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Abstract

This article describes the mystery of a long lost codex of Archimedes that resurfaced briefly at 
the turn of the last century by Johan Ludwig Heiberg. Long enough for the Danish historian of 
mathematics Heiberg to identify, photograph and eventually transcribe “The Method” and several 
other works by Archimedes of considerable mathematical interest. In 1879 Heiberg completed his 
dissertation, Quaestiones Archimedeae, devoted to Archimedes’ life, works, and transmission of his 
texts. 
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Resumen. Arquímedes y Hui Liu en torno a círculos y esferas.

Este artículo describe el misterio de un códice de Arquímedes perdido hace mucho tiempo que 
reapareció brevemente a principios del siglo pasado de la mano de Johan Ludwig Heiberg. Tiempo 
suficiente para que el historiador danés de las matemáticas Heiberg pudiese identificar, fotografiar 
y, finalmente, transcribir “El Método” y varias otras obras de Arquímedes de interés matemático 
considerable. En 1879 Heiberg completó su tesis doctoral, Quaestiones Archimedeae, dedicado a la 
vida de Arquímedes, las obras, y la transmisión de sus textos.

Palabras clave: Arquímedes, ephodos, método, Johan Ludwig Heiberg.

This story begins with a mystery—the mystery of a long lost codex of Archimedes that 
resurfaced briefly at the turn of the last century, long enough for the Danish historian 
of mathematics Johan Ludwig Heiberg to identify, photograph and eventually transcribe 
“The Method” and several other works by Archimedes of considerable mathematical 
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interest.  Heiberg was from a wealthy family.  The son of a doctor, Heiberg studied classical 
philosophy and was professor of the subject at the University of Copenhagen.  In 1879 he 
completed his dissertation, Quaestiones Archimedeae, devoted to Archimedes’ life, works, 
and transmission of his texts.  He subsequently published editions of Euclid’s Opera (1883-
1895), Apollonius’ Conics (1890-1893), and the complete works of the Danish philosopher 
Søren Kierkegaard.  But his life’s greatest achievement was reconstruction of the text of 
Archimedes’ Ephodos (The Method), discovered in Constantinople in 1906.1 
Because of his thorough knowledge of Archimedes, Heiberg was able to decipher most of 
the barely-legible palimpsest, aided by his good friend H.G. Zeuthen, a mathematician 
and historian of classical Greek mathematics.  Oddly, Heiberg wrote little on the subject 
from a purely mathematical point of view—his major interest was the transmission of 
mathematical texts—their transmission and preservation—as well as the remarkable 
contents of the long-lost palimpsest.  The details of the rediscovery of this remarkable work 
are recounted in the recent book by Reviel Netz and William Noel, The Archimedes Codex.2

1 This long lost work has been almost completely obliterated, transformed into a palimpsest from 
which the original Archimedes text was scraped away and upon which a medieval prayer book was 
copied, written literally on top of the Archimedes manuscript.  As for the title of the codex that in-
terests us here—The Method—there is a problem with this usual translation that dates to Heiberg’s 
edition of the text.   Eberhard Knobloch, in his “Commentary on Bowen 2003,” Centaurus 50 (1-2) 
(2008): 205, points out that: “The underlying Greek notion for ‘procedure’ is ‘ephodos’ that is the 
same notion used by Archimedes in his famous letter to Eratosthenes.  In both cases, ‘ephodos’ must 
not be translated by ‘method’.  Whatever (sic) Archimedes spoke of the method we nowadays call 
‘mechanical method’ in this letter he used the word ‘tropos’.”  As C.M. Taisbak puts this, ephodos 
“does not mean ‘Method’ in the modern sense of the word, but rather ‘Approach’. As it emerges from 
Archimedes’ foreword, a title ‘Entering Mechanical Problems by the Back Door’ would much better 
cover his attitude. After all, he knew that this was heuristics, not deduction,” Historia Mathematica 
Mailing List Archive: 23 Jun 1999 19:32:38 +0200 [http://sunsite.utk.edu/math_archives/.http/hy-
permail/historia/jun99/0149.html].  My own reading of “Ephodos,” however, translates this as “at-
tack”—its meaning in both ancient and modern Greek—not random attack but systematic, methodi-
cal, careful attack—just the sort a mathematician like Archimedes might wage upon a particularly 
difficult and challenging problem.

2  Reviel Netz and William Noel, The Archimedes Codex. How a medieval prayer book is revealing the 
true genius of antiquity’s greatest scientist.  Cambridge, MA: Da Capo Press, 2007.

http://www3.interscience.wiley.com/journal/117996104/home
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J.L. Heiberg (1854-1928)    J.L. Heiberg in 1918                                              

The basic story, in very brief outline, is as follows.  A Byzantine Greek copied an earlier 
Archimedes manuscript onto parchment sometime in the 10th century, possibly in 
Constantinople where Leo the Mathematician transcribed many ancient texts into 
minuscule.  On April 14, 1229, Ioannes (John) Myronas, probably working in Jerusalem, 
finished the palimpsest version of a Euchologion, or prayer book, using the parchment from 
which the text of Archimedes had been scraped away; eventually, the prayer book was 
moved to the Monastery of Saint Sabas, near Jerusalem.

                                      

The original Archimedes codex, copied in miniscule, in two vertical columns, as illustrated 
on the left; the Euchologion would have been created by rotating the original folio page 90° 
to create both a verso and recto page for the prayer book.  The Archimedes text is now split 
horizontally, half on the left, half on the right. 
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 In the mid-nineteenth century the prayer book was transferred to the library of the 
Greek Patriarch in Jerusalem, the Metochion.  It was at this point that the German scholar, 
Constantine Tischendorf (1815-1874), saw it on one of his travels to Greek monastic 
libraries, and he mentioned it in 1846.3  He also took one sheet as a souvenir (see below)!
  

In 1876 this was sold to the Cambridge University Library, but it was only identified 
much later as an Archimedes manuscript page by Nigel Wilson, in 1971.4  Even before the 
Archimedes palimpsest was rediscovered, Tohru Sato used his analysis of this one page from 
the Cambridge University Library to reconstruct Propositions 14 and 18 in the Method, to 
which we shall return momentarily.5

 It was in Jerusalem that the Greek scholar Athanasios Papadopoulos-Kerameus 
catalogued and identified the palimpsest as being in part a work of Archimedes—
something Tischendorf had apparently missed (in fact, in the latter part of the nineteenth 
century Papadopoulos-Kerameus catalogued nearly 900 manuscripts in the Metochion’s 
collection).  This is how Heiberg originally learned of the Archimedes palimpsest.
 To make a palimpsest, one begins by unbinding a bound parchment manuscript, and 
then cutting the parchment in half down the middle, separating the formerly verso (left) 
and recto (right) portions of the parchment.  These are then rotated ninety degrees, stacked 
with other divided pages of the original manuscript, and folded into folios, producing 
right and left pages for the new manuscript that are one-fourth the size of the original 

3  For more on Tischendorf, see Matthew Black and Robert Davidson, Constantin von Tischendorf and 
the Greek New Testament, Glasgow: University of Glasgow Press, 1981. 

4  Netz and Noel 2007, p. 130.  The page was taken from the palimpsest between folios 2 and 3.

5  Tohru Sato “A Reconstruction of The Method Proposition 17, and the Development of Archimedes’ 
Thought on Quadrature—Why did Archimedes not notice the internal connection in the problems 
dealt with in many of his works?” Historia Scientiarum, 31 (1986): 61-86; p. 74.
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parchment.  Note that the top of the original codex page is now on the recto side of the 
new page, and the bottom half is on the verso, and the middle part of the original text is 
lost in the gutter of the new binding.  Worse yet, when the palimpsest sheets are grouped 
into folios, the top and bottom of the original codex page may be separated by many pages 
of other pages stacked on top of them in comprising the folio, and the recto of a later 
page will run onto the verso of an earlier page of the palimpsest.  Thus reconstructing the 
original text involves a kind of jig-saw puzzle reconfiguration. 

The original parchment manuscript of the Archimedes codex as copied into miniscule is 
represented on the left; after rotating these folio pages 90°, these were stacked with other 
leaves from the original manuscript to form the folios of the Ecologion, making a jigsaw 
of the original codex.
 For example, over the critical Proposition 14 of the Method, the scribe wrote a prayer 
for the dead.  But to read the entire proposition 14, beginning in column 1 of folio 110 
recto of the palimpsest, it would then be necessary to turn the codex 90 degrees to read the 
Archimedes text, which eventually disappears into the gutter of the palimpsest, reappearing 
five folios earlier, on 105 verso, but again, the first few lines would be hidden in the gutter 
of the palimpsest, lines that Heiberg was unable to see.  The next continuation of the 
Archimedes text appears on folio 158.6

 Comparable in some interesting ways to the Archimedes palimpsest is the oldest actual 
work of mathematics that currently survives from ancient China, the 算數書 Suan shu 
shu.  彭浩 Peng Hao and other Chinese scholars who have studied this text simply refer 
to it as a Book on Arithmetic.7  But the problems it treats—68 in all on nearly 200 bamboo 

6 For details supplied by William Noel, see Netz and Noel 2007, p. 125.  
7   彭浩 Peng Hao, trans. and ed., 张家山漢简 «算数書» 註釋 Zhangjiashan hanjian «Suan  shu shu» 

zhushi (Commentary and Explanation of the Suan shu shu on bamboo strips from Zhangjiashan), 
Beijing: Science Press, 2002.
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slips—include more than arithmetic, notably geometry, and so the title is problematic.  
On the back of what is taken to be the sixth bamboo strip comprising the book are 
three characters, 算數書 Suan shu shu.  Christopher Cullen, Director of the Needham 
Research Institute for study of the history of East Asian science, technology and medicine 
in Cambridge, England, treats 算數 suan shu as one word meaning “computation,” and 
therefore has called this a “Book on Reckoning” in his translation with commentary.8  
But I prefer to translate each of the characters separately as “A Book on Numbers and 
Computations.”  Note the bamboo slip carries the ancient seal character for 筭 suan, but 
in virtually all modern editions of this work this character is rendered by the modern form 
of the character, 算 suan.9

 Like other documents preserved on silk, bamboo and bronze, the Suan shu shu 
constitutes an artifact from the time it was written.  When archaeologists excavating the 
tomb of an ancient Chinese nobleman at a Western Han Dynasty site near Zhangjiashan, 
in Jiangling county, Hubei Province, discovered a number of books on bamboo strips in 
December and January of 1983-1984, these included works on legal statutes, military 
practice, and medicine.  Among these was a previously unknown mathematical work on 
some 200 bamboo strips, the 算數書 Suan shu shu, or Book of Numbers and Computations. 
Based upon other works found in the tomb, especially a copy of the 二年律令 Er Nian Lü 
Ling (Statutes of the Second Year of the Lü Reign), archaeologists have dated the tomb to 
ca. 186 BCE.  When found in tomb 247 at Zhangjiashan, the individual bamboo strips 
constituting the book were found strewn on the floor of the tomb, and the first challenge 
facing archaeologists after deciphering the characters on the strips, sometimes faded or 
illegible, was to rearrange the individual strips to reconstitute the original book itself.  
This was not unlike the challenge facing the conservators and editors of the Archimedes 
palimpsest, who also had to tackle the initial problem of reconstituting the original 
mathematical text of the Method.

8   Christopher Cullen, The Suan shu shu 筭數書 ‘Writings on Reckoning’: A translation of a Chinese 
mathematical collection of the second century BC, with explanatory commentary, and an edition of 
the Chinese text. Cambridge, England: Needham Research Institute Working Papers, No. 1, 2004.  
See: http://www.nri.org.uk/SuanshushuC.Cullen2004.pdf. 

9 “算數書 Suan shu shu (A Book on Numbers and Computations).  English Translation with Commen-
tary,” Archive for History of Exact Sciences, 62 (2008): 91-178.

http://www.nri.org.uk/suanshushu.html
http://www.nri.org.uk/suanshushu.html
http://www.nri.org.uk/suanshushu.html
http://www.nri.org.uk/SuanshushuC.Cullen2004.pdf
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This diagram shows the relative placement of individual bamboo strips from the Suan shu 
shu as they were discovered by archaeologists excavating the tomb in which the book was 
found.  From Peng Hao 2002. 
 As he approached the Archimedes palimpsest, Heiberg photographed the pages from 
the palimpsest that interested him, mainly those corresponding to the Method.  More 
than a century later, these now serve to document how the palimpsest has deteriorated 
dramatically over the past century, due to careless—one might say derelict—neglect to 
preserve it, allowing mold to eat away at the parchment due to overly-damp conditions.  The 
Euchologion was further compromised when its Parisian owner, in an attempt to enhance 
its value probably sometime in the 1940s, paid a skilled forger to paint illuminated panels 
over several pages that had no such ornamentation when Heiberg saw the palimpsest in 
Istanbul at the turn of the century.
 What is amazing is that Heiberg was able to read as much of the original text as he 
did.  Apart from what he could readily see for himself, he had only the photographs and 
a magnifying glass to aid him.  However, high-resolution laser technology has now made 
it possible to produce higher resolution composite images of the Archimedes palimpsest, 
enabling scholars to recover more information than Heiberg could make out a century 
earlier.  Above all, the new imaging techniques have revealed the diagrams, as close to 
Archimedes’ originals as we are likely to get, and as Reviel Netz argues, the mathematics 
for Archimedes was literally in the diagrams (see below).10  

10  Netz and Noel 2007, p. 108.  
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Amazingly, it appears that Heiberg paid little attention to the diagrams, which were 
drawn by Zeuthen.  Nevertheless, according to Netz, ancient mathematicians thought 
in terms of diagrams, not in terms of text.11  But before turning to the actual diagrams, 
and Archimedean arguments concerning circles and spheres, it will be helpful to know 
something about what the Chinese knew of Archimedes.
 Archimedes was known in China, thanks to Jesuit missionaries who used mathematics 
and science in hopes of persuading the educated elite of the superiority of Western 
Christianity.12  A complete translation of Archimedes’ short treatise on finding the area 
of the circle was translated into Chinese as the 测量圈椅 Ce liang quan yi (On the 
Measurement of the Circle) and printed in 1635.  

11 Netz, in Netz and Noel 2008, p. 132.
12  See Joseph W. Dauben, “Chinese Mathematics,” the section on “Matteo Ricci and Xu Guanqi, ‘Pref-

aces’ to the First Chinese Edition of Euclid’s Elements (1607),” in Victor J. Katz, ed., The Mathemat-
ics of Egypt, Mesopotamia, China, India, and Islam, Princeton, N.J.: Princeton University Press, 
2007, pp. 
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On the left is a page from the Chinese translation of Archimedes’ 测量圈椅 Ce liang 
quan yi (On the Measurement of the Circle) (1635); on the right, given a circle 1 unit 
in diameter, the radius will be ½ unit, and the perimeter of the inscribed hexagon will be 
3, clearly less than the circumference of the circle.  Thus the ratio of the diameter to the 
circumference of the circle must be greater than 3.
 How did Archimedes determine the value of pi or the ratio of the diameter to the 
circumference of a circle?  A preliminary survey of the diagram of a circle of unit diameter 
makes it clear from the perimeter of an inscribed hexagon, whose perimeter is exactly 3, 
that the hexagon falls far short of what must be a larger value for the circumference of the 
circumscribed circle—but exactly how much larger than 3 is the ratio of circumference to 
diameter?  Again, even a casual inspection of a 12-sided dodecagon inscribed in the circle 
in place of the hexagon (as above) will provide a much better approximation of the ratio of 
circumference to diameter than 3.  
 Considering this problem from the point of view of approximating the area of the circle, 
Euclid proves that the area is equivalent to the area of the triangle whose height is the radius 
and whose base is the circumference of the circle (see diagram above left).  When Euclid 
in Elements XII.2 proves that :”Circles are to one another as the squares on the diameters,” 
he demonstrates that the area of the circle can be exhausted by a series of successively 
higher-order polygons, beginning with the square, the octagon, and then progressively 
doubling the number of sides of the inscribed polygons.  By considering regular polygons 
of increasingly-many sides, Archimedes shows that their areas approximate as closely as one 
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may wish—the area of the circle.  But application of this so-called method of “exhaustion” 
is really a misnomer, since the area is never completely exhausted.13  
 Archimedes, in Proposition 1of “Measurement of a Circle,” adopts one of the most 
powerful arguments in the arsenal of ancient Greek mathematics—a counterfactual 
argument that proceeds as follows:

Let ABCD be the given circle, and K the area of the triangle described (of height 
equal to the radius and base equal to the circumference of the circle).  Then, if 
the circle is not equal to K, it must be either greater or less.14  

As Geoffrey Lloyd puts it, “The Greek preference for the method of exhaustion is thus 
evidence both of their demand for rigour and of their avoidance of infinite processes 
wherever possible.”15  What needs to be added is that although the Greeks did seek to 
avoid actually infinite processes, they were nevertheless prepared and willing to consider 
“potentially infinite” processes—which could stop after any arbitrary level of accuracy had 
been reached, the process was exhausted, or the calculator had simply grown tired of the 
process.
 Knowing how the Greeks treated the problem of finding the area of the circle, how 
did ancient Chinese mathematicians approach this same problem?  Here a diagram 
drawn according to procedures to determine the area of the circle as given in the Chinese 
mathematical classic, the Nine Chapters on the Art of Mathematics, through a commentary 
of the 3rd-century mathematician Liu Hui and reconstructed by a later editor of the text, 
Dai Zhen, about 1773, speaks for itself:

13 Euclid XII.2, in T.L. Heath, The Thirteen Books of Euclid’s Elements. Translated from the Text of 
Heiberg, with Introduction and Commentary, New York: Dover, 1956, vol. 3, p. 371.  See also G.E.R. 
Lloyd, “Finite and Infinite in Greece and China,” Chinese Science 13 (1996): 11-34, esp. pp. 20-21, 
and G.E.R. Lloyd, Adversaries and Authorities. Investigations into Ancient Greek and Chinese Sci-
ence, Cambridge, England: Cambridge University Press, 1996), pp. 149-150.

14 By then appealing to both inscribed and circumscribed regular polygons, Archimedes shows that 
neither of these alternatives is possible, QED, the area of the circle must equal K.  See Thomas L. 
Heath, ed., The Method of Archimedes, recently discovered by Heiberg. A Supplement to The Works 
of Archimedes 1897, Cambridge, England: Cambridge University Press, 1912, p. 91.

15 G.E.R. Lloyd, Chinese Science (1996), p. 21; Adversaries and Authorities (1996), p. 150.
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Dai Zhen’s diagram, as reproduced in Joseph Needham and Wang Ling, Science and 
Civilisation in China, vol. 3, Cambridge, England: Cambridge University Press, 1958. P. 
29.  Note that Needham transliterates Zhen’s name as “Tai Chen.”
 Again, as for Archimedes, we don’t have the original diagram and so must rely on 
various reconstructions (as above, by Dai Zhen), but as Review Netz would say, in this case 
the diagram literally speaks for itself and conveys the essence of the mathematical thought 
in question.
 Note that in the Chinese diagram, however, the vertices are not lettered, but areas are 
identified by color—the Chinese characters in the various areas specify different colors, 
red, yellow and blue16 —and the text itself refers to terms relative to the triangles, but in 
Chinese there is no term for triangle; reference is only made to the colored areas, and to 
their sides and in the case of right triangles, their hypotenuses, respectively.17  Nevertheless, 
the gist of Liu Hui’s argument as he gives it in the Nine Chapters relies on successively 
finer approximations of inscribed polygons, as is immediately clear upon inspection of the 
diagram.  From the sides of the polygons, Liu Hui can compute the area of the circle with 

16 For an example of how Chinese mathematicians color-coded their diagrams in the course of their 
proofs, see the cover illustration of Christopher Cullen’s “Learning from Liu Hui? A Different Way 
to Do Mathematics,” Notices of the AMS, 49(7)(August, 2002), pp. 783-790. The illustration in ques-
tion is a hand-colored version of the 弦圖 xian tu (hypotenuse diagram) from a copy of the Zhou bi 
suan jing xxx

17 Lisa Raphals, “When is a Triangle Not a Triangle?” Ex/Change. Newsletter of Centre for Cross-
Cultural Studies (City University of Hong Kong) 5 (September, 2002), pp. 9-11.
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increasing degrees of accuracy.  For example, in the case of the inscribed polygon of 96 
sides, he computes the ratio of circumference to diameter of 100 as 314 64/624.
 However, and this should be stressed because it is an important conceptual difference 
between Greek and Chinese thinking on these matters, Liu Hui always speaks of the lü of 
the diameter and circumference, in what he calls the “precise rate,” 50 and 157.  He did 
not think in terms of a specific number like pi but of a pair of numbers relating diameter 
and circumference.  Another Chinese mathematician, Li Chunfeng, speaks of the lü of 
diameter to circumference as 7 and 22, and Zu Chongzhi takes the 密 mi lü (meaning 
“more accurate rate”) to be 113 and 355.18

 Returning now to the Archimedes codex, the really exciting discovery thanks to the 
text recovered through the applications of modern technology and computer imaging is 
Archimedes’ Method and his determination of the volume of the sphere.  This is Archimedes’ 
most famous result, established in his treatise “On the Sphere and Cylinder,” wherein he 
shows that the volume and surface area of a sphere are 2/3 of the volume and of the 
total surface area of a circumscribed cylinder, respectively.  Archimedes considered this 
his greatest discovery, and the corresponding diagram, which said it all, was according to 
ancient accounts, engraved on his tombstone.19

 What is of such importance in the Method is that Archimedes describes how he went 
about finding his results, which he outlined in a letter to Eratosthenes.  In part, here is what 
Archimedes says:  

If in a cube a cylinder be inscribed which has its bases in the opposite parallelograms and 
touches with its surface the remaining four planes (faces), and if there also be inscribed in 
the same cube another cylinder which has its bases in other parallelograms and touches 
with its surface the remaining four planes (faces), then the figure bounded by the surfaces 
of the cylinders, which is within both cylinders, is two-thirds of the whole cube.20

He adds that he discovered this theorem by a certain “mechanical method,” as he had many 
others of his published works.  The gist of the proof is to take various plane cuts or sections 
that are in proportion to one another and show that they are in “equilibrium” or balance; 
knowing the solution, Archimedes can then derive a geometric proof applying the method 
of exhaustion to establish the known result.

18 See 李儼Li Yan and杜石然 Du Shiran, A Concise History of Chinese Mathematics, John N. Crossley 
and Anthony W.-C. Lun, trans., Oxford: Clarendon Press: 198, p. 83; Karine Chemla and Guo Shu-
chun, 九章算術 Les Neuf chapitres. Le Classique mathématique de la Chine ancienne et ses com-
mentaires, Paris: Dunod, 2004, p. 64.

19 As mentioned by both Plutarch and Cicero; for details, see T.L. Heath, The Works of Archimedes, 
Cambridge, England: Cambridge University Press, 1912, p. xviii.

20 T.L. Heath, ed., The Method, p. 12.
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 But there is one theorem in the Method that is different—the geometrical derivation 
of Proposition 14 that so excited Reviel Netz—because a large part of this text could not 
be read by Heiberg.  Proposition 14 establishes the volume of the sphere by examining the 
proportional relations between cuts of infinitesimal lamina; Proposition 15 then establishes 
this result rigorously using the method of exhaustion.  

The diagram for Theorem 14, as given in T.L. Heath, The Method of 
Archimedes (1912), p. 45.

Archimedes was dissatisfied with his Theorem 14, and there were probably at least two 
reasons for this—he did not regard results based on mechanical procedures as described 
in the Method as mathematically rigorous; and the use of indivisibles, as they appeared in 
Theorem 14, were equally suspicious as they involved the paradoxical notion of the infinite.  
Since the time of Zeno and Democritus, the paradoxes of the infinite had weighed heavily 
on Greek philosophy and mathematics, hence the method of exhaustion and its actual 
“limit avoidance,” precluding any need to appeal to an actually infinite number of cases. 
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 Nevertheless, we know that it is impossible to determine the volume of a pyramid, for 
example, without recourse to infinitary arguments, and likewise, to square the circle or find 
the volume of a sphere or the horse-shoe (“fingernail-like shape” as Reviel Netz calls it).21  
In Proposition 14, Archimedes depended on the application of an infinitary argument—
one that set up a complex series of proportional lines which Archimedes could then show 
held for any plane or cut one might choose to make—even though there were an infinite 
number of such possible cuts to be made. 
 Liu Hui also considered the problem of finding a formula for the volume of the sphere, 
given its diameter.  In Chapter 4 of the 九章算術 Jiuzhang suanshu, the Nine Chapters, 
the diameter d of a sphere of volume V is given as d = 3Ö(16/9)V.  This result was known 
empirically, as a comment on this passage states: “a copper cube of diameter 1 cun weight 
16 ounces, while a copper ball of the same diameter weight 9 ounces: this is the origin of 
the ratio 16:9.”22

 Liu Hui explains this result as follows in his commentary.  Consider a circle inscribed in 
a square.  The circle is ¾ the area of the square.  Now consider the cylinder inscribed in a 
cube.  The ratio of the volumes must again be 3:4 (think of any plane cut through the cube 
parallel to the base; the ratio is always the same).  If we assume the sphere inscribed in the 
cylinder id ¾ the volume of the cylinder, then the volume of the sphere is ¾(¾)d3 or 9/16 
of the volume of the cube; hence d = 3Ö(16/9)V.23

 But Liu Hui knows that this is not quite right, and tries to get a more precise result.  
He notes that the formula for the volume of the sphere as ¾ the volume of the cylinder 
would be exact if one considered not the sphere and cylinder, but another object with a 
volume less than the cylinder, which he called a 牟合方蓋 mouhe fangai, two “inverted 
umbrellas.”24

21 See Netz and Noel 2008. p. 189.  A more detailed account of the mathematics in the Archimedes 
codex is given by Reviel Netz, Ken Saito, and Natalie Tchernetska, “A New Reading of Method 
Proposition 14: Preliminary Evidence from the Archimedes Palimpsest (Part 1),” Sciamvs 2 (2001): 
9-29; and Reviel Netz, Ken Saito, and Natalie Tchernetska, “A New Reading of Method Proposition 
14: Preliminary Evidence from the Archimedes Palimpsest (Part 2),” Sciamvs 3 (2002): 109-125.

22 Liu Hui, commentary on the Nine Chapters, in 錢寶琮  Qian Baocong, ed., 算經十書 Suan jing shi 
shu (Ten mathematical classics), Beijing: Zhonghua Shuju, 1963, vol. 1, p. 156.

23  Liu Hui, in  Qian 1963, vol. 1, pp. 155-156.
24 There is no agreement among historians of Chinese mathematics as to exactly how this phrase should 

be translated.  Donald Wagner prefers Li Yan’s interpretation (Li Yan, 中國古代數學史料 Zhongguo 
gudai shuxue shiliao (Historical materials on ancient Chinese mathematics), Shanghai: Shanghai 
Kexue Jishu Chubanshe, cited from second ed., 1963, p. 59; 1st ed. Shanghai 1954) of the phrase 
mouhe fanggai, adding that “An anonymous referee of this article for Chinese science suggested an 
alternative interpretation: ‘a combination of a pair of covers on a common square base’, mou meaning 
‘double’ and he having its usual meaning, ‘to combine’. This still leaves open the question of what 
sort of ‘covers’ these might be. The late Prof. Kurt Vogel pointed out to me the similarity of the geo-
metric form under consideration here with the ancient bronze or ceramic vessel type called a fang 鈁. 
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This in fact is the bicylinder—the same figure contemplated by Archimedes formed by 
the intersection of two cylinders at right angles to each other.  Unfortunately, Liu Hui 
realized that he could not solve the problem of finding the exact volume of this figure, 
but two centuries later, the mathematician Zu Xuan managed to do so by considering 1/8 
of the cross section of the cube containing the bicylinder (eight of these together would 
constitute the entire bicylinder, but since this is a symmetric figure, it suffices to consider 
the case shown here in figure (a):

Zu Xuan dissected the cube using the two cylindrical cuts, obtaining four pieces, one of 
which he called the “internal” piece (b) and three “external pieces” (c), (d), and (e):

In the phrase mouhe fanggai the character 方 fang could be a loan character for this fang鈁, and the 
phrase could be translated, ‘a combined pair of fang 鈁-covers’.  Bai Shangshu («九章算術»住釋 «Jiu 
zhang suanshu» zhushi (Annotated edition of Jiu zhang suanshu), Beijing: Kexue Chubanshe, 1983: 
123) interprets the cover as an ‘umbrella’ (san 傘). Therefore Crossley’s translation of Li Yan and Du 
Shiran (Li and Du, Chinese mathematics: A concise history, trs. John N. Crossley and Anthony W.-
C. Lun, Oxford: Clarendon Press, 1987: 74, 85) translates mouhe fanggai as ‘two square umbrellas’.  
J.-C. Martzloff (Histoire des mathématiques chinoises, Paris: Masson, 1988: 270) interprets gai 蓋 as 
‘vault’ (in the architectural sense) rather than ‘cover’, so that the phrase could be translated, ‘a double 
vault’.”  See Donald Wagner, “Liu Hui and Zu Gengzhi on the Volume of a Sphere,” Chinese science 
3 (1978): 59-79.  See also the modified web-site version of this paper, from which the above has been 
quoted: http://www.staff.hum.ku.dk/dbwagner/Sphere/Sphere.html.  Among other changes, the web 
version of Wagner’s paper uses pinyin transliterations rather than the Wade-Giles transliterations to 
be found in the Chinese Science version of this paper. 

http://www.staff.hum.ku.dk/dbwagner/Sphere/Sphere.html
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Now, looking at any horizontal cross section through the cube, Zhu Xuan examined the 
relation between the one “internal” cross sectional area (b) and the three “external” cross 
sectional areas (c), (d), and (e), and discovered that the area relations between the sections 
remained the same wherever the cross section might be taken, pointing out that “this is 
true whatever the height.”25  

The crucial application of a “Cavallieri” principle then appears as follows:

The stacked 棋 qi (blocks) form the volumes, the shi of the areas being identical, the 
volumes cannot differ from one another.26

And what of the 棋 qi here? Is this really an infinitesimal lamina, as the 18th-century 
commentator Li Huan has edited the text at this point to read  mi rather than qi?  And 
is Donald Wagner right in agreeing that this should indeed be read as mi rather than 

25 Zhu Xuan (Zu Gengzhi), quoted from Wagner 1978.
26 Wagner quotes Zu Gengzhi as follows:

If blocks are piled up to form volumes,
And corresponding areas are equal,
Then the volumes cannot be unequal.           

Here, instead of qi in the first line, the 18th-century commentator Li Huang edited the text to read 冪
mi, amending the text to mean an infinitesimal laminal surface or plane cut.  As Wagner remarks, 
“Though this statement might be understood in any number of ways, it is clear from the context that 
it is in fact a statement of Cavallieri’s Theorem,” and this seems a reasonable conclusion as I reads 
this passage as well.  See Wagner 1978.
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qi, which would correct the text to mean an infinitesimal laminal surface or plane cut?  
Despite such questions, it seems clear that the gist of the argument Zu Xuan is making is 
a version of Cavallieri’s principle.  

Conclusion

In conclusion, how are we to account for this extraordinary example of what appears to 
be near simultaneous discovery—or should we say creation—of the same mathematical 
results and techniques by mathematicians working in disparate locations and cultures, but 
with the same intents and goals in mind?  Both Archimedes and Liu Hui devoted their lives 
to mathematics.  Liu Hui even realized there were problems he could not solve, but hoped 
one day they would be.   
 This now sets the stage for a comparison of the mathematics considered here, east versus 
west.  Geoffrey Lloyd has suggested that one way to view the differences that distinguish 
Greek and Chinese thought is in terms of essential cultural differences.  By entitling his book 
comparing the two cultures as Adversaries and Authorities, Lloyd in a nutshell characterizes 
what he takes to be distinctive differences between science in ancient Greece and China.  
In short, if the examples may be the same, if you will, universal, in that we are dealing with 
right triangles, circles, inscribed polygons, spheres—whose mathematical properties may 
indeed by universal, especially if idealized in the same way, whether in Athens or Xi’an, 
one of the capitals of ancient China—the contexts in which those universals are considered 
indeed may differ greatly from ancient Greece to ancient China.  
 Lloyd sees the Greeks as developing their axiomatic approach to proof, including 
the paragon of their mathematical method with respect to the infinite in the method of 
exhaustion and the use of indirect proofs—namely the reliance on reductio ad absurdum 
methods—as growing out of the adversarial experiences of the Greek city states, the 
law courts, and democratic arguments necessary to convince political adversaries of the 
acceptability, the legitimacy of a given argument.  The Chinese political context placed 
greater emphasis on authoritarian rule, and hence, Lloyd argues, there resulted a different 
sort of argumentation.  Reliance on authority in turn impeded the progress of mathematics 
in China, or so this argument goes, whereas argumentation served to advance the subject 
in Greece.
 But more to the point, I think, Chinese mathematicians were certainly willing to criticize 
bad or poor results.  The interest in finding better and better approximations of the value 
of pi, or algorithms for extracting square and cube roots, are examples to consider.  But 
Chinese mathematicians had little patience for a clever argument for the sake of argument; 
there are no examples of counter-factual reasoning in China, and when confronted by 
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reductio ad absurdum premises, the Chinese reaction is “why begin by assuming something 
you know to be false?”27  
 It may be that the Chinese were more practically minded than the Greeks, and not 
interested in clever sophistry for the sake of argument, but closer to what constitutes 
the difference between the character of reasoning east and west, rather than authorities 
and adversaries, Yin and Yang, I would emphasize the difference between consensus in 
China versus contrariness in ancient Greece, a comparison aptly reflected in the recent 
comparative study of Geoffrey Lloyd and Nathan Sivin, The Way and the Word (Dao and  
λόγος). Science and Medicine in Early China and Greece.28  The differences between the 
道 dao and λόγος, consensus and argument, whether they be the result of sociological, 
political, or even psychological differences between east and west, is an open question for 
more detailed and serious investigation.
 However, what is apparent from comparison of the mathematics of Archimedes 
and Liu Hui is that wherever the human mind may confront mathematics, and specific 
mathematical cases like circles or spheres—the goal is the same—to establish results, 
discover relationships, and to provide arguments not only for their plausibility, but for 
their general validity, laws if you will, governing all circles and all spheres, whether they 
be in ancient Greece or China, or the contemporary mathematics classroom.  As Plato 
understood, mathematics is one of the most remarkable and enduring achievements of the 
human mind.

27 For example, see the interesting if controversial study by Alfred Bloom, The Linguistic Shaping of 
Thought, Hillsdale, N.J.: Erlbaum, 1981; Chad Hansen, Language and Logic in Ancient China, Ann 
Arbor, MI: University of Michigan Press, 1983; Robert K. Logan, The Alphabet Effect. A Media 
Ecology Understanding of the Making of Western Civilization, Ann Arbor, MI: University of Michi-
gan Press, 1983; and A.C. Graham, Disputers of the Tao: Philosophical Argument in Ancient China, 
LaSalle, IL: Open Court, 1989. 

28 Geoffrey Lloyd and Nathan Sivin, The Way and the Word (Dao and λόγος). Science and Medicine in 
Early China and Greece, New Haven: Yale University Press, 2002.
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