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Abstract. The enhanced flow in carbon nanotubes is explained using a math-
ematical model that includes a depletion layer with reduced viscosity near the
wall. In the limit of large tubes the model predicts no noticeable enhancement.
For smaller tubes the model predicts enhancement that increases as the radius
decreases. An analogy between the reduced viscosity and slip-length models
shows that the term slip-length is misleading and that on surfaces which are
smooth at the nanoscale it may be thought of as a length-scale associated
with the size of the depletion region and viscosity ratio. The model therefore
provides a physical interpretation of the classical Navier slip condition and
explains why ‘slip-lengths’ may be greater than the tube radius.

1. Introduction

The classical model for flow in a circular cylindrical pipe is described by the
Hagen-Poiseuille equation

uHP = −pzR
4

4µ

(
1− r2

R2

)
(1)

where uHP (r) is the velocity in the z direction, pz is the pressure gradient along
the pipe, R is the radius and µ the fluid viscosity. The corresponding flux is given
by

QHP = 2π

∫ R

0

ruHP dr = −πR
4pz

8µ
.(2)

In carbon nano-tubes (CNT) it is well documented that the flow is enhanced
and the true value of the flux is significantly higher than this classical value. A
popular approach to explain this enhancement is to introduce a slip-length into
the mathematical model, that is, the no-slip boundary condition u(R) = 0 is
replaced by

u(R) = −Ls
∂u

∂r

∣∣∣∣
r=R

(3)

where Ls is the slip-length. This leads to modified velocity and flux expressions

(4) uslip = −R
2pz

4µ1
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,
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hence any magnitude of enhancement can be accounted for by using an appro-
priate value for Ls.

The concept of slip is an old one, attributed to Navier [1, 2, 3], and has many
practical uses. When dealing with flow over a rough surface it permits a bound-
ary condition to be applied on a flat surface, then the slip-length is related to the
roughness height. In thin film theory it removes the stress singularity at the mov-
ing contact line, where the fluid front moves over a dry surface. It is also fre-
quently invoked in studies of non-Newtonian fluids [2, 3, 4, 5, 6, 7]. In all cases
the slip length is significantly smaller than the thickness of the bulk flow [1].
For example, Trethaway and Meinhart [8] carry out experiments on water flow
in a coated microchannel of width 30 µm. Using particle imaging velocimetry
they determine a slip length of 1 µm. In 1-2 µm channels Choi et al [9] deter-
mine values of the order 30 nm. Molecular dynamics (MD) simulations indicate
lengths of “1 to a few nm” [10]. Whilst there is no theory to predict the slip
length for a liquid flowing past a solid, there is one for gases. In this case the
slip length is the mean free path of the gas [2] (for water this is 0.3 nm [11]). Yet,
when analysing flow in CNTs, in order to sufficiently enhance the flow, the slip
length must be set significantly higher than the bulk flow thickness. For example
Whitby et al [12] quote lengths of 30-40 nm for experiments in pipes of 20 nm
radius. Holt et al [11] and Majumder et al [13] quote slip lengths on the order
of microns for their experiments with nanometer size pores.

Of course the high values of slip-length have led some authors to question the
validity of the slip modified Hagen-Poiseuille model [14, 15]. Cottin-Bizonne et
al [16] state that the slip-length should have a single value independent of the tube
radius and much less than those quoted in the literature. They attribute some of
the high experimental values to contamination by hydrophobic particles. It has
been proposed that the apparent slip is probably due to a decrease in the fluid
viscosity near the wall caused, for example, by enhanced nucleation of dissolved
gas or the formation of vapour [1, 17, 16]. Experiments have conclusively shown
the existence of depletion layers between water and hydrophobic surfaces and
this motivated the MD simulations of Joseph et al [18]. In keeping with this
mechanism for apparent slip, Majumder et al [13] suggested that their observed
flow enhancement could be attributed to an essentially frictionless interface at
the CNT wall. Ruckenstein and Rajora [19] propose a gas gap at the interface
between the solid and the liquid. Clearly this gap or depletion layer must be
small. Experiments and simulations have shown that the fluid viscosity is in
close agreement with its bulk value down to separations of about 10 molecular
diameters [1]. MD simulations indicate that the fluid viscosity close to a solid
boundary is position dependent [20]. For CNTs the fluid properties typically vary
within an annular region approximately 0.7 nm from the CNT wall [18, 14, 21].

Consequently, in the following work we will investigate a mathematical model
for flow including a region of low viscosity near the tube wall. In their review
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paper Mattia and Gogotsi [22] state that the question whether the nonslip bound-
ary condition is applicable at very small scales remains open. We will provide
a possible answer to this question by showing that the reduced viscosity model
is analogous to a slip model, although perhaps the term ‘slip length’ is mislead-
ing. The slip length is typically considered to be the length-scale over which the
fluid layer slips over the boundary. If instead it is interpreted as a length-scale
associated with the reduced viscosity then the required high values have a more
physically sensible interpretation.

2. Mathematical model

Consider a pipe of cross-section R, occupied by two fluids. In the bulk flow
region, defined by 0 ≤ r ≤ α, we impose a viscosity µ1. In the annular region near
the wall, defined by α ≤ r ≤ R, we impose a viscosity µ2 < µ1. Of course there
is uncertainty about the values to choose for viscosity and α. If we define the
position of the transition α = R − δ then, based on previous studies of water in
CNTs [14, 18, 21] in all calculations we will set δ = 0.7 nm. However, experiments
show that the slip length increases with hydrophobicity [9, 16] and so for other
fluids and tubes the value of δ may differ. MD simulations indicate µ2 varies
with position [20], however, for simplicity we will take it as constant and so use
an average value in the annulus. Again the constant will be system dependent.

For unidirectional pressure driven flow the appropriate mathematical model is

(5)
µ1

r

∂

∂r

(
r
∂u1

∂r

)
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Appropriate boundary conditions are

(6)
∂u1

∂r

∣∣∣∣
r=0

= 0 u2(R, z) = 0 ,

which represent symmetry at the centreline and no-slip at the solid boundary. At
the interface between the fluids, r = α, there is continuity of velocity and shear
stress

u1 = u2 µ1
∂u1

∂r
= µ2

∂u2

∂r
.(7)

The appropriate velocity expressions are then

(8) u1 =
pz

4µ1

(r2 − α2)− pz
4µ2

(R2 − α2) u2 =
pz

4µ2

(r2 −R2) .

The flux Qµ is defined as the sum of fluxes in the two regions

Qµ = 2π

(∫ α

0

ru1 dr +

∫ R

α

ru2 dr

)
(9)
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This may be related to the standard expression by

(11) Qµ = QHP
α4

R4

[
1 +

µ1

µ2

(
R4

α4
− 1

)]
.

The flow rate enhancement is defined as

(12) εµ =
Qµ

QHP

=
α4

R4
+
µ1

µ2

(
1− α4

R4

)
.

For the slip model the corresponding enhancement is

(13) εslip = 1 +
4Ls
R

.

In the limits α → R and Ls → 0 the expressions for Qµ, Qslip reduce to QHP

and so εµ, εslip → 1. If the flow rate is to be increased then ε > 1. The above
expressions indicate that this requires µ1 > µ2 or Ls > 0.

To verify whether this model gives reasonable results we consider the exper-
iments of Whitby et al [12]. Their flow enhancement indicates a slip length of
30-40 nm for pipes of radius 20 nm. Setting Ls = 35 nm, R = 20 nm determines
their enhancement factor as εslip = 8. Rearranging the expression for εµ gives

(14) µ2 = µ1

[
R4 − α4

εµR4 − α4

]
.

To obtain the same enhancement we set εµ = 8 and also take α = R−δ = 19.3 nm
to find µ2 = 0.018µ1. So, the current model will provide an enhancement factor
of 8 with an average viscosity in the depletion layer approximately 0.02 times
that of the bulk flow. It is interesting to note that the viscosity of oxygen is
also approximately 0.02 that of water, so this value supports the depletion layer
theory.

To clarify the behaviour of the current model we set α = R − δ. Noting that
εµ is simply a quartic in α we may expand and rearrange the expression to find

(15) εµ = 1 +
4δ

R

(
µ1

µ2

− 1

)[
1− 3

2

δ

R
+

(
δ

R

)2

− 1

4

(
δ

R

)3
]
,

which is a monotonically decreasing function of R. This is in accordance with
the findings of Thomas & McGaughey [14] that the enhancement factor decreases
with increasing tube radius. Noting that the reduced viscosity model requires
two distinct regions, hence R ≥ δ, the limit to the enhancement predicted by the
current theory is determined by setting R = δ, µ2/µ1 = 0.018 and δ = 0.7 nm to
give εµ ≈ 50 (Whitby et al predict an enhancement of up to 45 times theoretical
predictions).

Equation (15) also allows us to make further inference about the model be-
haviour and it’s relation to the slip model. If we compare the above expression
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with that for εslip we may define the slip length in terms of the thickness of the
depletion layer and the viscosity ratio

(16) Ls = δ

(
µ1

µ2

− 1

)[
1− 3

2

δ

R
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(
δ

R

)2

− 1

4

(
δ

R

)3
]

Further, noting that µ1/µ2 � 1, we can identify three distinct regimes:

(1) For sufficiently wide tubes, such that δ/R� µ2/µ1, then εµ ≈ 1. There is
no noticeable flow enhancement and the no-slip boundary condition will
be sufficient.

(2) For moderate tubes, such that (δ/R)(µ1/µ2) is order 1 but δ/R� 1 then
only the leading order term of Ls applies and

(17) εµ ≈ 1 +
4δ

R

(
µ1

µ2

− 1

)
.

(3) For very small tubes where δ/R is order 1 then the full expression for εµ
is required.

To be specific, the no-slip Hagen-Poiseuille model is only appropriate when δ/R�
µ2/µ1. If we neglect the viscosity terms in the first regime, the error in the en-
hancement factor would be below 5% when 4δµ1/(Rµ2) < 0.05. With µ2/µ1 =
0.018 and δ = 0.7 nm this requiresR > 3µm. In the second regime the error would
be below 5% for 3δ/(2R) < 0.05 or R > 21 nm. In this regime the apparent slip
length Ls ≈ 39 nm is approximately constant, as suggested by Cottin-Bizonne et
al [16] and in keeping with a number of research groups who find slip-lengths in
the range 20-40 nm for a wide range of length-scales [9, 12, 14, 16]. For R < 21 nm
the slip length will decrease as the radius decreases.

3. Conclusions

The motivation behind this paper was to explain the unrealistically large slip-
lengths reported in nanotubes. The mathematical model developed shows that
the flow enhancement can be plausibly related to a reduced viscosity model,
where the viscosity in the depletion region is always much lower than in the
bulk. Theoretically, in pipes with a radius greater than the depletion layer thick-
ness, it appears that the flow enhancement can only be enhanced by an order of
magnitude (not orders as reported in some papers).

In answer to the question posed in the title “why are slip-lengths so large in car-
bon nanotubes?” we note that there is a clear analogy between the enhancement
factor for the reduced viscosity model developed in this paper and that using a
slip length. This indicates that the term ’slip length’ is rather misleading. The
usual physical interpretation is that the slip length represents a length-scale over
which the fluid slips and consequently when this exceeds the dimension of the
fluid it appears physically unrealistic. In fact it appears to be a length-scale
proportional to the product of the viscosity ratio and the width of the depletion
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region. This length-scale is a property of the fluid-solid system and remains ap-
proximately constant, down to very small radius tubes, and so can easily exceed
the tube radius.

In a wider context the reduced viscosity model provides one possible explana-
tion for the Navier slip boundary condition when the solid is smooth down to the
nanoscale (and hence an explanation for flow enhancement). In other systems
there may well be different mechanisms to explain the slip boundary condition,
for example on rough surfaces one would expect the slip length to be determined
by the roughness height-scale. A number of other factors will affect the flow,
such as surface composition and hydrophobicity, shear rate, fluid composition
etc. To a certain extent these could be incorporated into the definition of the
depletion layer and average viscosity but clearly this must be linked to detailed
experimental work which is beyond the scope of this theoretical study.
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