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Abstract. We describe a model structure for coloured operads with values
in the category of symmetric spectra (with the positive model structure), in
which fibrations and weak equivalences are defined at the level of the underlying
collections. This allows us to treat R-module spectra (where R is a cofibrant
ring spectrum) as algebras over a cofibrant spectrum-valued operad with R
as its first term. Using this model structure, we give sufficient conditions
for homotopical localizations in the category of symmetric spectra to preserve
module structures.

1. Introduction

In a series of papers [BM03], [BM06], [BM07], Berger and Moerdijk studied
the homotopy theory of operads and coloured operads in monoidal model cate-
gories from an axiomatic point of view. For any cofibrantly generated monoidal
model category V satisfying certain conditions, they described a model structure
for the category of C-coloured operads (for a fixed set of colours C) in which
the fibrations and the weak equivalences were defined at the level of the under-
lying collections. The model structure was, in fact, transferred from the model
structure on the category of C-coloured collections CollC(V) via the free-forgetful
adjunction

F : CollC(V) // OperC(V) : : U.oo

This model structure is very useful for proving general results concerning con-
structions with coloured operads. In this way, one can define, for an operad P ,
the notion of homotopy P -algebra as an algebra over a cofibrant resolution of
P . One can also define a generalization of the W -construction of Boardman-
Vogt in monoidal model categories equipped with an interval [BM06]. Berger
and Moerdijk also proved a generalization of the homotopy invariance property
of algebras over cofibrant operads, extending results of [BV73].

The conditions imposed by Berger and Moerdijk on V concern the cofibrancy
of the unit of the monoidal structure, the existence of a symmetric monoidal
fibrant replacement functor, and the existence of a coalgebra interval with a
cocommutative comultiplication [BM07, Theorem 2.1]. These conditions hold for
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the categories of simplicial sets, compactly generated spaces and chain complexes
over any commutative ring. However, they do not hold for (symmetric) spectra.
In the category of symmetric spectra with the positive model structure, the unit
spectrum S is not cofibrant and the existence of a monoidal fibrant replacement
functor is not known. In fact, by an argument of Lewis, no monoidal model
category of spectra can simultaneously have a cofibrant unit and a symmetric
monoidal fibrant replacement functor [Lew91].

One can try to avoid the cofibrancy condition on the unit by enriching the
base category over another monoidal model category in which the unit and
the intervals are nicer [Kro07, Theorem 2.4]. In his work, Kro considered the
category of orthogonal spectra with the positive model structure enriched over
compactly generated topological space,s and he proved that the categories of
(one-coloured) reduced operads and positive operads in the category of orthog-
onal spectra admit a transferred model structure. We cannot expect to apply
his argument to the category of symmetric spectra, since a symmetric monoidal
fibrant replacement is still needed and Kro’s functor for orthogonal spectra is not
valid for symmetric spectra [Kro07, Remark 3.4].

Here we propose an alternative approach suitable for the category of
C-coloured operads with values in symmetric spectra, where C is any set of
colours. Given a symmetric monoidal category V , operads in V act on any
monoidal V-category E . For a fixed set of colours C and any monoidal V-category
E , we describe a coloured operad in V acting on E whose algebras are C-coloured
operads in E . The category of symmetric spectra with the positive model struc-
ture is a monoidal model category enriched and tensored over the model category
of simplicial sets. Combining this with the fact that for any coloured operad P
in simplicial sets acting on symmetric spectra there is a model structure on the
category of P -algebras [EM06, Theorem 1.3], we produce a model structure for
the category of C-coloured operads in symmetric spectra in which fibrations and
weak equivalences are defined at the level of the underlying collections.

We use this model structure to prove that enriched homotopical localizations
in the category of symmetric spectra preserve algebras over cofibrant operads. In
particular, they preserve R-module spectra, where R is a cofibrant ring spectrum.
Our proof simplifies considerably the one given in [CGMV10, Theorem 6.1] (which
used a coloured operad with two colours in the category of simplicial sets acting
on symmetric spectra), since we are now allowed to use spectrum-valued operads.
More concretely, for any ring spectrum R there is an operad PR with PR(1) = R
and 0 otherwise, whose algebras are the R-modules. This operad is cofibrant
if R itself is a cofibrant ring spectrum. Thus, if L is an enriched homotopical
localization functor in the category of symmetric spectra and M is an R-module,
where M is cofibrant (as a spectrum) and R is a cofibrant ring spectrum, then
LM has a homotopy unique R-module structure such that the localization map
M −→ LM is a map of R-modules.
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2. Coloured operads and algebras in enriched categories

Coloured operads may be defined in any symmetric monoidal category V and
algebras over them make sense in any symmetric monoidal category E enriched
over V . In this first section, we review some terminology of enriched categories
[Bor94, §6], [Hov99, §4.1], [Kel82], and recall the definition of coloured operads
and their algebras [BV73], [EM06, §2], [Lei04].

Throughout the paper, V will denote a cocomplete closed symmetric monoidal
category with unit I and tensor product ⊗. We will denote by 0 an initial object
of V .

A functor F : V −→ V ′ between symmetric monoidal categories is called sym-
metric monoidal if it is equipped with a unit IV ′ −→ F (IV) and a binatural
transformation F (−)⊗V ′ F (−) −→ F (−⊗V −) satisfying the usual associativity,
symmetry and unit conditions. A symmetric monoidal functor is called strong if
the structure maps are isomorphisms.

2.1. Enriched categories. A category enriched over V is a category E together
with an enrichment functor

HomE(−,−) : Eop × E −→ V

and, for every X, Y and Z in E , composition morphisms

HomE(Y, Z)⊗ HomE(X, Y ) −→ HomE(X,Z)

satisfying the associativity law, and morphisms

I −→ HomE(X,X)

which are left and right identities for the composition morphisms.
A V-module category E is a category enriched and tensored over V , i.e., equip-

ped with a functor

−⊗− : V × E −→ E
such that the following two conditions hold:

(i) There are natural isomorphisms

(2.1) A⊗ (B ⊗X) ∼= (A⊗B)⊗X, I ⊗X ∼= X

for every A and B in V and every X in E , rendering certain coherence
diagrams commutative (see [Hov99, §4.1] for details).

(ii) There are natural isomorphisms

E(A⊗X, Y ) ∼= V(A,HomE(X, Y ))

for every X and Y in E , and every A in V .

In particular, when A = I, the condition E(X, Y ) ∼= V(I,HomE(X, Y )) holds for
all X, Y .
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A monoidal V-module category E is a symmetric monoidal category that is also
a V-module category and such that the V-action commutes with the monoidal
product of E . That is, there are natural isomorphisms

(2.2) A⊗ (X ⊗ Y ) ∼= (A⊗X)⊗ Y
for every X and Y in E and every A in V ; see [Fre09, §1.1.2, §1.1.12]. We
will refer to monoidal V-module categories as monoidal V-categories. Any closed
symmetric monoidal category V is enriched over itself and a monoidal V-category.

Lemma 2.1. If E is a monoidal V-category, then the functor from V to E sending

every object A in V to Ã = A ⊗ IE , where IE denotes the unit of the monoidal
structure of E, is strong symmetric monoidal.

Proof. Using the natural isomorphisms (2.1) and (2.2), we have that Ĩ ∼= IE and
that

Ã⊗ B̃ ∼= (A⊗ IE)⊗ (B ⊗ IE) ∼= A⊗ (IE ⊗ (B ⊗ IE)) ∼=

A⊗ (B ⊗ IE) ∼= (A⊗B)⊗ IE ∼= Ã⊗B
for every A and B in V . �

2.2. Coloured operads. Let C be any set, whose elements will be called colours.
A C-coloured collection K in V consists of a set of objects K(c1, . . . , cn; c) in V
for each (n+ 1)-tuple of colours (c1, . . . , cn; c) equipped with a right action of the
symmetric group Σn by means of maps

α∗ : K(c1, . . . , cn; c) −→ K(cα(1), . . . , cα(n); c),

where α ∈ Σn (if n = 0 or n = 1, then Σn is the trivial group).
A morphism of C-coloured collections ϕ : K −→ K ′ is a family of maps

ϕc1,...,cn;c : K(c1, . . . , cn; c) −→ K(c1, . . . , cn; c)

in V , ranging over all n ≥ 0 and all (n+ 1)-tuples (c1, . . . , cn; c), and compatible
with the action of the symmetric groups. The category of C-coloured collections
in V is denoted by CollC(V).

Definition 2.2. A C-coloured operad P in V is a C-coloured collection equipped
with unit maps I −→ P (c; c) for every c ∈ C and, for every (n + 1)-tuple of
colours (c1, . . . , cn; c) and n given tuples

(a1,1, . . . , a1,k1 ; c1), . . . , (an,1, . . . , an,kn ; cn),

a composition product map

P (c1, . . . , cn; c)⊗ P (a1,1, . . . , a1,k1 ; c1)⊗ · · · ⊗ P (an,1, . . . , an,kn ; cn)

��

P (a1,1, . . . , a1,k1 , a2,1, . . . , a2,k2 , . . . , an,1, . . . , an,kn ; c),
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compatible with the action of the symmetric groups and subject to associativity
and unitary compatibility relations; see, for example, [EM06, §2].

Remark 2.3. Alternatively, one can replace the composition product in the defi-
nition of a C-coloured operad by the ◦i-operations

P (c1, . . . , ci, . . . , cn; c)⊗ P (a1, . . . , am; ci)

◦i
��

P (c1, . . . , ci−1, a1, . . . , am, ci+1, . . . , cn; c)

for every (n+1)-tuple (c1, . . . , cn, c), everym-tuple (a1, . . . , am), and all 1 ≤ i ≤ n.
The ◦i-operations are compatible with the action of Σn and are subject to the
usual associativity and unitary compatibility relations; see, for example, [Lei04,
§2.1]. We will make use of both definitions in the next section.

A morphism of C-coloured operads is a morphism of the underlying C-coloured
collections that is compatible with the unit maps and the composition product
maps (or the ◦i-operations). The category of C-coloured operads in V will be
denoted by OperC(V). There is a free-forgetful adjunction

(2.3) F : CollC(V) // OperC(V) : Uoo

where U is the forgetful functor, and the left adjoint is the free coloured operad
generated by a collection.

2.3. Algebras over coloured operads. Algebras over operads can be defined
in any monoidal V-category E , as follows. Let EC denote the product category∏

c∈C E indexed by the set of colours C. For every object X = (X(c))c∈C ∈ EC ,
the endomorphism C-coloured operad End(X) in V associated with X is defined
by

End(X)(c1, . . . , cn; c) = HomE(X(c1)⊗ · · · ⊗X(cn);X(c))

where X(c1) ⊗ · · · ⊗ X(cn) is meant to be the unit of the monoidal category E
if n = 0. The composition product is ordinary composition and the Σn-action is
defined by permutation of the factors.

Definition 2.4. Let P be any C-coloured operad in V . An algebra over P or a
P-algebra in E is an object X = (X(c))c∈C of EC together with a morphism

P −→ End(X)

of C-coloured operads in V .

Equivalently, a P -algebra in E can be defined as a family of objects X(c) in E
for all c ∈ C, together with maps

P (c1, . . . , cn; c)⊗X(c1)⊗ · · · ⊗X(cn) −→ X(c)

for every (n+1)-tuple (c1, . . . , cn; c), compatible with the symmetric group action,
the units of P , and subject to the usual associativity relations.
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A map of P -algebras f : X −→ Y is a family of maps (fc : X(c) −→ Y (c))c∈C
in E such that the diagram of C-coloured collections

P //

��

End(X)

��

End(Y) // Hom(X,Y)

commutes, where the top and left arrows are the P -algebra structures on X and
Y respectively, and the C-coloured collection Hom(X,Y) is defined as

Hom(X,Y)(c1, . . . , cn; c) = HomE(X(c1)⊗ · · · ⊗X(cn), Y (c)).

The arrows End(X) −→ Hom(X,Y) and End(Y) −→ Hom(X,Y) are induced
by f by composing on each side.

If the category V has pullbacks, then a map f of P -algebras can be seen as a
map of C-coloured operads

P −→ End(f),

where the C-coloured operad End(f) is obtained as the pullback of the diagram
of C-coloured collections

End(f) //

��

End(X)

��

End(Y) // Hom(X,Y).

The C-coloured collection End(f) inherits indeed a C-coloured operad structure
in V from the C-coloured operads End(X) and End(Y), as observed in [BM03,
Theorem 3.5]. We will denote the category of P -algebras in E by AlgP (E).

For any monoidal V-category E , the functor from V to E sending each object

A in V to Ã = A ⊗ IE is strong symmetric monoidal (Lemma 2.1). Hence, it
sends C-coloured operads in V to C-coloured operads in E . Moreover, if P is a
C-coloured operad in V , then an object X of EC is a P -algebra if and only if it

is a P̃ -algebra.

3. Coloured operads as algebras

The following is an example of a coloured operad whose algebras are C-colou-
red operads for a fixed set of colours C. It is initially constructed in the category
of sets, but can be transported to an arbitrary symmetric monoidal category via
the strong symmetric monoidal functor that sends a set to a coproduct of copies
of the unit of the monoidal category (indexed by the elements of the set). The
description of this operad is made in terms of trees, so we need to introduce some
terminology on them first.
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3.1. Trees. A tree T is a connected finite graph with no loops. We denote the
set of vertices of T by V (T ) and the set of edges of T by E(T ). Edges are
directed. There are two different types of edges: the ones with a vertex at both
ends, called inner edges, and the ones with a vertex only at one end or with
no vertices, called external edges. A rooted tree is a tree where each vertex v
has exactly one outgoing edge denoted by out(v) and a set in(v) of incoming
edges whose elements are called inputs of v (note that in(v) can be empty). The
cardinality of in(v) is called the valence of v. Consequently, in our trees there is
a unique external edge leaving a vertex; we call it the root or output edge of T .
The other external edges form the set in(T ) of input edges or leaves of T .

A planar rooted tree is a rooted tree T together with a linear ordering of in(v)
for each vertex v of T .

When drawing rooted trees in the plane, we represent them as oriented towards
the output, drawn at the bottom, with the canonical orientation from the leaves
towards the root. In this case, the linear order appears from reading the incoming
edges from left to right.

Definition 3.1. Let C be any set. A planar rooted C-coloured tree is a pla-
nar rooted tree T together with a function cT : E(T ) −→ C, called a colouring
function.

3.2. The coloured operad SC in sets. Let C be a set of colours. We define a
D-coloured collection SC in Sets, where

D = {(c1, . . . , cn; c) | ci, c ∈ C, n ≥ 0}.

This collection can be endowed with a D-coloured operad structure whose alge-
bras are C-coloured operads in Sets as follows. We use the following notation for
the elements of the set D:

ci = (ci,1, . . . , ci,ki
; ci) and a = (a1, . . . , am; a).

For each (n + 1)-tuple of colours (c1, . . . , cn; a), the elements of SC(c1, . . . , cn; a)
are equivalence classes of triples (T, σ, τ), where:

(i) T is a planar rooted C-coloured tree with m input edges coloured by
a1, . . . , am, a root edge coloured by a, and n vertices.

(ii) σ is a bijection σ : {1, . . . , n} −→ V (T ) with the property that σ(i) has
ki input edges coloured from left to right by ci,1, . . . , ci,ki

and one output
edge coloured by ci.

(iii) τ is a bijection τ : {1, . . . ,m} −→ in(T ) such that τ(i) has colour ai.

Two such triples (T, σ, τ), (T ′σ′, τ ′) are equivalent if and only if there is a planar
isomorphism ϕ : T −→ T ′ such that ϕ ◦ σ = σ′, ϕ ◦ τ = τ ′ and ϕ respects the
colouring, i.e., if e is an edge of T of colour c, then the edge ϕ(e) in T ′ has colour
c too.
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Example 3.2. If C = {a, b, c}, then an element of

SC((a, b; c), (b, b; a), ( ; a), (c, a, a; b); (b, b, a, c; c))

is represented, for example, by a tree

2

b
::

::

1

b
��

��

4

c
::

::

/.-,()*+3
a

3

a��
��/.-,()*+2

a
LLLL

LLLL

/.-,()*+4
brrrr

rrrr/.-,()*+1
c

Any permutation α ∈ Σn induces a map

α∗ : SC(c1, . . . , cn; a) −→ SC(cα(1), . . . , cα(n); a)

that sends (T, σ, τ) to (T, σ ◦α, τ). That is, α∗(T ) is the same tree as T but with
a renumbering of the vertices given by α.

Let α be any element in Σm and a1 = (aα(1), . . . , aα(m); a). Then the set
SC(a1; a) can be identified with the subset of elements of Σm that permute the
element (aα(1), . . . , aα(m)) into (a1, . . . , am). In particular, if a = a1 then the set
SC(a; a) can be identified with the (opposite) subgroup of Σm that leaves the
colours a1, . . . , am invariant.

Proposition 3.3. The D-coloured collection SC admits a D-coloured operad
structure in Sets.

Proof. There is a distinguished element 1a in SC(a; a) corresponding to the tree

1

a1
PPPP

PPPP
2

a2

<<
<<

3

a3

m

am
oooo

ooo/.-,()*+1
a

for every a ∈ D. These elements will be the units of the coloured operad SC .
The composition product on SC is defined as follows. Given an element (T, σ, τ)

of SC(c1, . . . , cn; a) and n elements (T1, σ1, τ1), . . . , (Tn, σn, τn) of

SC(d1,1, . . . , d1,k1 ; c1), . . . , SC(dn,1, . . . , dn,kn ; cn)

respectively, we obtain an element T ′ of

SC(d1,1, . . . , d1,k1 , d2,1, . . . , d2,k2 , . . . , dn,1, . . . , dn,kn ; a)

in the following way:

(i) T ′ is obtained by replacing the vertex σ(i) of T by the tree Ti for every i.
This is done by identifying the input edges of σ(i) in T with the input
edges if Ti via the bijection τi. The ci,j-coloured input edge of σ(i) is
matched with the ci,j-coloured input edge τi(j) of Ti. (Note that the
colours of the input edges and the output of σ(i) coincide with the colours
of the input edges and the root of Ti.)
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(ii) The vertices of T ′ are numbered following the order, i.e., first number the
subtree T1 in T ′ ordered by σ1, then T2 ordered by σ2 and so on.

(iii) The input edges of T ′ are numbered following τ and the identifications
given by τi.

This composition product is associative and compatible with the units and the
action of the symmetric group. �

Example 3.4. Let C = {a, b, c} as before and let T be an element of

SC((a, b; c), (c, b; a), (a, a, a; b); (c, b, a, a, a; c))

represented by the tree
1

c
<<

<<
2

b
��

��

5

a
<<

<<
3

a

4

a��
��/.-,()*+2

a
LLLL

LLLL

/.-,()*+3
brrrr

rrrr/.-,()*+1
c

and T1, T2 and T3 be elements of

SC((a, b; c), (c; c); (a, b; c)), SC((b, b; a), (c; b); (c, b; a)),

and SC((a, a; c), (a, c; b); (a, a, a; b))

respectively, represented by the trees
1

a
III

III
2

bvvv

vvv/.-,()*+1
c/.-,()*+2
c

1

c/.-,()*+2
b

JJJ

JJJ
2

b
www

www/.-,()*+1
a

2

a
<<

<<
1

a��
��

3

a
GGG

GGG

/.-,()*+1
crrrr

rrrr/.-,()*+2
b

Applying the composition product, we get an element in

SC((a, b; c), (c; c), (b, b; a), (c; b), (a, a; c), (a, c; b); (c, b, a, a, a; c))

that is represented by the following tree:

1

c

3

a
AAA

AA
5

a��
��/.-,()*+4

b
??

??

2

b
��

��

4

a
::

::

/.-,()*+5
c��

��/.-,()*+3
a

LLLL

LLLL

/.-,()*+6
brrrr

rrrr/.-,()*+1
c/.-,()*+2
c

Proposition 3.5. An algebra over SC is a C-coloured operad in Sets and con-
versely.
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Proof. Recall that the set of colours of SC is

D = {(c1, . . . , cn; c) | ci, c ∈ C, n ≥ 0}.

Thus, an SC-algebra is given by a family of sets

P = (P (c1, . . . , cn; c))(c1,...,cn;c)∈D

together with a map of D-coloured operads SC −→ End(P ), i.e., maps of sets

Φ: SC(c1, . . . , cn; a) −→ Sets(P (c1)× · · · × P (cn), P (a)),

where ci = (ci,1, . . . , ci,ki
; ci) and a = (a1, . . . , am; a). In particular, the maps

SC( ; (c; c)) −→ Sets(∗, P (c; c))

give the units of P . If α ∈ Σn, then the right action

α∗ : P (c1, . . . , cn; c) −→ P (cα−1(1), . . . , cα−1(n); c)

is defined by taking Φ(T ), where T is the tree

α(1)

c1
TTTTT

TTTTTT
α(2)

c2
EE

EE

α(3)

c3

α(n)

cn
mmm

mmmm/.-,()*+1
c

The ◦i-operations

P (c1, . . . , ci, . . . , cn; c)× P (a1, . . . , am; ci)

◦i
��

P (c1, . . . , ci−1, a1, . . . , am, ci+1, . . . , cn; c)

of P are defined as the image under Φ of the element

i

a1
SSSSSS

SSSSS
i+1

a2

CC
CC

i+2

a3

i+m−1

am
lll

llll
1

c1
RRRRRR

RRRRR

/.-,()*+2
ci

n+m−1

cn
lll

lllll/.-,()*+1
c

in SC((c1, . . . , cn; c), (a1, . . . , am; ci); (c1, . . . , ci−1, a1, . . . , am, ci+1, . . . , cn; c)).
Conversely, if Q is a given C-coloured operad, then any triple (T, σ, τ) in the

set SC(c1, . . . , cn; a) acts on an element (e1, . . . , en) ∈ Q(c1) × · · · × Q(cn) by
labeling the vertex σ(i) of T by ei, and then using the coloured operad structure
of Q to compose (e1, . . . , en) along the tree T to obtain an element e ∈ Q(a), and
then applying the right action by τ to this element. �
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3.3. The coloured operad SC in monoidal categories. The operad SC can
be transported to any closed symmetric monoidal category V to obtain a coloured
operad in V whose algebras are C-coloured operads in E , where E is any monoidal
V-category. More precisely, if V is any closed symmetric monoidal category, then
the strong symmetric monoidal functor (−)V : Sets −→ V defined as

AV =
∐
x∈A

I

for every set A sends coloured operads to coloured operads. Hence, by applying
this functor to the coloured operad SC in Sets, we obtain another coloured operad
SCV in V whose algebras in V are precisely C-coloured operads in V .

If E is a monoidal V-category, then coloured operads in V act on E . Thus, SCV
is a coloured operad in V whose algebras in E are C-coloured operads in E .

Remark 3.6. We will use SCV to obtain a model structure for coloured operads in
symmetric spectra. There is an alternative approach: the category of C-coloured
collections is strictly monoidal [BM07, Appendix] and the monoids in this cate-
gory are the C-coloured operads, i.e., a C-coloured operad is an algebra over the
non-symmetric operad encoding monoid structures. We have chosen the present
way for two reasons. Firstly, we believe that the operad SCV is of interest in
its own right. Secondly, we cannot directly use the results of Berger and Mo-
erdijk [BM03, BM07], who only work in symmetric monoidal categories, since
the category of C-coloured collections is not symmetric monoidal.

4. Coloured operads with values in symmetric spectra

We recall from [BM07] the basic properties and terminology of a model struc-
ture for the category of coloured operads in a symmetric monoidal model category.
We assume that our model categories have functorial factorizations, as in [Hov99]
and [Hir03].

4.1. Enriched model categories. A monoidal model category V is a closed
symmetric monoidal category with a model structure satisfying the following
conditions:

(i) Pushout-product axiom. If f : A −→ B and g : U −→ V are two cofibra-
tions in V , then the induced map

(4.1) (A⊗ V )
∐
A⊗U

(B ⊗ U) −→ B ⊗ V

is a cofibration that is trivial if f or g is trivial. A direct consequence of the
pushout-product axiom is that tensoring with a cofibrant object preserves
cofibrations (and trivial cofibrations), and that the tensor product of two
cofibrations with cofibrant domains is again a cofibration.
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(ii) Unit axiom. The natural map

q ⊗ 1: QI ⊗ A −→ I ⊗ A
is a weak equivalence in V for every cofibrant A, where Q denotes the
cofibrant replacement functor of V . The unit axiom holds trivially if the
unit of V is cofibrant.

Let V be a monoidal model category. A model category enriched over V is
a category E enriched over V with a model structure such that the enrichment
HomE(−,−) satisfies an analog of Quillen’s (SM7) axiom for simplicial categories;
namely, if f : X −→ Y is a cofibration in E and g : W −→ Z is a fibration in E ,
then the induced map

(4.2) HomE(Y,W ) −→ HomE(Y, Z)×HomE(X,Z) HomE(X,W )

is a fibration in V that is trivial if f or g is trivial.
Recall from [Hov99, Definition 4.2.18] that a V-module model category is a
V-module category E with a model structure such that:

(i) The functor − ⊗ − : V × E −→ E is a Quillen bifunctor, that is, the
pushout-product of a cofibration in V and a cofibration in E is a cofibration
in E .

(ii) The map q ⊗ 1: QI ⊗X −→ I ⊗X is a weak equivalence in E for every
cofibrant object X in E .

A monoidal V-model category is a V-module model category E that is also a
monoidal model category and such that the V-action commutes with the monoidal
product of E (see [Fre09, §11.3.3, §11.3.4]), i.e., there are natural coherent iso-
morphisms

A⊗ (X ⊗ Y ) ∼= (A⊗X)⊗ Y
for every X, Y in E and every A in V . Any monoidal model category E is a
monoidal E-model category.

4.2. Model structures for coloured operads. For any cofibrantly generated
monoidal model category V , the category of C-coloured collections CollC(V) ad-
mits a cofibrantly generated model structure in which a morphism K −→ L is a
weak equivalence or a fibration if for each (n+ 1)-tuple of colours (c1, . . . , cn; c),
the map

K(c1, . . . , cn; c) −→ L(c1, . . . , cn; c)

is a weak equivalence or a fibration, respectively, in V . This model structure can
be transferred along the free-forgetful adjunction (2.3),

F : CollC(V) // OperC(V) : U,oo

to provide a model structure on the category of C-coloured operads in V , if
any sequential colimit of pushouts of images under F of the generating trivial
cofibrations of CollC(V) yields a weak equivalence in CollC(V) after applying
the forgetful functor (cf. [Cra95, §3], [Hir03, Theorem 11.3.2]). In this model
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structure, a morphism of C-coloured operads f : P −→ Q is a weak equivalence
or a fibration if and only if U(f) is a weak equivalence or a fibration of C-coloured
collections, respectively.

Although this assumption is usually hard to verify, it is satisfied if we assume
that the unit of V is cofibrant, the existence of a symmetric monoidal fibrant
replacement functor for V , and the existence of an interval with a coassociative
and cocommutative comultiplication [BM07, Theorem 2.1]. Recall that a sym-
metric monoidal fibrant replacement functor in V is a fibrant replacement functor
F that is symmetric monoidal and such that for every X and Y in V the following
diagram commutes:

X ⊗ Y
rX⊗Y

//

rX⊗rY
��

F (X ⊗ Y )

FX ⊗ F (Y ),

77nnnnnnnnnnnn

where r : IdV −→ F is the natural transformation associated with the fibrant
replacement.

The categories of simplicial sets or k-spaces (with the Quillen model structure),
among others, satisfy the conditions above.

4.3. Coloured operads in symmetric spectra. We denote by SpΣ the cate-
gory of symmetric spectra. When we refer to its model structure, we will under-
stand it as the positive model structure, as described in [MMSS01] or in [Shi04].
The weak equivalences are the usual stable weak equivalences, and positive cofi-
brations are stable cofibrations with the additional assumption that they are
isomorphisms in level zero. Positive fibrations are defined by the right lifting
property with respect to the trivial positive cofibrations. With this model struc-
ture, the category of symmetric spectra is a cofibrantly generated proper monoidal
model category.

However, the assumptions required in [BM07, Theorem 2.1] are not satisfied
for this category. In the category of symmetric spectra with the positive model
structure, the unit spectrum S is not cofibrant, and the existence of a symmet-
ric monoidal fibrant replacement functor is not known. In fact, by an argument
of Lewis [Lew91], no symmetric monoidal model category of spectra can simul-
taneously have a cofibrant unit and a symmetric monoidal fibrant replacement
functor. In this section we show how we can avoid this problem by using the
coloured operad described in Section 3.

Let E be a monoidal V-model category and P any C-coloured operad in V .
Then there is an adjoint pair

FP : EC // AlgP (E) : UP ,oo



14 J. J. GUTIÉRREZ AND R. M. VOGT

where FP is the free P -algebra functor defined as

FP (X)(c) =
∐
n≥0

( ∐
c1,...,cn∈C

P (c1, . . . , cn; c)⊗Σn X(c1)⊗ · · · ⊗X(cn)

)
for every X = (X(c))c∈C in EC , and UP is the forgetful functor. Following the
terminology of [BM07], we say that a C-coloured operad P in V is admissible in
E if the model structure on EC is transferred to AlgP (E) along this adjunction.
Thus, if P is admissible, then AlgP (E) has a model structure where a map of
P -algebras f : X −→ Y is a weak equivalence or a fibration if and only if

fc : X(c) −→ Y (c)

is a weak equivalence or a fibration, respectively, in E for every c ∈ C.
The category of symmetric spectra SpΣ with the positive model structure is a

monoidal sSets-model category, where sSets denotes the category of simplicial
sets with the usual model structure. We recall the following admissibility result
from [EM06, Theorem 1.3]:

Theorem 4.1. If we consider the positive model structure in SpΣ, then any
coloured operad P in simplicial sets is admissible in SpΣ. �

Using the coloured operad of Section 3, we obtain a model structure for coloured
operads in symmetric spectra.

Corollary 4.2. Let C be a fixed set of colours. Then the category of C-coloured
operads in symmetric spectra admits a model structure in which the weak equiva-
lences are the colourwise stable equivalences and the fibrations are the colourwise
positive stable fibrations of symmetric spectra.

Proof. Consider the coloured operad SCV of Section 3, where V is now the category
of simplicial sets. The category of C-coloured operads in SpΣ is the category of
SCV -algebras in SpΣ, and the latter has a model structure by Theorem 4.1. �

Remark 4.3. Recall that if E is a cocomplete category and I is a set of maps
in E , then the subcategory of relative I-cell complexes is the subcategory of
maps that can be constructed as transfinite compositions of pushouts of elements
of I. The admissibility of every coloured operad with values in simplicial sets
in the category of symmetric spectra is based on the fact that every relative
FP (J )-complex is a stable equivalence, where J is the set of generating trivial
cofibrations of EC with E = SpΣ (see [EM06, Lemma 11.7]). In fact, Theorem 4.1
and its corollary remain valid for any cofibrantly generated monoidal V-category
E with this property.

Remark 4.4. In a recent paper [Kro07], Kro proved that the category of reduced
operads and the category of positive operads in orthogonal spectra with the
positive model structure admits a transferred model structure, by constructing a
symmetric monoidal fibrant replacement functor. Recall that an operad P in a
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monoidal category V is positive if P (0) = 0, and it is reduced if P (0) = I, where
I is the unit of V .

In fact, he extended the results of [BM03] to reduced and positive operads
in a monoidal V-model category E where the unit is not necessarily cofibrant
(although the symmetric monoidal fibrant replacement functor assumption is
still needed), but V has a nice unit and Hopf intervals (see [Kro07, Theorem 2.4]
for an explicit statement). Observe that we cannot apply the result of Kro in our
case, since we do not have a symmetric monoidal fibrant replacement functor,
and his candidate for orthogonal spectra is not valid for symmetric spectra (see
[Kro07, Remark 3.4]).

5. Localization of module structures

5.1. Enriched homotopical localization. Let E be a V-module model cate-
gory as in Section 4.1. For all X and Y in E , we define

homE(X, Y ) = HomE(QX,FY ),

where Q denotes a functorial cofibrant replacement and F denotes a functorial
fibrant replacement. We call the object homE(−,−) a homotopy V-function com-
plex. Note that homE(−,−) is always fibrant in V by (4.2). A morphism X −→ Y
and an object Z in E are called V-orthogonal if the induced map

homE(Y, Z) −→ homE(X,Z)

is a weak equivalence in V .
The following definition extends [CGMV10, Definition 4.1].

Definition 5.1. An enriched homotopical localization in a V-module model cate-
gory E is a functor L : E −→ E that preserves weak equivalences and takes fibrant
values, together with a natural transformation η : IdE −→ L such that, for every
X in E , the following hold:

(i) LηX : LX −→ LLX is a weak equivalence in E .
(ii) ηLX and LηX are equal in the homotopy category Ho(E).

(iii) For every X in E , the map ηX : X −→ LX is a cofibration such that the
induced map

homE(LX,LY ) −→ homE(X,LY )

is a weak equivalence in V for all Y in E .

If L is an enriched homotopical localization, then the fibrant objects of E
weakly equivalent to LX for some X are called L-local, and the maps f such
that Lf is a weak equivalence are called L-equivalences. L-local objects and
L-equivalences are V-orthogonal. In fact, a fibrant object is L-local if and only
if it is V-orthogonal to all L-equivalences, and a map is an L-equivalence if and
only if it is V-orthogonal to all L-local objects.
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The main source for enriched homotopical localizations comes from enriched
left Bousfield localizations [Bar10]. Enriched left Bousfield localizations are sim-
ilar to Bousfield localizations, but defining the class of local objects by means
of V-orthogonality instead of simplicial orthogonality. As proved in [Bar10,
Theorem 4.46], the enriched left Bousfield localization with respect to a set of
morphisms always exists in a V-model category E , provided that the category E
is cotensored over V , left proper and combinatorial, and the category V is com-
binatorial. This is the case, for example, of the category of symmetric spectra
enriched over itself or enriched over simplicial sets.

The following theorem is our main result on the preservation of algebras over
operads in monoidal V-categories. For simplicity, we state it for coloured operads
with only one colour, but it can be generalized to C-coloured operads by using
ideals on the set of colours C; cf. [CGMV10, Theorem 6.1].

Theorem 5.2. Let (L, η) be an enriched homotopical localization on a monoidal
V-model category E such that the category of operads in V admits a transferred
model structure. Let P be a cofibrant operad in V and let X be a P -algebra such
that X is cofibrant in E. Suppose that, for every n ≥ 1, the map

(5.1) η⊗nX : X⊗
(n)
· · · ⊗X −→ LX⊗

(n)
· · · ⊗LX

is an L-equivalence. Then LX admits a homotopy unique P -algebra structure
such that ηX is a map of P -algebras.

Proof. The map η⊗nX is a cofibration for every n ≥ 1, since it is a tensor product
of n cofibrations with cofibrant domains in a monoidal model category. Hence
the induced map

HomE(LX⊗
(n)
· · · ⊗LX,LX)

��

HomE(X⊗
(n)
· · · ⊗X,LX)

is a trivial fibration for every n ≥ 1. Indeed, it is a weak equivalence because LX
is L-local and η⊗nX is an L-equivalence by assumption, and it is also a fibration
by (4.2). Thus, the morphism of collections

End(LX) −→ Hom(X,LX)

induced by ηX is a trivial fibration.
Now consider the endomorphism operad EndP (ηX) associated to ηX . It is

obtained as the following pullback of collections:

(5.2) End(ηX)
α //

β
��

End(LX)

��

End(X) // Hom(X,LX).
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The operad P is cofibrant by hypothesis, and the map β is a trivial fibration
since it is a pullback of a trivial fibration. Therefore, there is a lifting

End(ηX)

��

P //

;;

End(X)

where P −→ End(X) is the given P -algebra structure of X. The P -algebra
structure on LX is obtained by composing this lifting with the upper morphism
α in (5.2), and with this structure ηX is a map of P -algebras.

To prove uniqueness, suppose that we have two P -algebra structures on LX,
denoted by γ, γ′ : P −→ End(LX), and assume that ηX is a map of P -algebras for
each of them, i.e., γ and γ′ factor through End(ηX). Now let δ, δ′ : P −→ End(ηX)
be such that γ = α ◦ δ and γ′ = α ◦ δ′, with α as in (5.2). Since β ◦ δ = β ◦ δ′
and β is a trivial fibration, it follows that δ and δ′ are left homotopic. Since P
is cofibrant and EndP (LX) is fibrant, we obtain that, in fact, γ ' γ′; see [Hir03,
7.4.8]. �

Remark 5.3. The displayed condition (5.1) holds automatically when V = E , that
is, when E is a monoidal model category and the localization is enriched in E .

5.2. Localization of module spectra. Let E be a monoidal V-model category.
Recall that the operad Ass in V whose algebras in E are the associative monoids
is defined by Ass(n) = I[Σn] for n ≥ 0, where I[Σn] denotes a coproduct of copies
of the unit I indexed by Σn on which Σn acts freely by permutations. Suppose
that the operad Ass and the coloured operad SCV in V , with C a set with one
element, are admissible in E . Then, the category Mon(E) of monoids in E and
the category Oper(E) of (one-coloured) operads in E have a transferred model
structure, since they are categories of algebras over Ass and SCV , respectively.
These two categories are related by a pair of adjoint functors

P(−) : Mon(E) // Oper(E) : (−)(1),oo

where the left adjoint sends a monoid R to the operad PR defined by

PR(n) =

{
R if n = 1,
0 otherwise,

and the right adjoint sends any operad Q to the monoid Q(1). In fact, this
adjoint pair is a Quillen pair, since the right adjoint preserves fibrations and
weak equivalences.

The following result is an application of Theorem 5.2 to the preservation of
module structures under enriched homotopical localizations.

Theorem 5.4. Let (L, η) be an enriched homotopical localization on a monoi-
dal model category E such that the category of operads in E and the category of
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monoids in E admit a transferred model structure. Let R be a cofibrant monoid
in E and let X be an R-module such that X is cofibrant in E. Then LX admits
a homotopy unique R-module structure such that ηX is a map of R-modules.

Proof. If R is a monoid in E , then an R-module is the same as an algebra over
the operad PR. Note that, if R is a cofibrant object in Mon(E), then the operad
PR is also cofibrant in Oper(E), since P(−) is a left Quillen functor. The result
now follows from Theorem 5.2, since the operad PR is concentrated in valence
one and considering E itself as a monoidal E-category. �

Now we make this result explicit for module spectra in the category of sym-
metric spectra SpΣ with the positive model structure. We will consider enriched
homotopical localizations in SpΣ viewed as a monoidal SpΣ-category, i.e., using
the enrichment given by the internal hom.

Corollary 5.5. Let (L, η) be an enriched homotopical localization on the cat-
egory of symmetric spectra (enriched over itself). Let M be a module over a
cofibrant ring symmetric spectrum R and assume that M is cofibrant as a sym-
metric spectrum. Then LM has a homotopy unique module structure over R such
that ηM : M −→ LM is a morphism of R-modules.

Proof. The category SpΣ is a monoidal sSets-category, where sSets denotes the
category of simplicial sets and any coloured operad in sSets is admissible in SpΣ

by Theorem 4.1. Thus, the category of operads in SpΣ and the category of ring
symmetric spectra both admit a transferred model structure. The result now
follows directly from Theorem 5.4. �
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