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Abstract. The functional equation

f(x1, y1)f(x2, y2) = f(x1x2 + αy1y2, x1y2 + x2y1), (x1, y1), (x2, y2) ∈ R2

arises from the formula for the product of two numbers in the quadratic field
Q(
√
α). The general solution f : R→ R to this equation is determined. More-

over, it is shown that no more general equations arise from a change of basis
in the field.

1. Introduction

The functional equation in several variables

(1) f(x1, y1)f(x2, y2) = f(x1x2 + y1y2, x1y2 − x2y1), (x1, y1), (x2, y2) ∈ R2

has deserved recently some attention in connection with the identity

(2) (x2
1 + y2

1)(x2
2 + y2

2) = (x1x2 + y1y2)
2 + (x1y2 − x2y1)

2.

The pair of algebraic identities given by (2) and by

(3) (x2
1 + y2

1)(x2
2 + y2

2) = (x1x2 − y1y2)
2 + (x1y2 + x2y1)

2

are known from ancient times. In the mathematical literature they were diversely
named after mathematicians like Diophantus of Alexandria, Brahmagupta and
Leonardo of Pisa who used them in their works (see, for instance, Proposition V
at pg. 18 of [2]). When restricted to integer numbers both identities express the
fact that the product of two sums of two squares is itself a sum of two squares.
After a slight change in notation, (2) corresponds to the case n = 2 in Lagrange’s
identity

(4)

(
n∑
k=1

xkyk

)2

=

(
n∑
k=1

x2
k

)2( n∑
k=1

y2
k

)2

−
∑

1≤k<j≤n

(xkyj − xjyk)2,

and can be also considered as a particular case of more general identities involving
sums of squares such as the Euler’s four squares identity. Furthermore, denoting
by i the imaginary unit, setting zk = xk + iyk, k = 1, 2, and z = x − iy the
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conjugate of z = x + iy, identities (2) and (3) can be respectively written as
particular instances of the functional relationships

(5) f(z1)f(z2) = f(z1z2), z1, z2 ∈ C
and

(6) f(z1)f(z2) = f(z1z2), z1, z2 ∈ C.

Note that multiplicativity of the norm f(z) = f(x + iy) = |z| =
√
x2 + y2 is

expressed by (6), meanwhile invariance under conjugation is also involved in (5).
Indeed, the solutions to the functional equation (6) are the morphisms of the
multiplicative group 〈C, ·〉 in the multiplicative group 〈R, ·〉.

Now, for a square free integer α 6= 1, consider the quadratic field Q(
√
α). In

the basis (1,
√
α), a generic member ξ ∈ Q(

√
α) is represented by ξ = x +

√
αy,

x, y ∈ Q, and the product of two numbers ξi = xi +
√
αyi, i = 1, 2 is given by

(7) (x1 +
√
αy1)(x2 +

√
αy2) = (x1x2 + αy1y2) +

√
α(x1y2 + x2y1);

thus the functional equation

(8) f(x1, y1)f(x2, y2) = f(x1x2 + αy1y2, x1y2 + x2y1), (x1, y1), (x2, y2) ∈ R2

where α is a given real parameter naturally arises.
In Theorem 1 of [3], the general solution f : R2 → R of the equation (1) (or,

equivalently, (5)) is shown to be of the form

(9) f(x, y) = σ(x, y)M
(√

x2 + y2
)
,

where M : R → R is a multiplicative function and σ : R2 → {±1} is a signum
function. Recall that a function M is said to be multiplicative when solves the
multiplicative Cauchy equation

M(xy) = M(x)M(y).

Similarly, every solution A of the additive Cauchy equation

A(x+ y) = A(x) + A(y)

is said to be an additive function. In the present paper, the following general
result on equation (8) is established:

Theorem 1. The general solution f of equation (8) depends on the signum of
the parameter α and it is given by

f(x, y) =


M1(x+

√
αy)M2(x−

√
αy) if α > 0

f = 0 or f = 1 if α = 0

M(
√
x2 − αy2) exp

(
A(atan(

√
|α|y/x)

)
if α < 0.

, x, y ∈ R.

In these expressions, M, M1 and M2 are arbitrary multiplicative functions and A
is an arbitrary additive function from R to R.
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Among other results related to equation (8), a proof of Theorem 1 is devel-
oped along the following section. In the final section 3, several observations
and remarks concerning equation (8) are made; particularly, a brief discussion
is presented of the functional equations derived from the product formula in a
quadratic field when the numbers in the field are expressed in other basis.

2. Analysis of equation (8)

In solving equation (8), three essentially different cases arise depending on the
signum of the parameter α. In fact, for α = 0,equation (8) becomes

(10) f(x1, y1)f(x2, y2) = f(x1x2, x1y2 + x2y1), (x1, y1), (x2, y2) ∈ R2.

For α 6= 0, let us define the transformation

(11)

{
X = x

Y =
√
|α|y;

then, equation (8) expressed in terms of g(X, Y ) = f(x, y) becomes

g(X1, Y1)g(X2, Y2) = f(x1, y1)f(x2, y2)

= f(x1x2 + αy1y2, x1y2 + x2y1)

= g

(
X1X2 + α

Y1√
|α|

Y2√
|α|

,
√
|α|

(
X1

Y2√
|α|

+X2
Y1√
|α|

))
= g (X1X2 + sgnαY1Y2, X1Y2 +X2Y1) .

Hence, in order to solve equation (8) it suffices to solve (10) and the following
two equations

(12) f(x1, y1)f(x2, y2) = f(x1x2 + y1y2, x1y2 + x2y1),

(13) f(x1, y1)f(x2, y2) = f(x1x2 − y1y2, x1y2 + x2y1),

where the domain of the variables is (x1, y1), (x2, y2) ∈ R2.
Every one of these cases is separately considered in the following three subsec-

tions.

2.1. The case α = 1. The transformation

(14)

{
X =

√
2

2
(x+ y)

Y =
√

2
2

(x− y)

reduces equation (12) to the following one:

(15) g(x1, y1)g(x2, y2) = g(x1x2, y1y2), (x1, y1), (x2, y2) ∈ R2.
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In fact, setting Xk = xk + yk, Yk = xk − yk, k = 1, 2, we have

X1X2 + Y1Y2 =
1

2
((x1 + y1)(x2 + y2) + (x1 − y1)(x2 − y2))

= x1x2 + y1y2

and, similarly,
X1Y2 +X2Y1 = x1x2 − y1y2;

hence, defining f(X, Y ) = g(x, y) we have

g(x1, y1)g(x2, y2) = f(X1, Y1)f(X2, Y2) =

= f(X1X2 + Y1Y2, X1Y2 +X2Y1)

= f (x1x2 + y1y2, x1x2 − y1y2)

= g(x1x2, y1y2).

In these last equalities, the bijectivity of the transformation (14) ensures that R2

is the domain of the variables (x1, y1), (x2, y2).

Proposition 2. The general solution to equation (15) is given by

(16) g(x, y) = M1(x)M2(y), x, y ∈ R,
where M1, M2 : R→ R are two arbitrary multiplicative functions from R to R.

Proof. Let g be a solution to equation (15). Then, it is easily deduced that
the functions M1 and M2 respectively defined by M1(x) = g(x, 1) and M2(x) =
g(1, x) are both multiplicative. For example, by setting y1 = 1 = y2 in (15), for
x1, x2 ∈ R we obtain

M1(x1)M1(x2) = g(x1, 1)g(x2, 1) = g(x1x2, 1) = M1(x1x2);

i.e., M1 is a multiplicative function.
Using again equation (15), we see that

g(x, y) = g(x, 1)g(1, y) = M1(x)M2(y), x, y ∈ R.
The argument is completed by observing that equation (15) is solved by every
function of the form (16) with M1 and M2 two given multiplicative functions. �

Proposition 3. The general solution to equation (12) is given by

(17) f(x, y) = M1(x+ y)M2(x− y), x, y ∈ R,
where M1, M2 : R→ R are two arbitrary multiplicative functions from R to R.

Proof. From the previous discussion we see that the general solution to equation
(12) is given by

f(x, y) = M1

(√
2

2
(x+ y)

)
M2

(√
2

2
(x− y)

)
= cM1 (x+ y)M2 (x− y) ,
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for a certain real constant c. Then, by inserting the last member of these equalities
in equation (12) we obtain

c2 = c;

i.e., c = 0 or c = 1. The first value gives the trivial solution (also obtained by
setting M1 = 0 in (17)), meanwhile the second one gives (17). �

2.2. The case α = 0. Setting x1 = 0 = x2 in (10) yields

(18) f(0, y1)f(0, y2) = f(0, 0), y ∈ R;

in particular, for y1 = y = y2:

(19) f 2(0, y) = f(0, 0), y ∈ R.
Then

f 2(0, 0) = f(0, 0);

so that f(0, 0) = 0 or f(0, 0) = 1.
Since

f(0, 0)f(x, y) = f(0, 0), (x, y) ∈ R2,

we see that f(x, y) ≡ 1 when f(0, 0) = 1.
Now, putting aside the case in which f(0, 0) = 1, the equality f(0, 0) = 0 holds;

then f(0, y) = 0 by (19). In this case we have

f(x, y) = f(0, y0)f(x, y) = f(0, y0x) = 0, (x, y) ∈ R2.

Thus, we have proved the following result.

Proposition 4. The general solution to the equation (10) is composed by the
trivial solutions f ≡ 0 or f ≡ 1.

Proof. See the previous discussion. �

It should be noted that the general solution to equation (10) may be a richer
set if solved on different domains for the variables. For example, we will solve it

for the domain (x, y) ∈ R2 with x 6= 0.
Setting y1 = 0 = y2 in equation (10) yields

(20) f(x1, 0)f(x2, 0) = f(x1x2, 0), x1, x2 ∈ R2.

Furthermore, the equation

(21) f(1, y1)f(1, y2) = f(1, y1 + y2), y1, y2 ∈ R2

is obtained by setting x1 = 1 = x2 in (10). (20) and (21) are Cauchy’s equations
whose general solutions are given respectively by

(22) f(x, 0) = M(x), x ∈ R
and

(23) f(1, y) = exp(A(y)), y ∈ R,
with M a multiplicative function and A an additive one.
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Now observe that, for every pair (x, y) ∈ R2 with x 6= 0 is

(24) f(x, y) = f(x, 0)f(1, y/x).

Thus, from (22), (23) and (24) we obtain

(25) f(x, y) = M(x) exp
(
A
(y
x

))
, (x, y) ∈ R2, x 6= 0.

That (25) is the general solution to equation (10) for (x, y) ∈ R2, x 6= 0, is seen
by replacing it in the equation.

2.3. The case α = −1. When α = −1, for ζ ∈ C of the form ζ = x + iy let us
define

φ(ζ) = f(x, y), (x, y) ∈ R2.

In terms of φ, equation (8) then becomes

(26) φ(ζ1)φ(ζ2) = φ(ζ1ζ2),

where ζ1, ζ2 ∈ C = R + iR.
Two simple observations are in order in connection with a solution φ to

equation (26). First, by setting ζ1 = ζ = ζ2, we obtain φ(ζ2) = φ2(ζ) ≥ 0 for
every ζ ∈ C; and hence φ ≥ 0. Moreover, if φ(ζ0) = 0 for a given ζ0 ∈ C; then
φ(ζ0ζ) = φ(ζ0)φ(ζ) = 0 for every ζ ∈ C. Therefore, if a solution φ of equa-
tion (26) vanishes in a point; then it vanishes in every point and therefore it is
the trivial zero solution φ(ζ) ≡ 0.

Now, since ζ1ζ2 ∈ R when ζ1, ζ2 ∈ R, it is seen that

φ(r1)φ(r2) = φ(r1r2), r1, r2 ∈ R.

The solution to this (multiplicative Cauchy’s) equation is given (cf. for instance
page 31 of [1]) by a multiplicative function

(27) φ(r) = M(r), r ∈ R.

Now, replacing in (26) the polar decomposition ζ =
√
x2 + y2 exp (iθ) with

θ = arg ζ, and taking into account (27), we obtain

φ(ζ) = φ
(√

x2 + y2 exp (i arg ζ)
)

= φ
(√

x2 + y2
)
φ(exp (i arg ζ)) = M

(√
x2 + y2

)
φ(exp (i arg ζ)).

Now, for θ1, θ2 ∈ R we have

(28) φ(exp(iθ1))φ(exp(iθ2)) = φ(exp(iθ1) exp(iθ2)) = φ(exp(i(θ1 + θ2)));

thus, in terms of

ψ(θ) = φ(exp(iθ)), θ ∈ R,
the equality between the first and third members of (28) becomes

(29) ψ(θ1 + θ2) = ψ(θ1)ψ(θ2), θ1, θ2 ∈ R.
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The general solution to (exponential Cauchy’s) equation (29) is given (cf. for
instance page 29 of [1]) by an exponential function ψ(θ) = expA(θ), θ ∈ R, with
A : R→ R an additive function.

In conclusion, φ ≡ 0 or

φ(ζ) = M
(√

x2 + y2
)

exp(A(arg(ζ)))

where M and A are, respectively, a multiplicative and an additive functions.

Proposition 5. The general solution f : R2 → R to equation (13) are the trivial
one f ≡ 0 and those of the form

(30) f(x, y) = M
(√

x2 + y2
)

exp(A(atan(y/x))

for a pair of arbitrary (non vanishing) multiplicative M and additive A functions
from R to R.

Proof. A substitution of (30) in (13) shows that (30) actually solves equation
(13). After the previous discussion, it is concluded that f given by (30) is the
general solution to (13). �

2.4. Proof of Theorem 1. The proof of Theorem 1 is easily derived from Propo-
sitions (3), (4) and (5) after applying transformation (11) as described at the
beginning of the section.

3. Final remarks: integral basis of quadratic number fields and a
seemingly more general functional equation

It might be thought that a functional equation more general than (8) can be
suggested by the selection of a different basis for the field Q(

√
α). As shown in

the lines that follows, this is not the case.
In fact, take for simplicity the case of a square-free integer α > 0. As it is well-

known, for some values of α the ring of algebraic integers of this number field is
larger than Z[α], in fact (for some α) it is a free Z-module of rank 2 generated by

1 and 1+
√
α

2
. If we consider algebraic integers in this field it is thus natural to take

the basis (1, 1+
√
α

2
) and when multiplying two elements we want to consider the

functional equation describing how the coordinates (with respect to this basis)
behave under this product. Explicitly, the product formula is given by(

x1 +
1 +
√
α

2
y1

)(
x2 +

1 +
√
α

2
y2

)
=

(
x1x2 +

α− 1

4
y1y2

)
+

1 +
√
α

2
(x1y2 + x2y1 + y1y2).
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Then, the functional equation associated to this formula is

(31) f(x1, y1)f(x2, y2) = f

(
x1x2 +

α− 1

4
y1y2, x1y2 + x2y1 + y1y2

)
where (x1, y1), (x2, y2) ∈ R2. The appearance of this equation differs from that
one of (8) but it will be seen that a simple change of variables reduces one to the

other. In fact, just taking x′i = xi + yi

2
, y′i = yi, setting f(x, y) = f(x′ − y′

2
, y′) =

g(x′, y′) and writing the functional equation for g that follows from the one for
f , we obtain

g(x′1, y
′
1)g(x′2, y

′
2) = g

(
x′1x

′
2 +

α

4
y′1y
′
2, x
′
1y
′
2 + x′2y

′
1

)
,

which coincides with equation (8) with a parameter α/4 instead of α. Of course,
the general solution to equation (31) is deduced from the general solution to (8)
by reversing the change of coordinates above. In this way, we obtain the general
solution of the functional equation for f , which, as expected, is the following:

f(x, y) = M1

(
x+

1 +
√
α

2
y

)
M2

(
x+

1−
√
α

2
y

)
where M1 and M2 are two arbitrary multiplicative functions from R to R.
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