 ng + na|lng + ng
|n1| |n2 +?”L3’
|7”LQTL3|1/2+(S |n1 + n2Hn1 + nang + n3| |TL1H7”LQTL3|1/2+(s ‘711 + TLQHTLl + TL3’ '

Using the inequalities
Ins|, |n1| < |na + nallng + nsl||ne + ns|
ns| < [nallna + ns
Ing + n3| < [na| + [na| < nallny + na| + [nal[ny + ng|

we see that last line is bounded by W This finishes the proof of the lemma
by using the methods of the first part. OJ

5. PROOF OF PROPOSITION 2.2

Note that by (10) and (25), it suffices to prove that if ¢ € X7, then, for
s €[0,1/2],

(35) lg(k)’lle S 7"
(36) ’8qg%29}?1H3 - <™, ifa>1l,a+b>2,

and similarly for terms involving integrals.
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The inequality (35) is obtained as follows:

1 3
2 Secerf=¢g27°

3 2

la’llee < llalle=llq
The inequality (36) follows from Theorem 5.1 in the next section, and the esti-
mates for the integral terms are discussed in section 5.2.

5.1. Estimates for the terms g}, g% Hs. In this section, we estimate the de-
rivative of the commutators g%, g% Hs for a > 1.

Theorem 5.1. Let ¢ > 0. Assume that ¢ € X;. Then fora > 1, b > 0, and
s €10,1/2], we have

With a slight abuse of notation, define

Hs3(q1,q2,q3) =i Z Vningns qi(n1)ge(na)gs(ns).
ni+na+nz=0
With this notation, H3(q) = Hs(q,q,q). Note that {H3, F1} can be written as
(37> H3<aqF17 q, q) + H3(q7 8q-Fjla Q) + H3(Q7 q, aq-Fjl)a

where 0, F; is the sequence 85’({1”) = fi(q,q)(n). By symmetry, we can write

{Hs, 1} = 3 Hs(f1(q.9).4,9)

By the same token, we can write {{Hs, F}}, F»} as a sum of the following terms

H3(f1(q,9), f2(¢,4,9), @), and H3(f1(f2(q,9,9),9),q,9)-

To generalize this to higher order commutators, we define @), as follows. First
Qo0 is ¢. To obtain Qqy, start with (g and iteratively, a times, replace one ¢
with fi(g,q), then again iteratively replace one ¢ with fa(q, ¢, q) b times. Any
sequence obtained in this manner is called Q5. For example {{ Hs, F} }, F5} can
be described as a sum of

H3(Q1,07 Qo,h Qo,o), and H3(Q1,1, Q0,0v Qo,o)-

In general, we can write 9%2 g, Hs as a sum of terms of the form
(38) H3(Q(z1,b17 Qag,bga Qa3,b3)7 ai + as + as = a, bl + bQ + b3 - b7 (Ij, b] S N

To estimate ||0,9%, 9% Hsl|ez, we use duality and estimate

b a 2 4bh—s5—
Jq 9F29F1H3H£2 Se? .

sup  [(0,9%, g% Hs, ).
Ihl,z =1

Note that (9,9% g% Hs, h) can be written as the commutator {g¢%, g% Hs, G},
where G = G(q) = ), h(n)g(n). This is because h = 9,G. In light of (37)
and (38), we can now write (9,9% g% Hs, h) as a sum of terms of the form

(39) H3( Z1,b17 Qag,bga Qag,,bg)v a1 + as + as = a, bl + b2 + b3 = by aj7bj € N7
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where QZb is obtained from @), by replacing one ¢ by h. Therefore, to prove
Theorem 5.1, we need to estimate the sequences @), and Qg,b in (2 spaces, and
estimate H3(q1, g2, g3) for ¢; in £2 spaces:

Proposition 5.1. For any permutation (ji,j2,j3) of (1,2,3), we have

[ H3(q1, 02, 03)] < ”%‘1||€2||Qj2||€§+||%3||€§+a

|Hs(q1, 42, 03)| < Najnllee Mlagallez ) N llez

1/2+ 1/2+]

|Hs3(q1, g2, 43)| S s lle

“1/2

(g lez N asallea, + lggallez, N lez )

gzl llsallz

|H3(q1, g2, 93)| S Nlgji lle2

1/2—

Proposition 5.2. Assume that q satisfies the hypothesis of Theorem 5.1. Then
we have

1Qaslle S 2734 se€[1,3/2], a>1, b>0

Qo

Proposition 5.3. Assume that q satisfies the hypothesis of Theorem 5.1. Then
foranya>1,b>0, we have

N

ex ot 5 €[0,3/2], b> 0.

N

4

1Qesllez S lhllez e,

(o7

Z%/27 S ||h||€31/2 €§+b_7

and for any b > 0, we have
1Q6ullee < Il €,

1Qbullee < HhHezm .

—1/2 ~~
We now prove Theorem 5.1 using Propositions 5.1, 5.2 and 5.3.

Proof of Theorem 5.1. By the discussion leading to (39) we need to estimate
H3(Q" 4 Quybys Qasps) for h € (2 and h € 531/2. First consider the case h € ¢2.

CLl,bl?
We have the following subcases a; = 0, and a; # 0. In the former case, by

Proposition 5.1 and Proposition 5.3, we have

[ H3(Q0 ;> Qua bas Qaza)| S 11Q0p, 2 Qs ol 2, Qa2

S ille e~ 1Qazpallz, 1Qus oallez, -
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Now, by Proposition 5.2, it is easy to see that the worst case is when ay = a,
az = 0, in which case we obtain

_ l,a _ 1 _
| H3(Q5 4, Qua b Qg )| S I|hll e ezt t02m gzt

< [[hll 50

~

If a1 # 0, the worst case is when a; = a,a, = a3 = 0. Using the Propositions
above we have

| H3(Q b, Qo Qoa ) S M1Qap, lz_[1Qosallez, 1Qoallez .
S [l et
S bl ezt
It remains to consider the case h € Ezl /2 As before we have the subcases a; = 0,
a1 # 0. If a; = 0, the worst case is when as = a,a3 = 0. We estimate

|H3(Q . > Qabss Qopy)]

N ”Qg,bl||Z2_1/2(||Qa,b2||lz

3/2

1Qosllez, + [|Qapsllez, |Qopslle2 )

3/2

5 ”h||1z2_1/2 e (6%+b2_5—%+53— + €%+%+b2—6—1+b3—)

1 a
< EERRRA
< lhlle, = H480m,
If a1 # 0, the worst case is when a; = a,as = az = 0. We estimate

| H3(Q0 by Qobas Quan)| S Qs ez, 1Qopallez | Qo ez

1/2— 1/2+

Slle, , g5 th—gmgtbaghs=

_lya, g
S P 0

Now we prove Propositions 5.1, 5.2, 5.3.

Proof of Proposition 5.1. To prove the Proposition we will repeatedly use, with-
out mentioning, the results of Lemma 4.3. Since Hj is symmetric in ¢, go, g3,
it suffices to consider the case (j1,ja2,73) = (1,2,3). We start with the second
assertion:

[ H3(q1,¢2,93)| < Z Vninang [¢i(n1)gz(n2)gs(ns)|

ni1+no+nz=0
= (V- Nal, Volal * Volasl) S IV alles V- gl * V- s ee-

Slalle [IV-elle-IV-aslle- < lalle_llelle, sl

1/2+ J2+
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To prove the other three assertions note that for s < 1/2,

|H3((J17 q2, Q3)’ 5

S Il (el nsl™ + [naf 2 [ns|' =) g1(na)g2(n2)gs(ns))|

ni1+n2+n3=0

= <| A INE |175 lga] * | - ‘1/2 |Q3’> + <’ |l |- ’1/2 lqo| * | - ’173 \Q3|>

(40) S Nl (I 1= lasl = 1 172 laslll o + 1+ 12 sl 1 1 lasll] )

For s = 0, we bound (40) by

lallee (laallezllgsller , + Nlazller Naslle) < llarlleliazlle, lasle,

1/2 1/2

which proves the first assertion. For s = —1/2, we bound (40) by

larlle, , (leellz  Nasller , + el llasle,)

lasllez, + llallez, llasllez )

3/2

<lale, , (el

3/2

which proves the third assertion. Finally for s = 1/2—4, § > 0, we bound (40) by

laalle , , laallers sl + ool lasle )
Slale, ,(lelglale ,, +lalglale,,,,).

Proof of Proposition 5.2. We start with the case a = 0. Note that for b = 0, the
statement is true for any s € [0,3/2] since Qoo = ¢. For b > 1, we use a simple
induction. We can write

QO,b = fQ(QO,blv QO,bQ? Q07b3)7
with by + by + by = b — 1. Using Lemma 4.2, for any s € [0,3/2], we have
[Qopllez < Z 1Qo.b;,

where the sum is over all permutations (ji, 2, j3) of (1,2,3). By the induction
hypothesis the last sum can be estimated by

Qo

In the case a > 1, we set up an induction on a. We first prove that the statement
is valid for @ = 1 and for any s € [1,3/2], b > 0. We write

Q10 = f1(Qopr, Qops),

2l|Qopy, 2, 1Qop,, ez,

1 1 1 1
L s — L4bj,— L4b— 1 _ostb—
o S E c2 1~ g2 %2 T 22053 ng .
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b1 + by = b. By Lemma 4.1 we estimate
1Qusllez,, = 1/1(Qoys Quan)llez, S 1Qos, Il

3/2 3/2 1/2

1Qosllez, + Qo llez

: Qo
< gblf€%+b27 +€bgf€%+blf < €%+b7.
Again by Lemma 4.1 we estimate
1Quolle = 1£1(Qos: Qoa) ez S 1Qos lle2l|Qopoller S 217222 < g0,
Now by a simple interpolation, for s € [1,3/2),
”Ql,b||£§ N ||Q1,b||g§_||Q1,b||;?;(: < 59(1+b—)5(1—9)(%+b—) — g#ﬂ—’
where § = 3 — 2s—. This implies
Q1,5

We proceed by induction on a > 1. We have

me = fl(Qal,bn Qaz,b2)7

a; +ay = a—1, by + by = b. The worst case (in terms of gain in powers of ¢)
is when a; = a — 1 and as = 0. As above, using the induction hypothesis and
Lemma 4.1 we have

2—s+b—
e SE :

1Qapllez,, S NQa-1b:llez , Qosllez, + |Qotollez , Qa1 llez,
S HQaﬂ,bl”zf“@o,bzuz% Sertheh —gathm,
Similarly,
1Qapllee S NQa—11lle2|Qopallee S N1 Qa—1.0: e[| Qoo | 2
< g5 tbi—o5+ba— < cztgHb—
The statement for s € [1,3/2) follows from interpolation as above. U

Proof of Proposition 5.3. We give a proof only for the case h € 52_1/2. The proof

for the case h € ¢? is essentially the same. We start with the case a = 0. Note
that for b = 0, the statement is true since Q'OI’O = h. For b > 1, we use a simple
induction. We can write without loss of generality

Qg,b = fz(Q&bl? QO,bQ? QO,bg))
with by 4+ by + b3 = b — 1. Using Lemma 4.2, we have

1Q04llez,, S NQ6s, N2, , 1 Qoeallez, 1Q02s ez,

—1/2
_ 1 _ 1 _ _
<Nl e ebt = hla, &

The second inequality follows from the induction hypothesis and Proposition 5.2.
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In the case a > 1, we set up an induction on a. We first prove that the
statement is valid for a = 1 for any b > 0. We write, without loss of generality,

Qfll,b = fl (Qg,bla QO,b2)>
b1 + by = b. By Lemma 4.1 we estimate
1Q1slle, = 1111(Q5p, Qop)llez, S Q6 Il

< ||h||g31/25b1 gath= < P, 52 +o—

Q0,621

1/2— 1/2— 1/2

The second inequality follows from the first part of the proof and Proposition 5.2.
We proceed by induction on a > 1. We have, without loss of generality,

Cgab - j1<62a1b1769a2b2>
a1+ as =a—1, by + by = b. Using Lemma 4.1, we have

1Qasllez,, S N1Qa, bl 1Qas b ez

%/2 1/2
1 _ 1,92
S hlle, o= eatd b Slhlle, ,e2™.

The second inequality follows from the induction hypothesis and Proposition 5.2
by considering the cases a; =0, a; # 0 and ay = 0, ay # 0. 0

5.2. Remainder estimates. In this section we estimate the error terms involv-
ing integrals. By (20) and (25), it suffices to prove the following inequalities

(41) suD-ejo [| 0y (95 Hz © @)l S €', s €[0,1/2]
(42) Sup,o1] || 9 9, (95, Hs 0 PF. HeQ Sel=s) s €[0,1/2]
(43) SUD,¢(0,1] Hﬁq (g%Q(H o (I)};l) o (I)}Q) ||£2 < el s €[0,1/2].

To prove (41), let w = ®F, (¢). Note that

up )ZGQHH?’ Juim )Wc)\

Hé? (QF Hs o (I’Fl)

Ihl,z =1 (—k)
é9£7}quYé ‘
= sup
Ill2_ =1 Z
< |0wgl Hsl|,  sup Iz -
e =1 =2

Since [} is near identity, by our assumptions on ¢, ||w|le < ez~ for s € [0,3/2].

Therefore, Theorem 5.1 implies that H@wg%ngnp < el™s (for @ > 2). Thus, it
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suffices to prove that

(44) T, S NIAlle,, s €[0,1/2]

where T'(h) := >, Dyw(m) h(k), and Dyw(m) := 3;”((_";?)-

To prove (44) first note that w(m) is the solution at ¢ = 7 of the system

dw(m) — 0F, B
dt  Ow(—m) Fu(w, w)(m), W= = q.

Differentiating this equation with respect to initial condition g(—k), we see that

d Dyw(m)

7 = 2f1(Dyw, w), Dyw(m)|t=o = 0—m-

Pairing both sides with h(k), we have the following equation for T'(h)

% = 2/(T(h), w), T(h)(m)]=0 = h(—m).

Therefore (44) is satisfied at 7 = 0, and by Gronwall’s lemma (since 7 € [0, 1]),
it suffices to see that || fi(T(h), w)ll;z S | T(h)[le2_ for s € [0,1/2]. This imme-
diately follows from Lemma 4.1.

The remaining estimates (42) and (43) follow from similar considerations using
Lemma 4.1, Lemma 4.2, and Theorem 5.1. We omit the details.
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