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Abstract. It has been argued that by truncating the sample space of the
negative binomial and of the inverse Gaussian-Poisson mixture models at zero,
one is allowed to extend the parameter space of the model. Here that is proved
to be the case for the more general three parameter Tweedie-Poisson mixture
model. It is also proved that the distributions in the extended part of the
parameter space are not the zero truncation of mixed Poisson distributions
and that, other than for the negative binomial, they are not mixtures of zero
truncated Poisson distributions either. By extending the parameter space one
can improve the fit when the frequency of one is larger and the right tail is
heavier than is allowed by the unextended model. Considering the extended
model also allows one to use the basic maximum likelihood based inference
tools when parameter estimates fall in the extended part of the parameter
space, and hence when the m.l.e. does not exist under the unextended model.
This extended truncated Tweedie-Poisson model is proved to be useful in the
analysis of words and species frequency count data.

1. Introduction

The Poisson model is the usual one for describing non-negative integer data.
Most often though, count data has larger variability than the one expected from
the Poisson model. In many of those instances, the data generating process
can be modelled through a two stage process in which the distribution of each
count would be Poisson but with an expected value that changes from count to
count randomly. By modelling the distribution of the Poisson expectation one is
naturally lead to the use of Poisson mixture models.

The most common choice for a mixing distribution is the gamma distribu-
tion, which leads to the negative binomial model, and one popular alternative
is the inverse Gaussian distribution, which leads to the inverse Gaussian-Poisson
model (IG-Poisson from now on) first considered by Holla (1966) to model highly
skewed non-negative integer data. Both the gamma and the inverse Gaussian
models are special cases of the three parameter Tweedie model first considered
in Tweedie (1984). By considering the model that results from using as mixing
model the family of Tweedie distributions with non-negative support, one is lead
to the Tweedie-Poisson mixture model first considered in Hougaard (1987).
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In applications like the analysis of species (words) frequency count data typi-
cally the zeros can not be observed, because the total number of species (words)
in the population (vocabulary) is unknown, and the data generating process can
be well approximated through zero truncated Poisson mixture models. These
models have the advantage that estimates of the model mixing distribution serve
as estimates of the the distribution of the species (words) frequencies in the pop-
ulation (vocabulary) and can be used to estimate the size and diversity of the
population (vocabulary). In particular, Tweedie models are typically a good
approximation to species frequencies and as a consequence the Tweedie-Poisson
mixture model is a good candidate for the analysis of species frequency count
data, as illustrated in El-Shaarawi et al. (2010).

Engen (1974, 1978) argues that by truncating the negative binomial model at
zero one is entitled to extend its parameter space, which leads to the extended
truncated negative binomial model used in ecology and in stylometry (see, e.g.,
Sichel, 1997). An analogous phenomenon is documented to happen with the
IG-Poisson mixture model in Puig et al. (2009). Here it is proved that this
is the case under these particular models as well as under the more general
Tweedie-Poisson mixture model. It is also proved that the extended part of
this newly defined extended truncated Tweedie-Poisson model can not be posed
as a truncated version of a Poisson mixture model and that, other than for the ex-
tended truncated negative binomial special case, it can not be posed as a mixture
of zero truncated Poisson distributions either.

Note that the term ‘extended model’ here is not being used in the sense of
generalizing a model by adding parameters to it, but in the sense of making it
more flexible by expanding its parameter space in a natural way. Extending the
parameter space of a statistical model is also useful in that it lets one to use
all the basic maximum likelihood based inference tools when the m.l.e. estimate
falls in the extended part of the parameter space and therefore, when it would
either fall in the boundary or it would not exist if the unextended model was
considered.

The paper is organized as follows. Section 2 describes and motivates the
Tweedie-Poisson mixture model and its zero truncated version. Section 3 proves
that one can extend the parameter space of the zero truncated Tweedie-Poisson
model and, in particular, that that is also the case for the negative binomial and
IG-Poisson mixture models. The extended part of this model is useful when the
frequency of ones is larger and the upper tail is heavier than is allowed by
the unextended model. Section 4 proves that in the extended part of the param-
eter space the model is not the zero truncation of a Poisson mixture distribution.
It also proves that other than for the negative binomial special case, the extended
part of the truncated Tweedie-Poisson model is not a mixture of zero truncated
Poisson distributions either.

Section 5 uses the extended truncated Tweedie-Poisson model on 456 sets of
word frequency count data, and on 89 sets of species frequency count data and
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finds that it often fits data significantly better than the extended truncated neg-
ative binomial and IG-Poisson submodels. It also finds many instances where
the maximum likelihood estimate of the parameters fall in the extended part
of the parameter space. Even though these are instances where the fit under
the extended model is not significantly better than the fits obtained under the
unextended model, they correspond to situations where the m.l.e. under the un-
extended model do not exist and one can not resort to the usual confidence
intervals and hypothesis tests.

2. The zero truncated Tweedie-Poisson mixture model

2.1. The three parameter Tweedie model. Exponential dispersion models,
first systematically studied in Jorgensen (1987, 1997), are two parameter mod-
els formed by linear exponential distributions with an additional dispersion pa-
rameter that generalize exponential family models and serve as distributions for
generalized linear models. Tweedie models are exponential dispersion models
with a power mean-variance relationship, and hence such that the variance of
the corresponding random variable is V (Y ) = ψµp, where µ is its mean and ψ is
its dispersion parameter (see Tweedie, 1984, Bar-Lev and Enis, 1986, Hougaard,
1986a,b, Aalen, 1992).

The index p uniquely determines a model in the Tweedie family. When p < 0,
models have positive means but are supported on the whole real line and they
are rarely used in practice. When p = 0 one obtains the normal model. For p in
(0, 1) the Tweedie models do not exist.

All random variables with a Tweedie model with p ≥ 1 are non-negative.
When p = 1 one obtains the (scaled) Poisson model. The set of Tweedie models
obtained for p in (1, 2) are stopped Poisson sums of Gamma distributions (see
Aalen, 1988), and hence have distributions with a point mass at zero and a
continuous density function on the positive real line, which makes them useful
for modelling non-negative real valued data when exact zeros are possible. All
Tweedie models with p ≥ 2 are formed by stable continuous distributions with
strictly positive support, and they include as special cases the gamma model,
with p = 2, and the inverse Gaussian model, with p = 3. Tweedie models with
p > 1 are the natural candidates for modelling non-negative continuous data with
an arbitrary measurement scale, because they are the only exponential dispersion
models closed under re-scaling.

The three parameter statistical model obtained by considering p to be an ad-
ditional parameter with a range in [1,∞), encompassing all the exponential dis-
persion distributions with power mean-variance relationship and non-negative
support, will be denoted by the Tweedie model. Instead of p one often uses the
parameter β = (2− p)/(1− p), which ranges in (−∞, 1).

In general, the density functions of the Tweedie model, ψα,β,θ(π), can not be
written in a closed form expression, but they can be evaluated through the Fourier
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inversion of its characteristic functions as described in Dunn and Smyth (2008).
Applications of Tweedie models can be found for example in Davidian (1990),
Hougaard et al. (1992) and Smyth and Jorgensen (2002).

2.2. The Tweedie-Poisson mixture model. Non-negative integer data are
often modelled through a Poisson model with a random effect for the mean. In
applications one typically assumes either a finitely supported mixing distribution
for that mean, which leads to a finite mixture of Poisson distributions, or a two-
parameter continuous distribution with non-negative support, like the gamma
or the inverse gaussian distributions leading to the negative binomial and the
IG-Poisson models.

Hougaard (1987), Hougaard et al. (1997) and Jorgensen (1997, pp. 165-170)
consider the distribution of the Poisson mean to be the three-parameter Tweedie
model described above. That leads to the model with probability mass function,

(1) ptp
r (α, β, θ) =

∫

R+

λre−λ

r!
ψα,β,θ(λ)dλ, for r = 0, 1, . . . ,

which Johnson et al. (2005) names as the Tweedie-Poisson mixture model, and
Kokonendji et al. (2004) names as the Poisson-Tweedie model.

Willmot (1989) advocates for the Tweedie-Poisson mixture model for being
the Poisson stopped sum of the extended truncated negative binomial model of
Engen (1974). Puig and Valero (2006) prove that the set of statistical models
obtained from (1) after fixing the value of β, and hence of p, are the only two
parameter mixed Poisson statistical models that are “partially closed under ad-
dition”, (i.e. such that the sum of their independent replicates share the same
statistical model), and at the same time are such that the maximum likelihood
estimate of the population mean is the sample mean. The Tweedie-Poisson mix-
ture model has also been independently proposed by Hoffman (1955), by Gerber
(1991), and by Zhu and Joe (2009).

There is not a simple closed form expression for (1), and the Tweedie-Poisson
model is most conveniently characterized through its probability generating func-
tions (pgfs)

(2) Gtp
α,β,θ(t) = Eα,β,θ(t

R) = e
α(1−β)

β
((1−θ)β−(1−θt)β),

where R is distributed as in (1), α ∈ (0,∞), β ∈ (−∞, 1) and θ ∈ (0, 1). Note
that β determines the index p through p = (2− β)/(1− β), and (α, θ) determine
the mean, µ, and the dispersion index, δ, through

µ = Etp
α,β,θ(R) =

αθ(1− β)

(1− θ)1−β
,

and

δ =
V artp

α,β,θ(R)

Etp
α,β,θ(R)

=
1− θβ

1− θ
,
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with µ ∈ (0,∞) and δ ∈ (1,∞). The derivatives of (2) at t = 1 yield the factorial
moments for R, and the probabilities of the Tweedie-Poisson distribution in (1)
can be calculated through the derivatives of (2) at t = 0 by making use of
pr = G(r)(0)/r!. These probabilities can be computed recursively through

(3) ptp
0 (α, β, θ) = e

α(1−β)
β

((1−θ)β−1),

and

ptp
r (α, β, θ) =

1

r

r∑
i=1

i ai p
tp
r−i(α, β, θ), for r = 1, 2, . . . ,

where a1 = α θ (1− β) and ai+1/ai = θ (i− β)/(i + 1).
When β ∈ (−∞, 0), p ∈ (1, 2), one obtains the Pólya-Aeppli models that are

useful for zero-heavy data and can be posed as the Poisson stopped sum of the
negative binomial model (Katti and Gurland, 1961). The limit of (2) when β
tends to 0, p tends to 2, is

Gtp
α,β=0,θ(t) = eα(ln(1−θ)−ln(1−θt)) =

( 1− θ

1− θt

)α
,

that are the pgf’s of the negative binomial model with µ = α θ/(1 − θ) and
δ = 1/(1−θ). When β = .5, p = 3, one obtains the pgf’s of the inverse Gaussian-
Poisson mixture model,

Gtp
α,β=.5,θ(t) = eα(

√
1−θ−√1−θt).

The limit of (2) when β tends to −∞, p tends to 1, while keeping µ and δ fixed,
is the set of pgf’s of the Neyman A model, and the limit of (2), when β tends to
1, p tends to ∞, and hence δ tends to 1 while µ stays fixed, is the set of pgf’s of
the Poisson model.

2.3. The zero truncated Tweedie-Poisson mixture model. When mod-
elling count data sometimes one faces instances where the zero value can not be
observed. That is the case for example in the analysis of word or species frequency
count data in linguistics and ecology considered in Section 5. There are also in-
stances where one observes the zeros but one needs to model their frequency apart
from the rest of the distribution through zero-inflated or zero-deflated models (see
Johnson et al. 2005, pp. 351-357).

In particular, if one intends to use Tweedie-Poisson mixture models in any of
these contexts one needs to resort to its zero truncated version, with probability
mass function:

(4) pttp
r (α, β, θ) =

ptp
r (α, β, θ)

1− ptp
0 (α, β, θ)

for r = 1, 2, . . . ,

denoted here as the TTP model. From the definition of pgf it follows that the
pgf of any strictly positive integer valued random variable has to take the value
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zero at zero. Furthermore, the pgf’s of (4) can be posed in terms of the pgf’s of
the untruncated model in (2) through:

(5) Gttp
α,β,θ(t) =

Gtp
α,β,θ(t)−Gtp

α,β,θ(0)

1−Gtp
α,β,θ(0)

=
e

α(1−β)
β

((1−θ)β−(1−θt)β) − e
α(1−β)

β
((1−θ)β−1)

1− e
α(1−β)

β
((1−θ)β−1)

.

The parameter space of any truncated version of a distribution can always be
made to be the same as the one for the untruncated distribution. Hence, it is
reasonable to assume that the parameter space of (4) is the same as the one
for the untruncated Tweedie-Poisson model and therefore that θ is in (0, 1) and
(α, β) is in (0,∞) × (−∞, 1). Nevertheless, it turns that these are not the only
values for (α, β, θ) that make (5) into a pgf, and hence that one can extend the
zero truncated Tweedie-Poisson model by enlarging its parameter space.

3. Extended truncated Tweedie-Poisson model

3.1. Definition of the extended truncated Tweedie-Poisson model. The
function in (5) is the pgf of a positive integer random variable for any θ in (0, 1)
and any (α, β) in (0,∞) × (−∞, 1) because it is the pgf of a zero truncated
Tweedie-Poisson mixture distribution. The next result, proved in the Appen-
dix, states that when θ is in (0, 1) and (α, β) is either in {0} × (−∞, 1) or in
[−1, 0)× [0, 1), then (5) is also the pgf of a random variable.

As a consequence, one will be able to use as a parameter space for the model
defined through (5) a set that is larger than the parameter space for the untrun-
cated Tweedie-Poisson model by either letting α be 0 or letting α be in [−1, 0)
whenever β is in [0, 1).

Theorem 3.1. Consider the real function

(6) Gα,β,θ(t) =
e

α(1−β)
β

((1−θ)β−(1−θt)β) − e
α(1−β)

β
((1−θ)β−1)

1− e
α(1−β)

β
((1−θ)β−1)

,

and let

(7) Gα=0,β,θ(t) =
(1− θt)β − 1

(1− θ)β − 1
,

(8) Gα,β=0,θ(t) =
(1− θt)−α − 1

(1− θ)−α − 1
,

and

(9) Gα=0,β=0,θ(t) =
log(1− θt)

log(1− θ)
,

which are the limits of (6) when α or β or both tend to 0. If θ ∈ (0, 1), it holds
that:
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(1) when β ∈ [0, 1), then Gα,β,θ(t) is the pgf of a positive integer valued random
variable if, and only if, α ∈ [−1,∞), and

(2) when β ∈ (−∞, 0), then Gα,β,θ(t) is the pgf of a positive integer valued
random variable if, and only if, α ∈ [0,∞).

Extension
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Figure 1. Map of the ETTP model and of two of its limiting
models. The darkest grey shade indicates when the model is
both the truncation of a Poisson mixture as well as a mixture
of the truncated Poisson, the lightest grey indicates when it
is neither one of these two kinds of models, and the medium
grey when it is a mixture of the truncated Poisson but not
the truncation of a Poisson mixture. The unshaded (α, β)
combinations are not feasible.

That this result holds for β = 0 and for β = .5 had been documented in Engen
(1974) and in Puig et al. (2009) respectively. Here the result is stated and proved
in its full generality. Note that negative values of α lead to feasible probability
models only after one truncates at zero the sample space of the Tweedie-Poisson
mixture model, because under the untruncated model they would make the prob-
ability of zero, in (3), larger than 1.
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Furthermore, in the truncated case one can neither extend the parameter space
beyond θ in (0, 1) nor allow α < −1 because that would make the second deriv-
ative of (6) at t = 0 in (12) (and hence pttp

2 (α, β, θ)) negative. Hence we are lead
to the next definition.

Definition 3.1. The extended truncated Tweedie-Poisson model is the statistical
model defined through the pgfs in (6), (7), (8) and (9) with (α, β, θ) either in
[−1,∞) × [0, 1) × (0, 1) or in [0,∞) × (−∞, 0) × (0, 1). It will be denoted as
the ETTP model, its pgfs will be denoted by Gettp

α,β,θ(t), and its probability mass

functions by pettp
r (α, β, θ).

Even though we do not provide the details, under the Poisson limiting case,
when β tends to 1, and under the Neyman A limiting case, when β tends to
−∞, the zero truncated model can be extended to α = 0 but not to negative
α’s. When α = 0 the truncated Poisson limiting model becomes a degenerated
one-point distribution concentrated at one, with p1 = 1, and the zero truncated
Neyman A limiting model becomes a zero truncated Poisson distribution.

Figure 1 maps the ETTP model and these two limiting models; it includes as
particular submodels the extended truncated negative binomial model proposed
in Engen (1974), obtained when β = 0 and denoted by ETNB, and the extended
truncated inverse Gaussian-Poisson model proposed in Puig et al. (2009), ob-
tained when β = .5. When α = 0 and β = 0 the ETTP model becomes the
logarithmic series model advocated for by Fisher et al. (1943).

The submodel that results from restricting α to be 0, at the boundary of the
TTP model, coincides with the one that results from restricting β to be 0 and
hence it is the ETNB model.

3.2. When is the extended part of the ETTP model needed? To explore
the usefulness of the extended part of the ETTP model the next result, proved
in the Appendix, describes how its probability at one and two and its first two
moments relate to α. That will help understand what is gained by allowing α to
take values in [−1, 0].

Proposition 3.1. Let R be a random variable with a distribution in the ETTP
model. If one keeps θ and β fixed then:

(1) pettp
1 (α, β, θ) is decreasing with α,

(2) pettp
2 (α, β, θ)/pettp

1 (α, β, θ) is increasing with α,
(3) its expectation, Eettp

α,β,θ(R), is increasing with α, and

(4) its dispersion index, V ettp
α,β,θ(R)/Eettp

α,β,θ(R), is increasing with α.

Figure 2 presents the contour plots for pettp
1 , for pettp

2 /pettp
1 and for the logarithm

of the variance,

V ettp
α,β,θ(R) =

α θ(1− β)

(1− θ)2−β
(
1− e

α(1−β)
β

((1−θ)β−1)
)

(
1− θβ − α θ(1− θ)β(1− β)

e
α(1−β)

β
(1−(1−θ)β) − 1

)
,
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all for a fixed value of β equal to .75, .5, .25, 0. and −.5, which correspond to p
being equal to 5, 3, 2.33, 2 and 1.66. That figure indicates that the variance is
mainly determined by θ and it is increasing with θ, and that pettp

1 is decreasing
and pettp

2 /pettp
1 is increasing with θ. It can also be checked that if one keeps α and

β fixed, the variance of R is mainly determined by θ and it is increasing with θ,
and that pettp

1 is decreasing and pettp
2 /pettp

1 is increasing with θ.
As a consequence of Proposition 3.1, when θ and β are fixed the expectation,

the dispersion index and p2/p1 for the unextended TTP model all take their
minimum value at α = 0, and its probability at one takes its maximum at α = 0,
when it is equal to

pettp
1 (α = 0, β, θ) =

βθ

1− (1− θ)β
,

and:

pettp
1 (α = 0, β = 0, θ) =

−θ

log(1− θ)
.

When β ≥ 0 and θ is near 1, which is most often the case when the data has
a large dispersion, this maximum of pttp

1 (under the unextended TTP model) is
close to β and the minimum of p2/p1 is close to (1 − β)/2. By extending the
parameter space to include α in [−1, 0], this statistical model gains flexibility by
accommodating for count data sets with larger p̂1 and smaller p̂2/p̂1 than allowed
by the unextended TTP model. By simultaneously decreasing α and increasing
θ while keeping β fixed, the frequency of ones and the tail probabilities can
simultaneously increase and lead to more dispersed distributions.

The maximum likelihood estimate of the mean of the ETTP model is the
sample mean, because its pgf’s can be posed as Gettp

α,β,θ(t) = hα,β(θt)/hα,β(θ) for
a given function hα,β(·) which is a sufficient condition for that property to hold
(see Bondesson, 1997). Figure 3 presents the contour plots of the coefficient of
variation, CV , of p1, and of (1−p1)∗CV for the ETTP model when one keeps its
mean fixed. The contours of CV indicate that if the sample variability increases
while keeping the sample mean fixed, either the estimate of α will decrease and
eventually become negative or the estimate of β will increase towards 1; the
smaller the mean the easier it will be to end up with negative estimates of α.
Analogously, Figure 3 also indicates that if the probability of one is inflated
while keeping the sample mean fixed, either the estimate of α will decrease and
eventually become negative or the estimate of β will increase.

The quantity (1− p1) ∗CV captures the trade off between increasing the vari-
ability and inflating the probability of one. If the sample mean is fixed and the
estimate of α is larger than 0, the larger this quantity the larger the estimate of
β. Hence, if CV and p1 increase but (1 − p1) ∗ CV decreases the estimate of β
can not increase and hence the estimate of α will become negative, which will
not happen if (1− p1) ∗ CV increases.
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logarithm of the variance of the ETTP model for five given values of
β. The case β = 0 corresponds to the extended truncated negative
binomial, and β = .5 to the extended truncated IG-Poisson.
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Figure 3. Contour plots of the coefficient of variation, CV , of pettp
1

and of (1 − pettp
1 )CV of the ETTP model for five given expected

values, E. Note that the contour levels of CV and of pettp
1 are set

to be the same ones for all the five expectations considered.



12 JORDI VALERO, JOSEP GINEBRA, AND MARTA PÉREZ-CASANY

4. Characterization of the ETTP model

When α > 0 the ETTP model coincides with the TTP model and hence it is
the truncation of Poisson mixture distributions. This is very useful when one is
interested in estimating the mixing distribution or the probability of zero of the
corresponding untruncated Poisson mixture model, like for example in the anal-
ysis of word or species frequency count data covered in Section 5. Hence, the
importance of finding if the extended part of the model can also be posed as
the truncation of Poison mixture distributions or not.

When α > 0 the model is also a mixture of zero truncated Poisson distributions,
as it is always the case for zero truncated Poisson mixtures (see Valero et al.
2009).

The next result, proved in the Appendix, states that when α < 0 the ETTP
model can not be obtained as the zero truncation of any Poisson mixture distri-
bution and that, except for the special case obtained when β = 0, it can neither
be obtained as a mixture of zero truncated Poisson distributions. The case α = 0
coincides with the case β = 0.

Theorem 4.1. Consider the ETTP model defined through the pgf ’s Gettp
α,β,θ(t) in

(6), (7), (8) and (9) with θ ∈ (0, 1). It holds that:

(1) when (α, β) ∈ (0,∞) × (−∞, 1) the model is both the zero truncation
of a Poisson mixture distribution as well as a mixture of zero truncated
Poisson distributions,

(2) when (α, β) ∈ (−1, 0] × {0} the model is a mixture of zero truncated
Poisson distributions, but it is not the zero truncation of any Poisson
mixture distribution,

(3) when (α, β) ∈ [−1, 0) × (0, 1) the model is neither the zero truncation
of any Poisson mixture distribution, nor any mixture of zero truncated
Poisson distributions,

(4) when (α, β) ∈ {0} × (−∞, 0) the model is both the zero truncation of a
Poisson mixture distribution as well as a mixture of zero truncated Poisson
distributions,

(5) when (α, β) ∈ {0} × [0, 1) the model is a mixture of zero truncated Pois-
son distributions but it is not the zero truncation of any Poisson mixture
distribution,

(6) when (α, β) = (0, 1) or (α, β) = (−1, 0) the model is a degenerated distri-
bution concentrated at one, with p1 = 1.

Note that the extended part of the ETTP submodel that results from imposing
β = 0, when α ∈ [−1, 0], which coincides with the submodel obtained with α = 0
and β ∈ [0, 1], is an example of a model that can be obtained as a mixture of zero
truncated Poisson distributions but not as the zero truncation of a mixture of
Poisson distributions. That is in contrast with what happens under finite mixture
models, because every model that results from truncating a finite mixture of
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Poisson distributions can be interpreted as a finite mixture of truncated Poisson
distributions and viceversa, as it is proved in Böhning and Kuhnert (2006).

The grey shades in Figure 1 capture the three possibilities considered in
Theorem 4.1. As a consequence of this result, when (α, β) is in [−1, 0]× [0, 1) the
ETTP model is not the zero truncation of a mixed Poisson distribution. Never-
theless, the extension will still be useful in that it will allow one to use maximum
likelihood based tools when the m.l.e. under the unextended TTP model does
not even exist, as exemplified next.

5. Use of the ETTP model on frequency count data

Typical word or species frequency count data has a reverse J-shaped distribu-
tion with an extraordinarily long upper tail. Modelling this type of data through
Poisson mixture models is useful because the model mixing distribution can be
interpreted as the distribution of the word or species frequency of the vocabulary
of the author or the population. Hence estimates of their mixing density serve
as estimates of the density of word or species frequencies and can be used as
fingerprints of the style of the author or the ecosystem. That allows one to use
the inverse of the expectation of the estimated mixing distribution to estimate
the size (number of different words or species) of the vocabulary or population,
and to use measures of the variability of the estimated mixing distribution as
estimates of measures of their lack of diversity. For a discussion of the use of
Poisson mixture models in the estimation of the frequency distribution, size and
diversity of a population, see Ginebra and Puig (2010).

Given that the size of the vocabulary of an author and the total number of
species are usually unknown, typically one can not count unobserved words or
species and to model frequency count data one often needs to resort to the zero
truncated version of Poisson mixture models. Engen (1974), Ord and Whit-
more (1986), Holmes (1992) and Baayen (2001), among many others, fit this
type of data through the truncated versions of either the negative binomial or
the IG-Poisson model. Sichel (1975, 97) and Puig et al. (2010), following Good
(1953), use a three parameter truncated generalized inverse gaussian-Poisson mix-
ture model (GIG-Poisson), which includes the negative binomial and IG-Poisson
models as special cases.

A natural alternative to the GIG-Poisson model is the Tweedie-Poisson model.
Both the GIG and Tweedie mixing distributions serve as good approximations
to the words or species frequencies distributions in typical vocabularies or popu-
lations, and the corresponding Poisson mixture models fit frequency count data
extremely well. El-Shaarawi et al. (2010) is a first example of the use of the un-
truncated Tweedie-Poisson mixture model on species frequency count data where
zeros are observed. When the unextended TTP model is used on zero truncated
data, one can use:

(10) size =
N

µ
=

N(1− θ)1−β

αθ(1− β)
,
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to estimate the total number of different words or species in the vocabulary of the
author or population. Next, the usefulness of the extended truncated Tweedie-
Poisson model is explored by fitting it to 456 sets of word frequency data and to
89 sets of species frequency data.

5.1. Use of the ETTP model on words frequency count data. Here the
ETTP model is fitted to the word frequency count data of 456 chapters of Tirant
lo Blanc presented in Table 1 and described in Riba and Ginebra (2006). The
maximum likelihood estimate of α is negative for 84 out of the 456 chapters
considered, and hence for them the ETTP model improves the fit of the TTP
model that restricts α to be positive. Note that for these chapters the m.l.e. of
α under the TTP model do not exist because the closer α̂ is to zero the larger its
likelihood function and α = 0 is not in the parameter space of the TTP model.
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Figure 4. Maximum likelihood estimates of (α, β, θ) and of the
size of vocabulary in (10), and χ2 goodness of fit test p-value as
a function of chapter size, n, and relationship between parameter
estimates, all for the word frequency count data of the 456 chapters
of Tirant lo Blanc with more than 40 different words.

Figure 4 shows that the chapters benefiting from the extended part of the
model, with α̂ < 0, tend to be the short ones. The χ2 goodness of fit test p-
values presented as a function of n indicate that the ETTP model fits this word
frequency count data very well over all the range of n, even though some of the
chapters are quite long.

Theorem 4.1 states that when (α, β) is in [−1, 0] × [0, 1) the ETTP model is
not a zero truncated mixed Poisson distribution (see also Figure 1). Neverthe-
less, note that even when α̂ is negative, the true value of α could still be positive.
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In fact, for all the 84 chapters where α̂ is negative but one, the (classical) 95%
confidence intervals for α include positive values and therefore their word fre-
quency counts are still compatible with Tweedie-Poisson mixture distributions.
As a consequence, even when α̂ is negative, one can use the upper end of its
confidence interval to provide confidence intervals for features associated with
the Tweedie model mixing distribution, like for the number of different words or
species estimated through (10).

Figure 4 also shows that, other than for very short chapters, most of the esti-
mates of θ are close to 1, in line with the fact that the larger the text the more
likely it is that words are repeated, the larger the variance of the distribution,
and according to Figure 2 the larger θ. It is our experience that when α̂ becomes
negative θ̂ increases relative to the estimate obtained under the unextended TTP
model, which is another indication that the extension of the model is most useful
when data is more overdispersed than allowed by the unextended model.

There is only one instance where β̂ is negative, and most of its estimates are
concentrated around β̂ = .7 which correspond to a mixture model with a mixing
distribution with a mean-variance relationship of power p̂ close to 5. Remem-
ber that the inverse Gaussian distribution has p = 3 and the negative binomial
distribution has p = 2.

When one restricts β to be .5 and fits the extended IG-Poisson model proposed
in Puig et al. (2009), 424 out of the 456 chapters have negative α̂. When one
restricts β to be 0. and fits the ETNB model proposed in Engen (1974), all but
one of the 456 chapters have negative α̂. The fits with the extended Pólya-
Aepply model, with β = −1, are considerably worse, and 233 chapters lead to
the extended part with α̂ = 0, while 223 chapters have α̂ > 0.

Figure 5 compares the performance of the three parameter ETTP model with
the two parameter extended truncated IG-Poisson and ETNB submodels by plot-
ting the corresponding log-likelihood ratios as a function of n. Applying the likeli-
hood ratio tests with a .05 level of significance, one rejects the extended truncated
IG-Poisson submodel in favor of the ETTP model in 45% of the chapters, and
one rejects the ETNB submodel in 28% of the chapters.

Figure 5 also compares the ETTP model with the model at the boundary of
the unextended TTP model, with α = 0, in the 84 chapters where the fit under
extended and unextended models differ. Under the corresponding likelihood ratio
test one would only (barely) reject the α = 0 submodel in one of these chapters.
Hence, the usefulness of the ETTP model is not in that it significantly improves
the fits that can be attained through the unextended TTP model. Its main ad-
vantage is in that by extending the parameter space one is allowed to compute the
usual likelihood based confidence intervals and hypothesis tests for α. Remember
that under the unextended TTP model the m.l.e. of α for these 84 chapters does
not even exist, and it is not clear how one would construct confidence intervals
for α under that model.
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v1:n v2:n v3:n v4:n v5:n v6:n v7:n v8:n v9:n v10:n v11:n . . . n

Chapter 1 107 16 6 2 2 2 2 1 1 1 0 . . . 255

Chapter 2 172 26 19 7 2 2 2 2 1 1 1 . . . 476

Chapter 3 299 70 32 16 10 5 4 2 5 1 2 . . . 1174

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Chapter 487 129 29 10 6 1 1 0 2 2 2 0 . . . 348

Table 1. Part of the word frequency counts in the 456 chap-
ters of Tirant lo Blanc with more than 40 different words. By
vr:n one denotes the number of words that are repeated ex-
actly r times in a text with a total of n word counts.

5.2. Use of the ETTP model on species frequency count data. Here the
ETTP model is fitted to the 89 samples of beetles and bugs frequency count data
in Janzen (1973) with a total of more than n = 40 counts, partially presented in
Table 2 and partially analysed in Huillet and Paroissin (2009). Figure 6 presents
the m.l.e. of (α, β, θ) as a function of n. The estimates of α are negative for 45
out of these 89 samples, and hence here the ETTP model improves the fit of the
TTP model in more than half the samples. The estimates of θ are even closer to
one than for the previous word frequency examples, indicating that these species
frequency data sets are even more overdispersed. The estimates of β and of p
tend to be a bit smaller.

If one fits the extended truncated IG-Poisson model, with β = .5, 25 samples
have negative α̂, and if one fits the ETNB model, with β = 0., 82 samples have
negative α̂. According to the likelihood ratio test with a .05 level of significance,
one would only reject these two submodels in favor of the ETTP model for 2 out
of the 89 samples, in line with the sample sizes here being considerably smaller
than in the word frequency examples. On the other hand, the ETTP model fits
87 of the samples significantly better than the truncated Neyman A model, and
it fits 83 of them significantly better than the truncated Pólya-Aepply model.

When one compares the fit of the ETTP model with the fit of the submodel
with α = 0 on the 45 samples with negative α̂, one does not reject the α = 0
submodel for any sample. That indicates again that the fit of the ETTP model is
not significantly better than fits attained through the TTP model, but unless one
resorts to the ETTP model, the m.l.e. and the methods based on them would
not be available for these 45 samples.

6. Final comments

It has been proved that by truncating the sample space of the Tweedie-Poisson
mixture model at zero one is entitled to use a parameter space that is larger than
the one for the un-truncated Tweedie-Poisson model. This phenomena had been
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Figure 5. Logarithm of the ratios between the maximum of the
likelihood of the ETTP model and the one of the extended trun-
cated IG-Poisson (lglkr1), and the one of the ETNB (lglkr2), and
the one of the boundary model (with α = 0) of the unextended
TTP model (lglkr3), as a function of n for the chapters of Tirant
lo Blanc. For the third ratio only the chapters where the extended
model improves the unextended one are included. The horizontal
line indicates the likelihood ratio test level .05 critical region.

v1:n v2:n v3:n v4:n v5:n v6:n v7:n v8:n v9:n v10:n v11:n . . . n

Osa secondary 70 17 4 5 5 5 5 3 1 2 3 . . . 996

Osa primary flat 38 6 2 2 1 0 0 0 0 0 0 . . . 110

Osa primary hill 59 9 3 2 2 2 0 0 0 0 1 . . . 127

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

St. Johns 7 1 1 2 1 0 0 0 0 0 0 . . . 51

Table 2. Part of the 89 samples of beetles frequency counts
in Janzen (1973) with a total of more than 40 beetles. By
vr:n one denotes the number beetles species repeated exactly
r times in a sample with a total of n beetle counts.

documented for the negative binomial and the IG-Poisson, even though a rigorous
proof was lacking even for these two submodels.

The kind of extension described is analogous to the one reported in Griffiths
(1973) for the truncated beta binomial model. It is not unlikely that similar
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0 500 1500

0
5

10
15

n

α̂

0 500 1500
0.

85
0.

95
n

θ̂
0 500 1500

−
0.

2
0.

2
0.

6

n

β̂

500 1500

0.
0

0.
4

0.
8

n

p−
va

lu
e

0.85 0.95

0
5

10
15

θ̂

α̂

−0.2 0.2 0.6

0
5

10
15

β̂

α̂

0.85 0.95
−

0.
2

0.
2

0.
6

θ̂

β̂
0 500 1500

0
50

0
15

00

n

si
ze

Figure 6. Maximum likelihood estimates of (α, β, θ) and of the
size in (10) and χ2 goodness of fit test p-value as a function of the
beetle count total, n, and relation between parameter estimates,
all for the 89 samples of beetles and bugs frequency count data of
Janzen (1973) with a total of more than 40 counts.

phenomena occur for other zero truncated Poisson mixture models or the Hinde-
Demetrio model in Kokonendji et al. (2007) and Kokonendji and Malouche
(2008), and for multinomial mixture models. It is also natural to wonder what
happens when one further truncates the Tweedie-Poisson model to exclude 0 and
1 or the tail of the distribution, even though these situations are less frequent in
practice.

Appendix: Proofs

Proof of Theorem 3.1. In order to prove this result one needs to use the fact
that a real function G(t) is a pgf of a non-negative integer valued random variable
if, and only if, it verifies that:

a) G(1) = 1, that
b) it is analytical in a neighborhood of any t0 ∈ [0, 1), and hence that it
can be represented by a power series at any such t0, and that
c) all the coefficients of its Taylor series expansion at t = 0 are non-
negative, and hence that G(0) and all its derivatives at t = 0 are non-
negative.

When a function G(t) satisfies b) and c), then all the coefficients of its series
expansion at any t0 ∈ (0, 1) are also non-negative. Furthermore, G(t) is a pgf
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of a strictly positive integer valued random variable if, and only if, on top of
conditions a), b) and c) it also holds that G(0) = 0.

Proof of Theorem 3.1: The function Gα,β,θ(t) is analytical at any t 6= 1/θ and
hence, it is analytical at any t in [0, 1) for all the range of (α, β, θ) considered.
Furthermore, Gα,β,θ(1) = 1 and Gα,β,θ(0) = 0. Hence, to complete the proof
one only needs to determine the values of α under which Gα,β,θ(t) satisfies the
condition c) above, when θ ∈ (0, 1) and β ∈ (−∞, 1).

The first derivative of (6) evaluated at t = 0 is:

(11) G
′
α,β,θ(0) =

αθ(1− β)

e
α(1−β)

β
(1−(1−θ)β) − 1

,

and therefore G
′
α,β,θ(0) is non-negative for any α. Furthermore,

(12)
G
′′
α,β,θ(0)

G
′
α,β,θ(0)

= θ(1− β)(α + 1),

and therefore G
′′
α,β,θ(0) is non-negative when α ≥ −1. To check the sign of its

higher derivatives at t = 0, the cases β in [0, 1) and β < 0 will be considered
apart.

1) Case β ∈ [0, 1): To prove that the rest of derivatives of Gα,β,θ(t) at t = 0 are
non-negative for α ≥ −1, one needs to use the fact that if all the derivatives of the
logarithm of a function at a given point are non-negative, then all the derivatives
of the original function at that same point are also non-negative. Hence, let us
check the sign of the derivatives of hα,β,θ(t) = log G

′
α,β,θ(t) at t = 0. The first

derivative of hα,β,θ(t) is

h
′
α,β,θ(t) =

G
′′
α,β,θ(t)

G
′
α,β,θ(t)

= θ(1− β)
( 1

1− θt
+ α(1− θt)β−1

)
,

and hence h
′
α,β,θ(0) is equal to (12), and the m-th derivative of hα,β,θ(t) for m ≥ 2

is

h
(m)
α,β,θ(t) = θm(1− β)

( (m− 1)!

(1− θt)m
+ α(Πm−1

i=1 (i− β))(1− θt)β−m
)
,

and hence the m-th derivative of hα,β,θ(t) evaluated at t = 0 for m ≥ 2 is:

(13) h
(m)
α,β,θ(0) = θm(1− β)((m− 1)! + αΠm−1

i=1 (i− β)).

Therefore, when β ∈ [0, 1) and α ≥ −1 all the derivatives of hα,β,θ(t) at t = 0
are non-negative, and so are all the derivatives of G

′
α,β,θ(t) at t = 0, and as a

consequence, Gα,β,θ(t) satisfies all the conditions to be the pgf of a positive integer
valued random variable.

2) Case β ∈ (−∞, 0): Note that (13) being negative when α < 0 does not
prove the result here, because the logarithm of a function having derivatives at
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0 that are negative does not imply that the derivatives of that function at 0 are
not all positive. Instead, note that:

(14) G
′′
α,β,θ(t) =

α(1− β)2θ2

1− e
α(1−β)

β
((1−θ)β−1)

1 + α(1− θt)β

(1− θt)2−β
e

α(1−β)
β

((1−θ)β−(1−θt)β),

and hence that G
′′
α,β,θ(t0) = 0 for

t0 =
1− (−α)−1/β

θ
.

If Gα,β,θ(t) was a pgf and α was in (−1, 0) then G
′′
α,β,θ(t0) = 2p2 + 6p3t0 + . . . = 0

for some t0 in (0, 1/θ), and Gα,β,θ(t) would have to be the pgf of a one-point
distribution concentrated at one, which is not the case. Hence when β is negative,
Gα,β,θ(t) is a pgf if, and only if, α ≥ 0. ¤

Proof of Proposition 3.1. Note that the term

a = α
1− β

β
(1− (1− θ)β)

is equal to α times a factor that is always positive and hence it is increasing in
α. Given that the probability of one, in (11), can be written as:

pettp
1 (α, β, θ) =

a

(ea − 1)

βθ

(1− (1− θ)β)
,

which is a decreasing function of a times a positive term, it is also decreasing
with α. Furthermore, it follows from (12) that

pettp
2 (α, β, θ)

pettp
1 (α, β, θ)

=
1

2
θ(1− β)(α + 1),

which is increasing in α. The expectation of R is the derivative of Gettp
α,β,θ(t) at

t = 1,

Eettp
α,β,θ(R) =

a

1− e−a

βθ(1− θ)β−1

1− (1− θ)β
,

which is an increasing function of a times a positive constant and hence it is
increasing with α. Finally the second derivative of Gettp

α,β,θ(t) at t = 1 is the second
factorial moment of R, and

V ettp
α,β,θ(R)

Eettp
α,β,θ(R)

=
−a

(ea − 1)

βθ(1− θ)β−1

1− (1− θ)β
+ 1 + (1− β)

θ

1− θ
,

which is an increasing function of a times a positive constant plus a constant
term, and hence it is increasing with α.



EXTENDED TRUNCATED TWEEDIE-POISSON MODEL 21

Proof of Theorem 4.1. To prove this result we use the following character-
ization of zero-truncated mixed Poisson distributions and of mixtures of zero-
truncated Poisson distributions in terms of their pgf’s due to Valero et al. (2010).
A function G(t) is the pgf of a mixture of zero truncated Poisson distributions
with finite mean if, and only if,

a) G(1) = 1 and G(0) = 0,
b) it is analytical in (−∞, 1), and
c) all the coefficients of the series expansion of G(t) at any t0 ∈ (−∞, 1)
are strictly positive except maybe the constant term.

A function G(t) is the pgf of the zero truncation of a Poisson mixture with finite
mean if, and only if, it satisfies conditions a), b) and c) and if its limit when t
tends to −∞ is finite.

We will also use the fact that all the coefficients of the series expansion at t0
in (−∞, 1) for the pgf of an untruncated mixed Poisson distribution are positive
(see Puri and Goldie, 1979), and as a consequence the limit of such a pgf when t
tends to −∞ is larger than or equal to zero.

Proof of Theorem 4.1: As already argued, in the range of (α, β, θ) considered
Gettp

α,β,θ(1) = 1, Gettp
α,β,θ(0) = 0 and Gettp

α,β,θ(t) is analytical at any t in (−∞, 1).
Hence, to prove the theorem one only needs to check the sign of the derivatives
of Gettp

α,β,θ(t) in (−∞, 1), and find the limit when t tends to −∞, which will be
done case by case, keeping in mind that θ is always in (0, 1).

1) Case (α, β) ∈ (0,∞) × (−∞, 1): That (6) is the pgf of a zero truncated
Poisson mixture follows from the way this function is constructed in Section 2.
That it is also a mixture of zero truncated Poisson distributions follows from all
zero truncated Poisson mixture distributions being mixtures of zero truncated
Poisson distributions; in particular (4) can be written as:

pttp
r (α, β, θ) =

∫

R+

λre−λ

r!(1− e−λ)
Ψα,β,θ(λ)dλ,

where:

Ψα,β,θ(λ) =
1− e−λ

1− ∫
R+ e−λψα,β,θ(λ)dλ

ψα,β,θ(λ).

2) Case α ∈ (−1, 0] and β = 0: The first derivative of Gettp
α,β=0,θ(t) is

(15) G
′
α,β=0,θ(t) =

αθ

(1− θ)− (1− θ)α+1

( 1− θ

1− θt

)α+1

,

where the first term is a positive constant, and the second term is the pgf of an
untruncated negative binomial(α + 1, θ), which is a mixed Poisson distribution.
Hence, when α > −1 all the coefficients of the series expansion of (15) at any t0 in
(−∞, 1) are positive, and all the coefficients of the series expansion of Gettp

α,β=0,θ(t)
are also positive, except maybe its constant term, which proves that it is the pgf
of a mixture of zero truncated Poisson distributions.
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When α > 0, Gettp
α,β=0,θ(t) is also the pgf of the zero truncation of a (gamma-

)Poisson mixture, as argued under case 1), but when α ∈ (−1, 0) it is not the
truncation of any Poisson mixture distribution because the limit of (8) when t
goes to −∞ is −∞. The result when α = 0 and β = 0 follows from the limit of
(9) when t tends to −∞ being −∞ coupled with the fact that

G
(n)
α=0,β=0,θ(t) =

−(n− 1) θn

log(1− θ)

1

(1− θt)n
,

which is positive for any t0 in (−∞, 1).
3) Case (α, β) ∈ [−1, 0) × (0, 1): The second derivative of Gettp

α,β,θ(t) is (14),
which is zero for

t0 =
1− (−α)−1/β

θ
,

with t0 < 0. Hence, Gettp
α,β,θ(t) can neither be the pgf of the zero truncation of a

Poisson mixture nor the pgf of a mixture of zero truncated Poisson distributions
because all the derivatives of these distributions at any such t0 have to be strictly
positive.

4) Case α = 0 and β ∈ (−∞, 0). The result follows from (7) with β < 0 being
equivalent to (8) with α > 0 and the result in case 1.

5) Case α = 0 and β ∈ [0, 1). The result follows from (7) with β in [0, 1) being
equivalent to (8) with α in (−1, 0] and the result in case 2.

6) Case (α, β) = (0, 1) or (−1, 0). It follows from p1 = G
′
α=0,β=1,θ(0) =

G
′
α=−1,β=0,θ(0) = 1. ¤
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