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UNIQUENESS AND EXISTENCE OF
SOLUTIONS IN THE BVt(Q) SPACE TO A

DOUBLY NONLINEAR PARABOLIC PROBLEM

J. I. D́ıaz and J. F. Padial

Abstract
In this paper we present some results on the uniqueness and exis-
tence of a class of weak solutions (the so called BV solutions) of
the Cauchy-Dirichlet problem associated to the doubly nonlinear
diffusion equation

b(u)t−div(|∇u−k(b(u))e|p−2(∇u−k(b(u))e))+g(x, u) = f(t, x).

This problem arises in the study of some turbulent regimes: flows
of incompressible turbulent fluids through porous media, gases
flowing in pipelines, etc. The solvability of this problem is estab-
lished in the BVt(Q) space. We prove some comparison properties
(implying uniqueness) when the set of jumping points of the BV
solution has N -dimensional null measure and suitable additional
conditions as, for instance, b−1 locally Lipschitz. The existence of
this type of weak solution is based on suitable uniform estimates
of the BV norm of an approximated solution.

1. Introduction

Let be Ω a bounded open subset of R
N with regular boundary and

T > 0. We consider the following Cauchy-Dirichlet problem

b(u)t − div φ(∇u− k(b(u))e) + g(x, u) = f(t, x) in Q,(1.1)
u(t, x) = 0 on Σ,(1.2)

u(0, x) = u0(x) in Ω,(1.3)
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where Q :=]0, T [×Ω and Σ :=]0, T [×∂Ω. We also assume some struc-
ture conditions such as the ellipticity of the diffusion operator (which is
implied by the monotonicity of the power vectorial function

(1.4) φ(ξ) = |ξ|p−2ξ ∀ ξ ∈ R
N

with p > 1) and the monotonicity of the real continuous function b. In
fact, we shall assume that

(1.5) b is continuous strictly increasing and b(0) = 0.

The continuous functions k and g(x, ·) are assumed satisfying some ad-
ditional assumptions (see (2.1)-(2.5)). In (1.1) e denotes a given unit
vector in R

N .
Problem (1.1), or some special cases of it, arises in many different

physical contexts. For instance, the flow of a gas through a porous
medium in a turbulent regime is described by the continuity equation

θt + div v = 0

and the nonlinear Darcy’s law

|v|q−2v = −K(θ)∇Φ(θ), for some q > 2,

where θ(t, x) is the volumetric moisture content, v the velocity, K(θ) the
hydraulic conductivity and Φ the total potential (usually given by Φ(θ) =
ψ(θ) + z with ψ(θ) the hydrostatic potential and z the gravitational
potential; see Volker [V69]). If e denotes the unit vector in the vertical
direction, we obtain

θt − div(|∇ϕ(θ) −K(θ)e|p−2(∇ϕ(θ) −K(θ)e)) = 0

with

ϕ(θ) =
∫ θ

0

K(s)Φ′(s) ds, and p =
q

q − 1

(notice that now 1 < p < 2). Functions ϕ and k are given by physical
experiments. Usually they are nondecreasing functions. For unsaturated
media ϕ is strictly increasing. In that case, the function u = ϕ(θ) verifies
the equation (1.1) with b = ϕ−1, K = k and g = f = 0.

Another typical example is given by a turbulent gas flowing in a
pipeline. If we assume that the gas is perfect and the pipe has uniform
cross sectional area, we arrive to the system

ρt + (ρv)x = 0

ρvt + ρvvx + Px = −λ

2
ρ|v|v
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where ρ, P and v are the density, pressure, and velocity of the gas which
are unknown functions depending on the scalar x (the distance along the
pipe) and time t. Using asymptotic methods, it was shown in Dı́az-Liñán
[DLi89] that for large values of time the term ρvt+ρvvx can be neglected
and so the second equation may be replaced by Px = −λ

2 ρ|v|v. Then, if
we define u = |P |P , u satisfies equation (1.1) with b(u) = u1/2 sign(u),
k = g = f = 0 and p = 3/2. We notice that in this case b−1 is locally
Lipschitz.

Previous results on the mathematical treatment of problem (1.1), (1.2)
and (1.3) can be found in the references of the paper Dı́az-de Thelin
[DT94] where the authors pay an special attention to the stabilization
question. The main goal of this paper is to improve the uniqueness
results of Dı́az-de Thelin [DT94] where the weak solutions are assumed
such that b(u)t ∈ L1(Q).

Based in the works [Vo67], [VoHu69] and [J92], we shall prove in
this paper a comparison result in a class of weak solutions such that b(u)t
is a bounded Radon measure on Q (i.e. b(u)t ∈ Mb(Q)). A preliminar
version of our comparison result was shortly presented in [DPa93]. The
present version also contains an enlarged presentation of Chapter 2 of
the Ph. D. of the second author ([Pa95]). In [GM92a], [GM92b],
and [BeGa95] the authors prove some comparison results in the class
of weak solutions such that b(u) ∈ BV (0, T ;L1(Ω)) for some related
nonlinear parabolic problems but always assuming p = 2. Recently,
using some techniques raised by S. N. Kruzhkov for hyperbolic equations
and inspired in Carrillo [C86], Gagneux and Madaune-Tort proved in
[GM94] and [GM95] a uniqueness result for case p = 2. Some more
general results for the case p = 2 avoiding the assumption b(u)t ∈ L1(Q)
can be found in [P95], [PG96] and [U96] where the authors use that
any weak solution satisfies the equation in a “renormalized way”.

In Section 2, we introduce the assumptions on the data and the notion
of bounded BV solution. Section 3 is devoted to recall several properties
on bounded variation functions which will be important for the study of
the uniqueness of BV solutions presented later in Section 4. Our main
result, a comparison criterium depending on the initial data and the
forcing terms, assume a condition on the Hausdorff measure of the set
of points where the solutions are not approximately continuous. Finally,
the existence of a BV solution is established in Section 5 under some
extra information on u0 and f .

2. Definition of BV solutions

Given a general Banach space B, its dual topological space will be
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denoted by B′. By 〈·, ·〉B,B′ we denote the duality between B′ and B. We
shall use the Sobolev space W 1,p

0 (Ω) and its dual W−1,p′(Ω) where p > 1

and
1
p

+
1
p′

= 1. Introducing the space X = Lp
′
(0, T ;W−1,p′(Ω))+L1(Q)

then X ′ = Lp(0, T ;W 1,p
0 (Ω)) ∩ L∞(Q) and the duality 〈·, ·〉X,X′ is given

by

〈h, v〉X,X′ =
∫ T

0

{
〈h−1, v〉W−1,p′ (Ω),W 1,p

0 (Ω) +
∫

Ω

h1v dx

}
dt

for all h ∈ X, v ∈ X ′, where h = h−1 + h1 with h1 ∈ L1(Q) and
h−1 ∈ Lp

′
(0, T ;W−1,p′(Ω)).

We define the space of bounded variation (with respect to variable t)
functions by

BVt(Q) =
{
u ∈ L1(Q) :

∂u

∂t
∈ Mb(Q)

}
,

where Mb(Q) denote the space of bounded Radon measures over Q.

In what follows we shall assume a series of conditions on the data:


k : R → R, is continuous, k(b(·)) is Hölder continuous

with exponent γ, |k(b(s1)) − k(b(s2))| ≤ Ĉ|s1 − s2|γ
∀s1, s2 ∈ R, and γ ≥ 1

p if 1 < p ≤ 2, γ ≥ 1
2 if p > 2;

(2.1)




g : Ω × R → R is a Caratheodory function such that
|g(x, s)| ≤ ω(|s|)(1 + d(x)) for some d ∈ L1(Ω)
and some increasing continuous function ω;

(2.2)

{
g(x, s1) − g(x, s2) ≥ −C∗(b(s1) − b(s2)) ∀s1, s2 ∈ R,

s1 > s2 and for some C∗ > 0;
(2.3)

f ∈ L1(Q)(2.4)

and finally

(2.5) u0 ∈ L∞(Ω).

We start by introducing the notion of weak solution of problem (1.1),
(1.2) and (1.3) inspired in [AL83] and [DT94]:
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Definition 1. We shall say that a function u defined on Q is a weak
solution of problem (1.1), (1.2) and (1.3), if

u ∈ Lp(0, T ;W 1,p
0 (Ω)) ∩ L∞(Q)(2.6)

b(u)t ∈ Lp
′
(0, T ;W−1,p′(Ω)) + L1(Q)(2.7)

and moreover u satisfies the equality

(2.8) 〈b(u)t, v〉X,X′ +
∫ T

0

∫
Ω

(b(u) − b(u0))vt = 0

for all v ∈ Lp(0, T ;W 1,p(Ω)) ∩ L∞(Q) ∩ W 1,1(0, T ;W 1,p(Ω)), with
v(T, ·) = 0 and

(2.9)
〈b(u)t, v〉X,X′ +

∫ T

0

∫
Ω

φ(∇u− k(b(u))e) · ∇v

+
∫ T

0

∫
Ω

g(·, u)v =
∫ T

0

∫
Ω

fv

for all v ∈ Lp(0, T ;W 1,p(Ω)) ∩ L∞(Q).

By assuming more regularity on b(u)t, we arrive to the following no-
tion:

Definition 2. Let u be a weak solution of problem (1.1), (1.2) and
(1.3). We shall say that u is a BV solution of (1.1), (1.2) and (1.3) if in
addition

(2.10) b(u) ∈ BVt(Q).

Notice that in that case b(u)t is a bounded Radon measure on Q and
so, the duality between the spaces X and X ′ can be also represented
by the correspondent integral with respect to the measure b(u)t for all
measurable Borel function v ∈ X ′, i.e.

(2.11) 〈b(u)t, v〉X,X′ ≡
∫
Q

vb(u)t.

In what follows, we shall adopt the integral representation of this duality
if the test function is a measurable Borel function.
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3. Treatment of discontinuous functions.
Some technical lemmas.

In the development of next sections we shall need some properties of
functions whose first generalized derivatives are bounded regular (signed)
measures. The following notions and properties can be found in [Vo67],
[VoHu85], [F69] and [EvG92]. Here, and in what follows, Ld(E) will
denote the d-dimensional Lebesgue measure of a set E ⊂ R

d and Hd(E)
its d-dimensional Hausdorff measure (d ≥ 1). Let E, F be two Lebesgue
measurable subsets of R

d. A point x0 ∈ R
d is a point of F -density of the

set E if

lim
r→0

Ld(Br(x0) ∩ E ∩ F )
Ld(Br(x0) ∩ E)

= 1

where Br(x0) = {x ∈ Rd : |x − x0| < r}. If the above limit it is equal
to 0, the point x0 is a point of F -rarefaction of the set E. Taking F as
R
d, we denote by E∗ the set of points of density of E and E∗ the set of

points of rarefaction of E. Finally, the set ∂E = E∗ \ E∗ is called the
essential boundary of the set E (in many cases, the essential boundary
of a set E coincides with the boundary of E, however the boundary and
the essential boundary of a set do not always coincide —for example
the boundary and essential boundary of a disk minus a radius are not
the same [VoHu85]). Let now f : R

d → R be a Lebesgue measurable
function. The real number , is called an approximate limit with respect
to the set E ⊂ R

d of the function f as x → x0 if for all ε > 0 the
point x0 is a point of E-density of the set {x ∈ R

d : |f(x) − ,| < ε}.
We use the notation lim

x→x0,x∈E
f(x) = ,. Function f is approximately

continuous at x0 if lim
x→x0,x∈Rd

f(x) = f(x0). A point x0 is called a regular

point of the function f if there exists an unit vector υ such that the
approximate limits fυ(x0) and f−υ(x0) exist, where we have denoted
fυ(x0) := lim

x→x0,Πυ(x0)
f(x) with Πυ(x0) = {x ∈ Rd : 〈x − x0,υ〉 > 0}.

We choose υ such that fυ(x0) ≥ f−υ(x0). Such a vector υ is called a
defining vector. Vol’pert proved in [Vo67] that if x0 is a regular point
for f(x) and if υ is the defining vector for which fυ(x0) = f−υ(x0), then
the associate approximate limit of f in x0 exists and for any ω ∈ R

d

fω(x0) also exists and it is equal to f(x0). A point verifying this, is
called a point of approximate continuity. When fυ(x0) �= f−υ(x0) the
vector υ is uniquely determined (except for the sign of fυ(x0)). A point
x0 verifying this inequality is called a jump point of f in the direction
υ. The set of jump points of a function f is denoted by Γf . From
Theorem 9.2 of [Vo67] follows that if f ∈ BV (G), G ⊂ R

d, then any
point of the G is either a point of approximate continuity or a jump point
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of f with exception of a set Hd−1-dimensional measure zero. For this
class of functions, the inward and outward traces of the function f exist
on Γf Hd−1-almost everywhere (see e.g. [VoHu85]). Moreover these
traces coincide with the approximate limits fυ and f−υ respectively and
the defining vector υ is the outward normal at the point x0 of Γf .

To extend the differentiation formulas and Green’s formula to the class
of BV functions it is necessary to define a certain borelian function f̄
Hd−1-almost everywhere equal to a given function f . This borelian rep-
resentant is the so called symmetric mean value of f . Let us indicate its
connection with the inward and outward traces of f , and consequently
with the approximate limits fυ and f−υ. We define f̄ by the limit (when
it exists)

f̄(x0) = lim
ε→0

ηε ∗ f(x0) (x0 ∈ G)

where the sequence {ηε}ε corresponds to an averaging kernel (see
[VoHu85, Ch. 4, Section 5, Section 6, p. 181]). It can be shown that if
x0 is a regular point of this function, the above limit exists and does not
depends on the averaging kernel. Besides at this point the equality

f̄(x0) =
1
2
[fυ(x0) + f−υ(x0)]

holds, where υ is a defining vector. In particular, if α is a real continuous
function, we can define the functional superposition by means of

ᾱ(f(x)) =
∫ 1

0

α(fυ(x))s + α(f−υ(x))(1 − s) ds.

Remark 1. An important property is that ᾱ(f(x0)) = α(f(x0)) for
any x0 point of approximate continuity of f . Since any summable func-
tion f is approximately continuous Ld-almost everywhere, then the above
equality holds Ld-almost everywhere. So, if f is Hd−1-approximately
continuous function, then ᾱ(f) = α(f) Hd−1-almost every where in G.

However, d-dimensional measure is too large when we try to apply dif-
ferentiation formulas to functions with measures as generalized deriva-
tives. The generalizes of the classical formulas of differentiation by using
the symmetric mean value to functions with measures as generalized
derivatives are shown in [VoHu85, Chapter 5, Section 1].

By applying these notions to the case of G = Q and d = N + 1, we
can obtain the following lemma which gives an important property of
the functions whose generalized derivatives are summable functions.
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Lemma 1. Let u ∈ W 1,1(Q). Then, u is HN -almost everywhere
approximately continuous on Q, i.e. HN (Γu) = 0.

Proof: If u ∈ W 1,1(Q) it is clear that u ∈ BV (Q). Then there exists
Λ ⊂ Q, with HN (Λ) = 0 and such that Q − Λ = {(t, x) ∈ Q: regular
points}. So, for any (t, x) in Γu − Λ, there exists an unique vector
υ = (υt,υx) (depending of the point (t, x) and where υt ∈ R and υx ∈
R
N ) which is the inward normal and there exist the approximated limits

uυ(t, x) and u−υ(t, x) (see [VoHu85]). Let S be a Borel subset of Γu−Λ.
Since u ∈ W 1,1(Q), one has that LN+1(S) = 0 (see [Vo67], [VoHu69]).
From that, and as u ∈ W 1,1(Q), it follows that

∫
S

∂u

∂xi
=

∫
Q

χS
∂u

∂xi
dx dt= 0, (i = 1, 2, 3, . . . , N)∫

S

∂u

∂t
=

∫
Q

χS
∂u

∂t
dx dt = 0.

(χS is the characteristic function of the subset S). Applying now Theo-
rem 2, p. 203 of [VoHu85] we get

0 =
∫
S

(uυ − u−υ)υxidHN ,

0 =
∫
S

(uυ − u−υ)υtdHN (i = 1, 2, 3, . . . , N).

The above equality implies that HN (S) = 0. Finally, as S is arbitrary,
we conclude that HN (Γu) = 0.

The main result of the general theory of BV functions that we shall use
later in order to prove our uniqueness theorem is given in the following
lemma:

Lemma 2. Let u ∈ BVt(Q). Then, the measure ut is HN -absolutely
continuous.

Remark 2. If we assume that u ∈ BVt(Q) and v ∈ L∞(Q) HN -
approximately continuous function on Q, then by the above lemma and

Remark 1 we have that v̄ = v
∂u

∂t
-almost every where on Q.

Proof of Lemma 2: Let A be a borelian subset of Q. Let AΩ be
the projection of A over the hyperplane {t = 0}. If HN (A) = 0 then
LN (AΩ) = 0 (see Vol’pert [Vo67]). For a fixed x ∈ Ω, we denote by
essV T

0 (u(x)) the essential variation of u(x)(t) := u(t, x) as the function of
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t ∈ (0, T ) given by ≡ sup {
∑

|u(ti, x) − u(ti−1, x)|}. Since u ∈ BVt(Q),
essV T

0 (u(x)) is defined almost everywhere x ∈ Ω with respect to the
Lebesgue measure and LN summable in AΩ (see [Vo67] and [EvG92]).
Moreover ∣∣∣∣∂u∂t

∣∣∣∣ (]0, T [×AΩ) =
∫

ΩA

essV T
0 (u(x)) dx = 0

since LN (AΩ) = 0 and so the statement of the lemma holds.

Lemma 3. Assume u ∈ L∞(Q) and b as in (1.5). If in addition we
assume that

(3.1) b(u) ∈ BVt(Q),

and

(3.2) b−1 locally Lipschitz on [−‖u‖L∞(Q), ‖u‖L∞(Q)]

then
u ∈ BVt(Q).

Proof: To prove this property, we show that ut is a bounded Radon
measure on Q. Following Vol’pert and Hudajaev [VoHu85, Chapter 4,
Section 2] it is enough to prove that there exists a positive constant
K such that |〈ut, ϕ〉| ≤ K‖ϕ‖L∞(Q) for all ϕ ∈ C1

c (Q). In order to

do that, we use the fact that ut = lim
h→0

u(t + h, x) − u(t, x)
h

in sense

of distributions. From the assumptions (3.1) and (3.2) we obtain the
result.

Remark 3. Condition (3.2) sometimes is verified in an implicit way.
For instance, if

(3.3)
{

b = λ1b1 + λ2b2, with b1, b2 continuous functions
λ1, λ2 ≥ 0, and b−1

1 , b2 locally Lipschitz;

and

(3.4) λ1 − L1L2λ2 > 0

where L1 and L2 are the Lipschitz constant of b−1
1 and b2 respectively

on the interval [−‖u‖L∞(Q), ‖u‖L∞(Q)], then necessarily b−1 is Lipschitz
on the interval [−‖u‖L∞(Q), ‖u‖L∞(Q)].
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Lemma 4. Let be u ∈ BVt(Q)∩L∞(Q) and let be η a locally bounded
borelian function in R. Define the function H given by

H(r) =
∫ r

0

η(s) ds,

for all r ∈ R. Then:
a) H(u) belongs to BVt(Q) ∩ L∞(Q);
b) the following relation∫

Qt

φ
∂H(u)
∂s

=
∫
Qt

φη̄(u)
∂u

∂s

holds for all φ bounded borelian function on Qt =]0, t[×Ω. In
particular, we have the following “chain rule formula”

∂H(u)
∂t

= η̄(u)
∂u

∂t

in measure sense;
c) for any v ∈ BVt(Q) ∩ L∞(Q), we have∫
Qt

H̄(u)
∂v

∂s
=

∫
Ω

H̄(u)(t, x)v̄(t, x) dx

−
∫

Ω

H̄(u)(0, x)v̄(0, x) dx−
∫
Qt

v̄η̄(u)
∂u

∂s
;

d) if in addition, η is a real continuous function, u and v are HN -
approximately continuous functions (i.e., HN (Γu)=0=HN (Γv))
then the relations given in b) and c) are also true replacing η̄(u),
H̄(u) and v̄ by η(u), H(u) and v respectively.

Proof: a) since H is a locally Lipschitz continuous function the con-
clusion comes from Lemma 3. b) is consequence of a), the rule chain for
the one-dimensional case (Theorem 13.2 of [Vo67]) and Theorem 4.5.9
of [F69]. c) is proved using the integration by parts formula for BV
function [VoHu85] and the above mentioned theorem of [F69]. Finally,
we obtain d). From the fact that u and v are HN -absolutely continuous
functions and the properties of functional superposition we obtain that
the borelian representatives η̄(u), H̄(u) and v̄ are equal to the functions
η(u), H(u) and v HN -almost everywhere where in Qt respectively (see
Remark 1). And finally, applying Lemma 2 (see Remark 2) we conclude
the proof.

Remark 4. Notice that if u ∈ BVt(Q) ∩ L∞(Q) and H ∈ C1(R),
then, Lemma 4 implies H(u) ∈ BVt(Q) ∩ L∞(Q). If in addition u is
HN -approximately continuous function on Q then H(u)t = H ′(u)ut.
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4. Comparison and continuous dependence results

In this section, we give several results on the comparison and contin-
uous dependence of BV solutions of the problem (1.1), (1.2) and (1.3)
under the main condition (4.3). We shall use later the inequality

(4.1) |φ(η) − φ(η̂)|p′ ≤ C {[φ(η) − φ(η̂)] · [η − η̂]}β/2 {|η|p + |η̂|p}1− β
2

where β = 2 if 1 < p ≤ 2 and β = p′ if p ≥ 2 which holds for any η and
η̂ in R

N from Tartar’s inequality (see e.g. Dı́az-de Thelin [DT94]).

Theorem 1. Assume that b, k and g verify (1.5), (2.1), (2.2) and
(2.3). Let (f1, u01) and (f2, u02) be a pair of data satisfying (2.4) and
(2.5). Let u1 and u2 be two BV solutions of the problem (1.1), (1.2) and
(1.3) associated to (f1, u01) and (f2, u02) respectively. We also suppose
that

(4.2) u1 and u2 ∈ BVt(Q)

and that

(4.3) HN (Γu1) = HN (Γu2) = 0.

Then, for any t ∈ [0, T ] we have

∫
Ω

[b(u1(t, x))−b(u2(t, x))]+ dx≤eC
∗t




∫
Ω

[b(u01(x))−b(u02(x))]+ dx

+

t∫
0

∫
Ω

e−C
∗s [f1(s, x) − f2(s, x)]+ dx ds


 .

Remark 5. i) The regularity (4.2) on the functions ui can be obtained
by assuming some regularity properties on function b. In particular we
note that if b−1 is a locally Lipschitz continuous function, condition
b(ui) ∈ BVt(Q) implies (4.2) (see Lemma 3). ii) Also, we can assume b
as in (3.3) and if M is a positive constant such that ‖ui‖L∞(Q) ≤ M , for
i = 1, 2 and we suppose that b−1

1 and b2 have Lipschitz constants L1 and
L2 respectively on the interval [−M,M ] with

(4.4) λ1 − L1L2λ2 > 0,

then (4.2) holds (see the Remark 3 and Lemma 3).



538 J. I. D́ıaz, J. F. Padial

Remark 6. The case b locally Lipschitz continuous function was
previously considered in [DT94].

Remark 7. If ut ∈ L1(Q) then u ∈ BVt(Q) and assumption (4.4) is
not needed. Notice that in that case assumption (4.3) always holds due
to Lemma 1.

Some consequences of the above theorem are the following results:

Corollary 1. Let u1 and u2 be two BV solutions as in Theorem 1
associated to the data (f1, u01) and (f2, u02). Assume that f1 ≤ f2 and
u01 ≤ u02 . Then u1 ≤ u2 in Q.

Proof: Since f1 ≤ f2 and u01 ≤ u02 , then [f1 − f2]+ = 0 and
[u01 − u02 ]+ = 0 respectively. Applying the above theorem, we obtain∫

Ω

[b(u1(t, x)) − b(u2(t, x))]+ dx ≤ 0

and so u1 ≤ u2 thanks to the monotonicity of function b.

Corollary 2. If u1 and u2 are two BV solutions like in Theorem 1,
for any t ∈ [0, T ] we have

‖b(u1(t, ·)) − b(u2(t, ·))‖L1(Ω) ≤ eC
∗t


‖b(u01) − b(u02)‖L1(Ω)

. +

t∫
0

e−C
∗s‖f1 − f2‖L1(Ω) ds


 .

Proof: It suffices to recall that ‖ ·‖L1(Ω) = |(·)+|L1(Ω) + |(·)−|L1(Ω) and
to apply Theorem 1 (notice that given s ∈ R, we call s− = max{0,−s} =
(−s)+ and then |s| = s+ + s− = s+ + (−s)+).

Finally, we obtain the uniqueness of BV solutions in the class of func-
tions given in Theorem 1:

Corollary 3. At most there exits one BV solution u of (1.1), (1.2)
and (1.3) under the assumptions (1.5), (2.1), (2.2), (2.3), (2.4) and
(2.5), in the class of solutions verifying (4.2) and (4.3).

Proof: Take f1 = f2 and u01 = u02 in Corollary 2.

Notice that the above results are also true under the conditions of
Remark 5 given in the case i) and in the case ii).
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Corollary 4. Assume that b, k and g verify (1.5), (3.3), (2.1), (2.2)
and (2.3). Let (f1, u01) and (f2, u02) be a pair of data satisfying (2.4)
and (2.5). Let u1 and u2 be two BV solutions of the problem (1.1), (1.2)
and (1.3) associated to (f1, u01) and (f2, u02) respectively. Also suppose
that ‖ui‖L∞(Q) ≤ M with M > 0 for i = 1, 2, and suppose that b−1

1

and b2 have Lipschitz constants L1 and L2 respectively in the interval
[−M,M ] satisfying (4.4). Finally, we also assume (4.3). Then, for any
t ∈]0, T [ we have that

∫
Ω

[b(u1(t, x))−b(u2(t, x))]+ dx≤eC
∗t




∫
Ω

[b(u01(x))−b(u02(x))]+ dx

+

t∫
0

∫
Ω

e−C
∗s [f1(s, x) − f2(s, x)]+ dx ds


 .

Proof: Under assumption (4.4), we obtain that u1 and u2 ∈ BVt(Q)
from Lemma 3.

Arguing as before, we can obtain analogous results to Corollaries 1-3
for BV solutions which lie in [−M,M ]. On the other hand, we can make
explicit M for bounded data

Lemma 5. Let u be a weak solution of (1.1), (1.2) and (1.3). Assume
(1.5), (2.1), (2.2), (2.3), and for the data, we assume u0 ∈ L∞(Ω) and
f ∈ L1(0, T ;L∞(Ω)). Then

‖b(u)‖L∞(Q) ≤ eC
∗T

{
‖b(u0)‖L∞(Ω +

∫ T

0

e−C
∗s‖f(s, ·)‖L∞(Ω) ds

}
.

Thus, there exists a positive constant M > 0 such that

‖u‖L∞(Q) ≤ M.

Proof: See e.g. Benilan [Be81].

Thanks to Lemma 5 and Corollary 4, we have

Corollary 5. Assume u0 ∈ L∞(Ω) and f ∈ L1(0, T ;L∞(Ω)). Let
M > 0 given by Lemma 5. Assume also (1.5), (3.3), (2.1), (2.2), (2.3)
and (4.3). Then, there exists at most one BV solution of (1.1), (1.2)
and (1.3).
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Proof of Theorem 1: For any n ∈ N, we define Tn, approximation of
the sign0

+ function (sign0
+(s) := −1 if s < 0, 0 if s = 0, 1 if s > 0), by

Tn(s) =




0 s ≤ 0,

n2s2

2
0 < s ≤ 1

n
,

2ns− n2s2

2
− 1

1
n
< s ≤ 2

n
,

1 s >
2
n
.

It is easy to see that

(4.5)




0 ≤ T ′
n(s) ≤ n, lim

n→∞
sT ′

n(s) = 0,

|Tn(s)| ≤ 1, lim
n→∞

Tn(s) = sign+(s) and

lim
n→∞

sTn(s) = s+ =
{

0 s ≤ 0
s s > 0.

To simplify the notation, we set z = b(u1) − b(u2) and ξ1 = ∇u1 −
k(b(u1))e, ξ2 = ∇u2 − k(b(u2))e. We have that Tn(u1 − u2) ∈
Lp(0, T ;W 1,p

0 (Ω)) ∩ L∞(Q) is an admissible test functions since u1 and
u2 are BV solutions and Tn is a regular function. As moreover, we are
assuming (4.3), then T̄n(u1 − u2) = Tn(u1 − u2) HN -a.e. in Q. Thus,
and thanks to Lemma 2, we can adopt the notation (2.11); that is

〈b(ui)t, Tn(u1 − u2)〉X,X′ =
∫
Qt

T̄n(u1 − u2)b(ui)t

=
∫
Qt

Tn(u1 − u2)b(ui)t i = 1, 2.

Considering the relations (2.9) verified by u1 and u2 and subtracting, we
obtain

−
∫
Qt

Tn(u1 − u2)zt =
∫
Qt

[φ(ξ1) − φ(ξ2)] · ∇Tn(u1 − u2) dx dt

+
∫
Qt

(g(x, u1) − g(x, u2))Tn(u1 − u2) dx dt

−
∫
Qt

(f1(t, x) − f2(t, x))Tn(u1 − u2) dx dt

where Qt =]0, t[×Ω, (0 < t < T ).
In order to pass to the limit we need some technical results
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Lemma 6. Under the assumptions of Theorem 1, we have

lim
n→∞

∫ t

0

∫
Ω

Tn(u1 − u2)
∂(b(u1) − b(u2))

∂s

=
∫

Ω

[b(u1) − b(u2)]+(t) dx−
∫

Ω

[b(u01) − b(u02)]+ dx

for any t ∈ [0, T ].

Proof of Lemma 6: Since u1 and u2 are BV solutions, we have that
b(u1) and b(u2) belong to BVt(Q) ∩ L∞(Q). On the other hand, by
Lemma 4 and Remark 4, Tn(u1 − u2) ∈ BVt(Q) ∩ L∞(Q). Moreover by
assumption (4.3), for all n ∈ N , Tn(u1−u2) is also an HN -approximately
continuous function (see [VoHu85, Theorem 2, p. 164]). Thus, using
that b is strictly increasing

(4.6) Tn(u1 − u2) −−−→
n→∞

sign0
+(u1 − u2)

= sign0
+(b(u1) − b(u2))HN—a.e. in Q.

Applying the Lebesgue’s theorem with measure ∂z
∂t , we obtain

(4.7)

lim
n→∞

∫
Qt

Tn(u1 − u2)
∂z

∂s
=

∫
Qt

sign+(u1 − u2)
∂z

∂s

=
∫
Qt

sign+(z)
∂z

∂s

= lim
n→∞

∫
Qt

Tn(z)
∂z

∂s

since, by Lemma 2, ∂z
∂t is HN -absolutely continuous. By part c) and d)

of Lemma 4 we have∫
Qt

Tn(z)
∂z

∂s
=

∫
Ω

Tn(z)(t)z(t) dx−
∫

Ω

Tn(z)(0)z(0) dx−
∫
Qt

zT ′
n(z)

∂z

∂s

and passing to the limit we get

(4.8) lim
n→∞

∫
Qt

Tn(z)
∂z

∂s
=

∫
Ω

sign+(z(t))z(t) dx−
∫

Ω

sign+(z(0))z(0) dx

from Lebesgue’s theorem and the conclusion holds.
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Lemma 7. Under the assumption of Theorem 1 we have

(4.9) lim
n→∞

∫
Ω

T ′
n(u1(t) − u2(t))[φ(ξ1(t)) − φ(ξ2(t))]

· [∇u1(t) −∇u2(t)] dx ≥ 0

for a.e. t ∈]0, T [, i.e. the diffusion operator is T -acretive in L1(Ω).

Proof of Lemma 7: It is a slight improvement of Dı́az-de Thelin
[DT94]. For the sake of completeness we give the detailed proof. For
any n ∈ N, the integral term in (4.9) it can be written as the addition of
the integrals

I1(n) =
∫

Ω

T ′
n(u1 − u2)[φ(ξ1) − φ(ξ2)] · [ξ1 − ξ2] dx

and

I2(n) =
∫

Ω

T ′
n[φ(ξ1) − φ(ξ2)] · e(k(b(u1)) − k(b(u2))) dx.

Here we drop writing the t-dependence. We shall find an estimate on
|I2(n)| in terms of I1(n). Due to the assumption (2.1) on k, we need to
distinguish the cases 1 < p ≤ 2 and p > 2.

Case 1 < p ≤ 2: Applying Young’s inequality we get

(4.10) |I2(n)| ≤ ε

p′

∫
Ω

T ′
n|φ(ξ1) − φ(ξ2)|p

′

+
1
pε

∫
Ω

T ′
n|k(b(u1)) − k(b(u2))|p

for any ε > 0. Using the inequality (4.1) to the first term of the right
hand side of (4.10), by assumption (2.1) on k and the properties of T ′

n

we obtain that

|I2(n)| ≤ εp
′
C

p′
I1(n) +

2Ĉ
εpp

(
2
n

)γp−1

LN
({

x : 0 < u1 − u2 <
2
n

})
.

Taking εp
′
= p′/C, we get

−2ĈCp−1

pp′

(
2
n

)γp−1

LN
({

x : 0 < u1 − u2 <
2
n

})
≤ I1(n) + I2(n).
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Now, since γp− 1 > 0, we have that

lim
n→∞

I1(n) + I2(n) ≥ 0

and then (4.9) is proved.

Case p > 2: By Hölder inequality

(4.11) |I2(n)| ≤
{∫

Ω

T ′
n|φ(ξ1) − φ(ξ2)|p

′
dx

} 1
p′

·
{∫

Ω

T ′
n|k(b(u1)) − k(b(u2))|p dx

} 1
p

.

Using inequality (4.1) where we set β = p′ and η1 = ξ1, η2 = ξ2, the first
multiplicative factor in (4.11) is bounded by

C
1
p′

{∫
Ω

{
T ′
n

[
φ(ξ1) − φ(ξ2)

]
[ξ1 − ξ2]

} p′
2
{
T ′
n(|ξ1|p + |ξ2|p)

}1− p′
2
dx

} 1
p′

.

Using again the Hölder inequality and the properties of T ′
n, we obtain

the estimate{∫
Ω

T ′
n|φ(ξ1) − φ(ξ2)|p

′
dx

} 1
p′

≤ A(n)I
1
2
1 (n)n

2−p′
2p′

where

A(n) = C
1
p′

{∫
Ω∩{0<u1−u2<

2
n}

|ξ1|p + |ξ2|p dx
} 2−p′

2p′

.

For the second multiplicative factor in (4.11), we have

{∫
Ω

T ′
n|k(b(u1)) − k(b(u2))|p dx

}1/p

≤ 2γn
1−pγ

p

{
LN

{
x : 0 < u1 − u2 <

2
n

}}1/p

from assumption (2.1) on k and (4.5). Combining both inequalities, we
arrive to

|I2(n)| ≤ 2γA(n)n
2−p′
2p′ + 1−pγ

p I
1
2
1 (n)LN

({
x : 0 < u1 − u2 <

2
n

}) 1
p

.
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Since 2γA(n)LN
({

x : 0 < u1 − u2 <
2
n

})1/p

is uniformly bounded for

any n ∈ N and the exponent
2 − p′

2p′
+

1 − pγ

p
is positive, due to (2.1),

we conclude that
lim
n→∞

(I1(n) + I2(n)) ≥ 0

which ends the proof.

End of the proof of Theorem 1: By the previous two lemmas, we obtain
the key inequality∫

Ω

[b(u1(t, x)) − b(u2(t, x))]+ dx ≤
∫

Ω

[b(u01(x)) − b(u02(x))]+ dx

−
∫
Qt

[g(x, u1) − g(x, u2)] sign+(u1 − u2) dx ds

+
∫
Qt

[f1(t, x) − f2(t, x)] sign+(u1 − u2) dx ds.

Using the assumption (2.3) on g, the conclusion of the theorem is im-
mediate if C∗ is zero. More in general we set vj(t, x) = e−C

∗tb(uj(t, x))
for j = 1, 2. Then sign+(v1 − v2) = sign+(u1 − u2) and ∂vj

∂t = −C∗vj +
e−C

∗t ∂b(uj)
∂t are also bounded regular measures in Q. Choosing Tn(v1 −

v2) as test function and working as before, we obtain∫
Ω

[v1(t, x) − v2(t, x)]+ dx ≤
∫

Ω

[v01(x) − v02(x)]+ dx

− C∗
∫
Qt

[v1(s, x) − v2(s, x)]+ dx ds

−
∫
Qt

[g(x, u1) − g(x, u2)]e−C
∗s sign+(v1(s, x) − v2(s, x)) dx ds

+
∫
Qt

[f1(s, x) − f2(s, x)]e−C
∗s sign+(v1(s, x) − v2(s, x)) dx ds.

By assumption (2.3), one has that

− [g(x, u1) − g(x, u2)]e−C
∗s sign+(v1 − v2)

≤ C∗[b(u1) − b(u2)]e−C
∗s sign+(v1 − v2) = C∗[v1 − v2]+

and thus, the conclusion holds.

Remark 8. The assumption (4.3) on the measure of the jump points
set is merely needed in the proof of Lemma 6. This assumption could
be replaced by any other condition implying the conclusion of Lemma 6.
In particular, we have
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Corollary 6. Let u1 and u2 be bounded BV solutions of (1.1), (1.2)
and (1.3). Assume the hypotheses of Theorem 1 but replacing (4.3) by

(4.12)
{

there exist two homeomorphisms on R,Ψ1 and Ψ2,

such that Ψ1(u1),Ψ2(u2) ∈ W 1,1(Q).

Then u1 and u2 verify the comparison criterium given in Theorem 1.

Proof: By Lemma 1 condition (4.3) holds for ui, i = 1, 2.

5. Existence of bounded BV solutions

In order to obtain the existence of bounded BV solutions for prob-
lem (1.1), (1.2), (1.3) we shall assume some additional conditions on
functions f and u0:

(5.1) f ∈ L∞(Q) ∩BVt(Q),

and

(5.2) u0 ∈ L∞(Ω) ∩W 1,p
0 and φ(∇u0 − k(b(u0))e) ∈ (BV (Ω))N .

We state our existence result in the following way:

Theorem 2. Assume (1.5) on b and also that

(5.3) b−1 is a locally Lipschitz continuous function.

We assume also (2.1), (2.2), (2.3), (5.1) and (5.2). Then there ex-
ists a bounded BV solution u of (1.1), (1.2) and (1.3). Moreover u ∈
C([0, T ];L1(Ω)).

Proof: We start by considering, a sequence of regular problems having
a unique solution by the classical theory of partial differential equations.
After that, we shall obtain suitable a priori estimates. Finally passing to
the limit we shall find a bounded BV solution. In view of the structural
assumptions, we shall distinguish two cases, according p satisfies 1 < p <
2 or 2 ≥ p.

Case 1 < p < 2: Regularization. We define a sequence of uniformly
parabolic problems with coefficients and free term bounded regular func-
tions. Consider the following regularized equation in Q

(5.4)
∂bm(u)

∂t
− div φr(∇u− ks(bm(u))e) + gn(x, u) = fl(t, x),
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where we define the vectorial function φr by

φr(ξ) =




(
|ξ|2 +

1
r

) p−2
2

ξ |ξ| < 1
r
,

|ξ|p−2ξ |ξ| ≥ 2
r
,

φr(ξ)
1
r
≤ |ξ| < 2

r
,

for any r ∈ N, and such that φr ∈ C1(RN ) verifies

(5.5) |φr(ξ)| ≤ |ξ|p−1 ∀ξ ∈ R
N

and

(5.6)
α|ξ|2

(1 + |ξ|)2−p ≤ φr(ξ) · ξ ≤ |ξ|p

for any ξ in R
N α := 2

p−2
2 . For any m ∈ N, we define

bm(η) =
1
m
η + b̄m(η)

with b̄m the Yosida approximation of b. We recall that b̄m converges
uniformly on compacts sets to b, b̄m is a Lipschitz nondecreasing function
such that |b̄m| ≤ |b| and that bm and b−1

m are Lipschitz nondecreasing
functions; see [Be81].

We take a sequence of functions {ks}∞s=1 belonging to C∞(R) such
that they verify (2.1) and ks converges to k uniformly on compacts of R.

For any integer n, we consider a function gn ∈ C∞(Ω × R) satisfying
the assumptions (2.2) and (2.3) uniformly on n and such that gn(x, η)
converges to gn(x, η) in L1(Ω) for any fixed η in R, for a.e. x ∈ Ω, as
n → ∞.

Let fl ∈ C∞([0, T ] × Ω̄) such that

‖fl‖L∞(Q) ≤ C‖f‖L∞(Q), ‖fl‖W 1,1(0,T ;L1(Ω))

≤ C‖f‖BVt
for any l ∈ N

and such that fl converges to f in L1(Q) as l → ∞.

Finally we regularize the initial condition. We consider u0,q ∈ C∞
0 (Ω)

such that u0,q
∗
⇀ u0 in L∞(Ω) as q → ∞ and such that ‖φr(∇u0,q −

ks(bm(u0,q))e)‖BV (Ω)N ≤ ‖φr(∇u0 − k(b(u0))e)‖BV (Ω)N .

The equation (5.4) is uniformly parabolic. So, by well-know result
(see e.g. Ladyzenskaja, Solonnikov and Uralceva [LSU68, Chap. V])
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there exists a unique classical solution û = um,r,s,n,l,q of (5.4) satisfying

û(t, x) = 0 on Σ,

bm(û(0, x)) = bm(u0,q(x)) on Ω.

In what follows, we denote by û the function um,r,s,n,l,q. In order to
study the convergence of the sequence û we shall need some uniform
estimates in suitable functional spaces.

A priori estimates. By the maximum principle

(5.7) |û(t, x)| ≤ M1 ∀(t, x) ∈ Q,

where M1 is a positive constant independent of m, r, s, l and q. On the
other hand, if we denote by v̂ := bm(û)t and we differentiate equation
(5.4) with respect to t, we obtain that

(5.8)

v̂t = div

{(
∂φjr
∂ξi

(
∂

∂xi
[(b−1

m )′(bm(û))v̂] − k′s(bm(û))eiv̂
))

j=1,... ,N

}

− g′n(x, û)(b−1
m )′(bm(û))v̂ +

∂fl
∂t

.

For any η > 0, we define the function Hη approximating the absolute
value function in the following way: we first introduce

hη(σ) =




2
η

(
1 − |σ|

η

)
|σ| < η

0 |σ| ≥ η,

and finally we define

Hη(σ) =
∫ σ

0

hη(τ)dτ and Hη(σ) =
∫ σ

0

Hη(τ)dτ.

It is clear that

hη ≥ 0, lim
η→0

σhη(σ) = 0,

|Hη| ≤ 1, lim
η→0

Hη(σ) = sgn0(σ)

and
lim
η→0

Hη(σ) = |σ|.



548 J. I. D́ıaz, J. F. Padial

Multiplying equation (5.8) by Hη(v̂), and integrating on Qt =]0, t[×Ω,
we get

∫
Ω

Hη(v̂(t, x)) dx−
∫

Ω

Hη(v̂(0, x)) dx

≤−
∫
Qt

(b−1
m )′′(bm(û))v̂hη(v̂)

∂φjr
∂ξi

∂bm(û)
∂xi

∂v̂

∂xj
dx ds

+
∫
Qt

v̂hη(v̂)k′s(bm(û))
∂

∂ξi
φjrei

∂v̂

∂xj
dx ds

−
∫
Qt

g′n(x, û)(b−1
m )′(bm(û))v̂Hη(v̂) dx ds

+
∫
Qt

∂fl
∂t

Hη(v̂) dx ds,

since û(s, x) = 0 on [0, T ] × ∂Ω, and then v̂(s, x) = 0 on [0, T ] × ∂Ω.
Passing to the limit when η → 0, we obtain the inequality

∫
Ω

|v̂(t, x)| dx ≤
∫

Ω

|v̂(0, x)| dx +
∫
Qt

∂fl
∂t

(s, x) sgn0(v̂) dx ds

−
∫
Qt

g′n(x, û)(b−1
m )′(bm(û))|v̂| dx ds

from the properties of hη and the monotonicity of the vectorial function
φr. Now, by (2.3), we arrive

−
∫
Qt

g′n(x, û)(b−1
m )′(bm(û))|v̂| ≤ C∗

∫
Qt

|v̂|b′m(û)(b−1
m )′(bm(û)).

Since (b−1
m )′(bm(s)) = 1/b′m(s) wherever b′m(s) �= 0, we have that the

last integral is equal to
∫
Qt−{(s,x):b′m(û(s,x))=0}

|v̂| dx ds. Taking this into

account, one verifies that

∫
Ω

|v̂(t, x)| dx ≤
∫

Ω

|v̂(0, x)| dx +
∫
Qt

∂fl
∂t

(s, x) sgn(v̂) dx ds

+ C∗
∫
Qt

|v̂| dx ds.

Using the equation satisfied by ∂
∂tbm(û(0, x)) and the uniform bounded-
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ness of the data, we get∫
Ω

∣∣∣v̂(t, x))
∣∣∣ dx ≤

∫
Ω

∣∣∣∣ ∂∂tbm(û(0, x))
∣∣∣∣ dx +

∫
Qt

∣∣∣∣∂fl∂t

∣∣∣∣ dx ds
+ C∗

∫
Qt

|v̂|(s, x) dx ds

≤
∫

Ω

|div φ(∇u0,q − ks(bm(u0,q))e)| dx

+
∫

Ω

|gn(x, u0,q)| dx +
∫

Ω

|fl(0, x)| dx

+
∫
Qt

∣∣∣∣∂fl∂t

∣∣∣∣ dx ds + C∗
∫
Qt

|v̂|(s, x) dx ds

≤ C1 + C∗
∫
Qt

|v̂|(s, x) dx ds.

Applying Gronwall’s lemma, we obtain that∫
Ω

|v̂| dx ≤ eC
∗t for any t ∈ [0, T ].

Thus

(5.9)
∫

Ω

∣∣∣∣∂bm(û)
∂t

∣∣∣∣ dx ≤ M2 for any t ∈ [0, T ]

with M2 = eC
∗T . From (5.7) and (5.3)

(5.10)
∫

Ω

∣∣∣∣ ∂∂t û
∣∣∣∣ dx ≤ M3 ∀t ∈ [0, T ].

Now, we shall show that there exists M4 > 0, such that

(5.11)
∫

Ω

|∇û|p dx ≤ M4

uniformly in t ∈ [0, T ], m, r, s, n, l and q. Firstly, we shall show that
there exists an uniform positive constant M ′ such that

(5.12)
∫

Ω

|ξ̂|p dx ≤ M ′ ∀t ∈ [0, T ]

where ξ̂ := ∇û− ks(bm(û))e. To do that, we multiply (5.4) by û and we
integrate on Ω: The∫

Ω

ûbm(û)t +
∫

Ω

φr(ξ̂) · ∇û dx +
∫

Ω

gn(x, û)û dx =
∫

Ω

flû dx.
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In what following it will appear several positive constants denoted by Ci,
i = 2, 3, 4, . . . which are independent on t and the parameters m, r, s, n,
l and q. They will dependent on the exponent p, the measure of Ω and
the above estimates. Some of them are also function of some positive
parameters ε and δ we shall introduce later. We shall only indicate the
ε and δ dependence.

By estimates (5.7) and (5.9), the assumption (2.3) on g, (5.1) on f and
the properties of gn and fl, there exists a positive constant C2 uniform
in m, r, s, n, l and q, such that∫

Ω

φr(ξ̂) · ξ̂ dx +
∫

Ω

φr(ξ̂)ks(bm(û))e dx ≤ C2

for any t. By Young’s inequality, we have

∫
Ω

φr(ξ̂) · ξ̂ dx ≤ C2 +
εp

′

p′

∫
Ω

|φr(ξ̂)|p
′
dx +

1
εpp

∫
Ω

|ks(bm(û))e|p dx

where ε is an arbitrary positive real number. The last integral is uni-
formly bounded in view of (5.7) and the assumptions on the sequences
{ks} and {bm}. By the properties of φr, the first integral of the right
hand side is bounded by

∫
Ω
|ξ̂|p dx, for any t in [0, T ]. Hence,

(5.13)
∫

Ω

φr(ξ̂) · ξ̂ dx ≤ C3(ε) +
εp

′

p′

∫
Ω

|ξ̂|p dx

for some positive constant C3 = C3(ε). Besides, from the properties of
φr, we have that

(5.14) α

∫
Ω

|ξ̂|2

(1 + |ξ̂|)2−p
dx ≤

∫
Ω

φr(ξ̂) · ξ̂ dx.

On the other hand, applying Young’s inequality to
∫
Ω

|ξ̂|p
(1+|ξ̂|)2−p

(1 +

|ξ̂|)2−p dx with exponents 2
p and 2

2−p we get

∫
Ω

|ξ̂|p dx ≤ p

2δ2/p

∫
Ω

|ξ̂|2

(1 + |ξ̂|)2−p
dx + δ2/(2−p) 2 − p

2

∫
Ω

(1 + |ξ̂|)p dx

for any δ > 0. Hence

(5.15) (1 − C4δ
2/(2−p))

∫
Ω

|ξ̂|p dx ≤ C5(δ) +
p

2δ2/p

∫
Ω

|ξ̂|2

(1 + |ξ̂|)2−p
dx.
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Using the estimates (5.13) and (5.14) into (5.15), we obtain the inequality

α(1 − C4δ
2/(2−p))

∫
Ω

|ξ̂|p dx ≤ C5 +
p

2δ2/p

{
C3 +

εp
′

p′

∫
Ω

|ξ̂|p dx
}
,

which implies

α

(
1 − C4δ

2/(2−p) − C6
εp

′

δ2/p

)∫
Ω

|ξ̂|p dx ≤ C7(ε, δ)

for some positive constant C7 depending on ε, δ. To verify the estimate
(5.12), it is enough now to choose 0 < δ � 1 and ε � 1 such that

εp
′ � δ2/p and 1 − C4δ

2/(2−p) − C6
εp′

δ2/p > 0. Now (5.12) implies (5.11)

from the uniform boundedness of
∫

Ω

|ks(bm(û))|p dx.

Finally, multiplying the relation (5.4) by v ∈ X ′ and integrating on
Q, we obtain, using the Hölder’s inequality that

∣∣∣∣
∫
Q

v
∂bm(û)

∂t

∣∣∣∣ ≤
[∫

Q

|φr(ξ̂)|p
′
dx dt

]1/p′ [∫
Q

|∇v|p dx dt
]1/p

+ ‖v‖L∞(Q)

∫
Q

|gn(x, û)| dx dt

+
[∫

Q

|fl|p
′
dx dt

]1/p′ [∫
Q

|v|p dx dt
]1/p

.

The properties (5.5) and (5.6) of φr, the assumptions (2.2) on g and (5.1)
on f and the properties on gn and fl lead to estimate∣∣∣∣

∫
Q

v
∂bm(û)

∂t

∣∣∣∣ ≤ M5‖v‖Lp(0,T ;W 1,p
0 (Ω))capL∞(Q)

for some positive constant M5 independent on m, r, s, n, l and q where
we used estimates (5.7) and (5.12). In this way, we obtain the following
uniform estimate in Lp

′
(0, T ;W−1,p′(Ω)) + L1(Q)

(5.16)
∥∥∥∥∂bm(û)

∂t

∥∥∥∥
Lp′ (o,T ;W−1,p′ (Ω))+L1(Q)

≤ M5.

Passing to the limit. By the estimates (5.7), (5.9), (5.10), (5.11) and
(5.16) we can find a bounded BV solution of problem (1.1), (1.2) and (1.3)
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as limit of some subsequence of {û} := {um,r,s,n,l,q} (which we will de-
note again by {û}). Moreover, this solution belongs to C([0, T ], L1(Ω)).
Indeed by the estimates (5.7), (5.10) and (5.11) and Corollary 4 of Si-
mon [S87], there exists a subsequence of {û} (called again {û}) and a
function u ∈ C([0, T ], L1(Ω)) such that û → u in C([0, T ], L1(Ω)). In
particular,

û → u in L1(Q)

and
û → u a.e. in Q

(except, perhaps, for a subsequence). By (5.7)

û
∗
⇀ u in L∞(Q) weakly*

and
û ⇀ u in Lp(0, T ;W 1,p

0 (Ω))

from (5.11). By (5.7) and the assumption on bm we can deduce the weak*
convergence bm(û) ∗

⇀ β in L∞(Q) for some β ∈ L∞(Q). The fact that
û converges to u almost everywhere of Q and the properties of bm and b
imply that bm(û) → b(u) a.e. point of Q. By Lebesgue’s Theorem there is
strong convergence of bm(û) to b(u) in Lσ(Q) (1 ≤ σ < ∞). Analogously,
bm(u0,q) goes to b(u0) strongly in Lσ(Ω) (1 ≤ σ < ∞). Now, by (5.9)
and as bm(û) → b(u) in L1(Q), we have that b(u) ∈ BVt(Q). Finally,
∂bm(û)
∂t → ∂b(u)

∂t in the sense of distributions. Moreover, ∂bm(û)
∂t converges

to ∂b(u)
∂t weakly in Lp

′
(0, T ;W−1,p′(Ω)) + L1(Q) from (5.16). By usual

argument, we obtain that gn(x, û) converges to g(x, u) in L1(Q). Since
û is bounded in L∞(0, T ;W 1,p

0 (Ω)), then φr(∇û − ks(bm(û))e) is also
bounded in L∞(0, T ; (Lp

′
(Ω))N ) and thus there exists a subsequence of

{û} (again called {û} such that φr(∇û − ks(bm(û))e) converges to Y

weakly* in L∞(0, T ; (Lp
′
(Ω))N ). Multiplying the equation (5.4) by a

test function v ∈ Lp(0, T ;W 1,p
0 (Ω)) ∩ L∞(Q) and integrating on Q, we

obtain that

(5.17)
∫
Q

v
∂bm(û)

∂t
+

∫
Q

φr(∇û− ks(bm(û))e) · ∇v

+
∫
Q

gn(x, û)v =
∫
Q

flv.

Let us see that u verifies (2.9). To do that, we pass to the limit in
the variables in (5.17) when m, r, s, n, l and q → ∞. By the above
convergences, we arrive to

(5.18)
〈
∂b(u)
∂t

, v

〉
X,X′

+
∫
Q

Y · ∇v +
∫
Q

g(x, u)v =
∫
Q

fv.
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for all v ∈ Lp(0, T ;W 1,p
0 (Ω)) ∩ L∞(Q). We have to prove now that

(5.19) Y ≡ φ(∇u− k(b(u))e)

which is not completely obvious due to the nonlinear character of the
differential operator. We shall prove this by using Minty’s type argument
(see also [DT94]). We shall show that

(5.20)
∫

Ω

[Y −φ(∇χ−k(b(u))e)] · [∇u−∇χ] dx ≥ 0, for any χ ∈ W 1,p
0 .

Then, we can obtain (5.19) by taking ξ ∈ W 1,p
0 (Ω) arbitrary and the

function χ = u − λξ with λ > 0 (λ < 0). To prove (5.20), we take
0 ≤ ϕ ∈ c∞c 0, T and for any χ ∈ W 1,p

0 (Ω) we use the decomposition

(5.21)
∫
Q

[φr(∇û− ks(bm(û))e) − φ(∇χ− k(b(u))e)] · ∇(u− χ)ϕ(t)

= I1 + I2 + I3 + I4

where

I1 =
∫
Q

φr(∇û− ks(bm(û))e) · ∇(u− û)ϕ(t)

I2 =
∫
Q

[φr(∇û− ks(bm(û))e) − φr(∇χ− ks(bm(û))e)] · ∇(û− χ)ϕ(t)

I3 =
∫
Q

φr(∇χ− ks(bm(û))e) · ∇(û− u)ϕ(t)

and

I4 =
∫
Q

[φr(∇χ− ks(bm(û))e) − φ(∇χ− k(b(u))e)] · ∇(u− χ)ϕ(t).

Due to monotonicity of φr, the integral I2 is non negative. On the other
hand

(5.22) lim
∫
Q

|φr(∇χ− ks(bm(û))e) − φ(∇χ− k(b(u))e)|p′ = 0

from the properties of φr, ks, bm, û. Thus lim I3 = 0 = lim I4. Finally,
multiplying the equation (5.4) by uϕ(t) and ûϕ(t), integrating and sub-



554 J. I. D́ıaz, J. F. Padial

tracting, we obtain that

I1 =
∫
Q

φr(∇û− ks(bm(û))e) · ∇(u− û)ϕ(t)

= −
∫
Q

∂bm(û)
∂t

uϕ(t)(5.23)

+
∫
Q

∂bm(û)
∂t

ûϕ(t)(5.24)

−
∫
Q

gn(x, û)(u− û)ϕ(t)(5.25)

+
∫
Q

fl(u− û)ϕ(t).(5.26)

The integrals (5.25) and (5.26) converge to zero when m, r, s, n, l,
q → ∞. The weak convergence of bm(û)t to b(u)t in X and the fact that
uϕ(t) ∈ X ′, imply that the integral (5.23) (i.e. −〈∂bm(û)

∂t , uϕ(t)〉X,X′)
converges to

(5.27) −
〈
∂b(u)
∂t

, uϕ(t)
〉
X,X′

.

We shall also show that the integral (5.24) converges to (5.27) as in
[DT94]. We define

Bm(η) =
∫ η

0

(bm(η) − bm(s)) ds ∀η ∈ R

and
zû(t) =

∫
Ω

Bm(û(t, x)) dx.

It is easy to see that Bm(û) is bounded in Q and thus

‖zû(t)‖L1(0,T ) is uniformely bounded.

As in Lemma 2 of Bamberger [Ba77] we get that∫
Ω

û(t)
∂bm(û)(t)

∂t
dx =

〈
∂bm(û)(t)

∂t
, û(t)

〉
=

dzû
dt

(t)

a.e. t ∈]0, T [, in the sense of D′(0, T ). Now, thanks to the convergence
of û and bm(û) and the boundedness of zû in L1(0, T ) we obtain that

(5.28) zû → zu in L1(0, T ) and a.e. in ]0, T [.
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Since u ∈ X ′ and b(u)t ∈ X, we arrive to

(5.29) 〈b(u)(t)t, u(t)〉 =
dzu
dt

(t)

for a.e. t ∈]0, T [, in D′(0, T ), obtaining∫
Q

bm(û)tûϕ(t) dx dt =
∫ T

0

ϕ(t)
(∫

Ω

∂bm(û)
∂t

û dx

)
dt

=
〈
ϕ(t)

dzû
dt

(t)
〉

(in D′(0, T ))

= −
∫ T

0

zû(t)
dϕ

dt
(t).

Passing to the limit,

lim
∫
Q

∂bm(û)
∂t

ûϕ(t) = −
∫ T

0

zu(t)
dϕ

dt
(t)

by (5.28) because ϕ ∈ c1c0, T . Thus

lim
∫
Q

∂bm(û)
∂t

ûϕ(t) = −
∫ T

0

zu(t)
dϕ

dt
(t)

=
∫ T

0

〈
∂b(u)
∂t

, uϕ(t)
〉
X,X′

dt

=
〈
∂b(u)
∂t

, uϕ(t)
〉
X,X′

and so lim I1 = 0.

Summarizing: we have proved that the limits of integrals I1, I2, I3,
I4 are non negative and thus (5.19) holds. Then, u satisfies the equa-
tion (2.9). By standard arguments we can see that u verifies also (2.8).

Case p ≥ 2: As in the case 1 < p < 2, we begin by defining a family
of regular problems, we find suitable a priori estimates and finally we
obtain u as the limit of the regular solutions associated to the family
of regular problems. The family of regularized problems can be defined
now by

∂bm(u)
∂t

− div φ(∇u− ks(bm(u))e)

−ε∆u + gn(x, u) = fl(t, x) in Q,(5.30)
u(t, x) = 0 on Σ,(5.31)

bm(u(0, x)) = b(u0,q(x)) in Ω(5.32)
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with bm, ks, gn, fl and u0,q as in the case 1 < p < 2 and ε > 0. The
existence of a classical solution is again a well-known result (see [LSU68,
Chapter V]). The rest of details follows the same arguments.

The above theorem proves the existence of BV solution of pro-
blem (1.1), (1.2) and (1.3). Nevertheless our uniqueness results on BV
solutions we will need some additional assumptions. The following corol-
lary gives an answer in this sense.

Corollary 7. If in addition to the assumptions of Theorem 2, we
suppose that

(5.33) k ◦ b is locally Lipschitz if 1 < p ≤ 2

or

(5.34) k ◦ b(σ) = λσ + ν for some λ, ν ∈ R if p > 2,

then, there exists a BV solution u of problem (1.1), (1.2), (1.3), such
that

(5.35)
∂u

∂t
∈ L2(Q).

Proof: We use the same technique that in the proof of Theorem 2. Due
to that, we shall made mention only to the new arguments. Let û be the
solution of the regularized problems. As before, we obtain the estimates
(5.7), (5.11), (5.9). Now, we shall find an L2(Q) uniform estimate on
∂û
∂t . In the case 1 < p < 2, we multiply the equation (5.4) by ∂û

∂t and
integrate on Q. Then∫

Q

bm(û)tût =
∫
Q

flût −
∫
Q

∂

∂t
Gn(x, û) +

∫
Q

div φ(ξ̂)ût,

where Gn(x, ·) is such that ∂
∂sGn(·, s) = gn(·, s). If we denote by Φr a

primitive of φr, we obtain the equality∫
Q

bm(û)tût =
∫

Ω

fl(T, x)û(T, x) −
∫

Ω

fl(0, x)û(0, x) dx−
∫
Q

∂f

∂t
û

−
∫

Ω

Gn(x, û(T, x)) +
∫

Ω

G(x, û(0, x)) dx

+
∫

Ω

Φr(∇û(0, x) − ks(bm(û(0, x))e)

−
∫

Ω

Φr(∇û(T, x) − ks(bm(û(T, x))e)

−
∫
Q

e · φr(ξ̂)
∂

∂t
[ks ◦ bm(û)].
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By the estimates (5.7), (5.2) and (5.1) and since Φr is non negative, we
have ∫

Q

bm(û)tût ≤ C1 +
∫
Q

|e · φr(ξ̂)|
∣∣∣∣ ∂∂t [ks ◦ bm(û)]

∣∣∣∣,
with C1 a constant independent on m, r, s, n, l, q. By Young’s inequality,

(5.36)
∫
Q

bm(û)tût ≤ C1 +
1

εp′p′

∫
Q

|φr(ξ̂)|p
′
+

εp

p

∫
Q

∣∣∣∣ ∂∂t [ks ◦ bm(û)]
∣∣∣∣
p

,

for all ε > 0. Now, since û is uniformly bounded (see (5.7)) and since
we have assumed (5.33), then there exists a positive constant Lk◦b such
that for all s, m ∈ N Lk◦b ≥ lip(ks ◦ bm, [−M1,M1]) (:=the Lipschitz
constant of k ◦ b in the interval [−M1,M1]). Thus,∫

Q

∣∣∣∣ ∂∂t [ks ◦ bm(û)]
∣∣∣∣ ≤ Lk◦b

∫
Q

∣∣∣∣∂û∂t
∣∣∣∣.

On the other hand, as b verifies (3.5), we obtain

L

∫
Q

|ût|2 ≤
∫
Q

b(û)tut

for some positive constant L independent on m, r, s, n, l, q. Considering
the above inequalities and estimate (5.11), from (5.36) we arrive to

λ1 − L1L2λ2

L1

∫
Q

|ût|2 ≤ C1 + Lpk◦b
ε

p

∫
Q

|ût|p

for some positive constant C2. Finally, since 1 < p < 2 and Q is bounded,
applying the Hölder’s inequality we get

(5.37)
∫
Q

∣∣∣∣∂û∂t
∣∣∣∣
2

≤ C3

with C3 a positive constant independent on m, r, s, n, l, q. This new
estimate jointly with the estimates given in the Theorem 2 allows us to
show that the BV solution obtained as limit of the sequence {û} verifies
(5.35).

In the case p ≥ 2, we can suppose, without lost of generality, that
e = e1 = (1, 0, . . . , 0) ∈ R

N . Multiplying the equation (5.30) by ûte
−λx1

and applying (5.34), we obtain∫
Q

|ût|2e−λx1 ≤
∫
Q

bm(û)tute−λx1

≤ C1 +
∣∣∣∣
∫
Q

∂

∂t
Φ(∇û− ks(bm(û))e1)e−λx1

∣∣∣∣
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with Φ(ξ) = 1
p |ξ|p, ξ ∈ R

N and C1 a positive constant independent on
m, s, n, l, q, ε thanks to the previous estimates on û and |∇û|. Finally, as
in the case 1 < p < 2, we conclude that u is a bounded BV satisfying
(5.35).

Remark 9. The bounded BV solution u obtained in Theorem 2
belongs to W 1,1(Q). Then, by Lemma 1, the Hausdorff N -dimensional
measure of the set of jumping points of u is zero. Then, by Corollary 3,
this solution is unique in this class of solutions. An other way to obtain
the above conclusion is by applying Corollary 6 with Ψ1 and Ψ2 the
identity, since any pair of solutions u1, u2 obtained as in Theorem 2 are
in the W 1,1(Q) space.
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lution renormalisé, C. R. Acad. Sci. Paris Sér. I Math. 322 (1996),
(to appear).

[S87] S. Simon, Compact sets in the space Lp(0, T ;B), Ann. Mat.
Pura Appl.(4) CXLVI (1987), 65–96.

[U96] P. Urruty, Un concept de solution renormalisée pour l’étude
d’une loi générale de conservation (to appear).

[V69] R. E. Volker, Nonlinear flow in porous media by finite ele-
ments, J. Hydraulics Div. Proc. Amer. Soc. Civil. Eng 95 (1969),
2093–2114.

[Vo67] A. I. Vol’pert, The spaces BV and quasilinear equations,
Mat. Sb. 73(115), no. 2 (1967).

[VoHu69] A. I. Vol’pert and S. I. Hudjaev, Cauchy’s problem for
degenerate second order quasilinear parabolic equations, Mat. Sb.
78(120), no. 3 (1969).

[VoHu85] A. I. Vol’pert and S. I. Hudjaev, “Analysis in classes
of discontinuous functions and equations of mathematical physics,”
Martinus Nijhoff Publishers, Dordrecht, 1985.

J. I. Dı́az:
Departamento de Matemática Aplicada
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