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ON THE KERNEL OF HOLONOMY

A. P. Caetano

Abstract

A connection on a principal G-bundle may be identified with a
smooth group morphism H : GL∞(M) → G, called a holonomy,
where GL∞(M) is a group of equivalence classes of loops on the
base M . The present article focuses on the kernel of this mor-
phism, which consists of the classes of loops along which paral-
lel transport is trivial. Use is made of a formula expressing the
gauge potential as a suitable derivative of the holonomy, allow-
ing a different proof of a theorem of Lewandowski’s, which states
that the kernel of the holonomy contains all the information about
the corresponding connection. Some remarks are made about non-
smooth holonomies in the context of quantum Yang-Mills theories.

1. Introduction

In differential geometry one associates to every connection defined on
a principal G-bundle, together with a choice of base point in the bundle,
a holonomy, i.e. a map from a space of piecewise smooth loops to the
group G. Holonomy describes parallel transport along these loops. In
what follows we first present a summary of our approach to exhibiting
holonomy as a morphism from a group of loops to G (Section 2). In
Section 3 we derive a formula which expresses the gauge potential as
a suitable derivative of the holonomy. Along with the Ambrose-Singer
theorem, this formula plays a central role in our main result: a proof
within our approach to a theorem due to Lewandowski [L], which states
that the kernel of the holonomy contains all the information about the
corresponding connection (Section 4). In Section 5 we add some remarks
on the regularity of the images of generalized holonomies.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Diposit Digital de Documents de la UAB

https://core.ac.uk/display/13295745?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


374 A. P. Caetano

2. Holonomy and the group of loops

Let M be a smooth, connected and paracompact manifold and ∗ ∈M ,
a fixed point. Following [CP] we denote by P∞(M) the space of all
smooth paths in M having 0 and 1 as sitting instants, that is, paths
which stop for a while at their extremities. Every piecewise smooth path
may be reparametrized to become a member of this space. P∞(M, ∗)
shall be the subspace of P∞(M) consisting of paths which start at ∗ ∈M
and Ω∞(M) shall be the subspace of P∞(M, ∗) consisting of loops.

Given two paths l, k ∈ P∞(M) we say that they are intimate, and
write l

ρ∼ k, if there exists a smooth homotopy H : [0, 1]×[0, 1] →M with
rank rk(DH(s,t)) ≤ 1, ∀(s, t) ∈ [0, 1]×[0, 1] and for which there is 0 < ε <
1/2 such that 0 ≤ s ≤ ε⇒ H(s, t) = l(t), 1−ε ≤ s ≤ 1 ⇒ H(s, t) = k(t),
0 ≤ t ≤ ε ⇒ H(s, t) = l(0) and 1 − ε ≤ t ≤ 1 ⇒ H(s, t) = l(1). Such
a map H will be called a rank-one-homotopy. The usual operations of
composition, inversion and reparametrization of paths go over to the
quotient by intimacy to give rise to an “algebra” of classes of paths
where associativity holds, trivial paths act as identities and “tails” of the
form ll−1 may be included or thrown away. Restricting the operations
with paths to Ω∞(M) these results show that the quotient Ω∞(M)/

ρ∼
becomes a group. This “group of loops”, denoted by GL∞(M), is a
topological invariant for smooth manifolds.

Given a Lie group G and a principal G-bundle π : P → M equipped
with a connection ∇ one can perform parallel transport along each loop
l ∈ Ω∞(M). Together with the rightG-action on P this operation defines
the holonomy H : Ω∞(M) −→ G in the following way: let l↑ : [0, 1] → P
be the unique horizontal lift of l such that l↑(0) is a fixed point; then
H(l) is the unique element of G satisfying the equation l↑(0) = l↑(1)H(l).
The holonomy goes over to the quotient by intimacy to define a group
morphism H∇ : GL∞(M) → G. This result is the initial motivation for
“redefining” holonomy in [CP]:

Definition 1. A holonomy is a group morphism H : GL∞(M) → G
such that for every smooth family of loops ψ : U ⊆ Rn → Ω∞(M) the
composition

Rn ⊃ U
ψ−→ Ω∞(M)

proj−→ GL∞(M) H−→ G

where proj is the natural projection, is smooth throughout the open
subset U ⊆ Rn.

Theorem 1. There is a one-to-one correspondence between holono-
mies and triples consisting of a principal G-bundle, a connection on this
bundle and a point in the fiber over ∗, up to isomorphism.
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This result is obtained through the reconstruction of a bundle and a
connection from a holonomy H : GL∞(M) → G. The set which be-
comes the reconstructed bundle is the quotient of P∞(M, ∗)×G by the
equivalence relation

(p, g) ∼ (q, h) iff p(1) = q(1) ∧ h = H(qp−1)g.

The equivalence class of (p, g) ∈ P∞(M, ∗) × G is denoted by [(p, g)].
B is the set of equivalence classes. There is a natural projection π :
B → M given by π([(p, g)]) = p(1) and a natural free right action of G,
given by [(p, g)]h = [(p, gh)]. The reconstruction of a connection follows
naturally from the possibility of lifting a path: given q ∈ P∞(M, ∗)
let qk ∈ P∞(M, ∗) for each k ∈ [0, 1] be the restriction of q to [0, k],
suitably reparametrized. Then for each g ∈ G a lift of q is defined by
[0, 1] � k �→ [(qk, g)] ∈ B and this is a horizontal lift of the reconstructed
connection.

3. Holonomy and gauge potentials

We now briefly describe the local trivializations for the reconstructed
bundle. After choosing an atlas for M consisting of charts φα : Uα ⊆
M → Rn whose images are the unit open ball B(�0, 1), the inverse re-
traction of this ball may be transported to each Uα by means of the
corresponding φα. This permits us to associate to each m ∈ Uα a
path γmα ∈ P∞(M) which starts at φ−1

α (�0) and ends at m ∈ Uα. Fix-
ing a path p ∈ P∞(M, ∗) such that p(1) = φ−1

α (�0), the elements of
π−1(Uα) may be written down in the form [(pγmα , g)] so that the equality
Tα([(pγmα , g)]) = (m, g) establishes a bijection Tα : π−1(Uα) → Uα × G
that is compatible with the right-G action on B. Tα acts as a local
G-bundle isomorphism.

The reconstructed connection ∇ is carried by Tα to become ∇̂ =
(T−1
α )∗∇. For this consider the equivariant Lie algebra valued 1-form

ω ∈
∧1(π−1(Uα))

⊗
G defined by ∇ and take ω̂ = (T−1

α )∗ω ∈
∧1(Uα ×

G)
⊗

G. The canonical section of Uα×G defined by rα(x) = (x, e) where
e is the identity of the Lie group, corresponds to a section of π−1(Uα)
given by sα(x) = T−1

α (rα(x)). The 1-form Λα ∈
∧1(Uα)

⊗
G given by

Λα = s∗αω = r∗αω̂ is a local gauge potential for ∇ and ∇̂.
Now we shall look for a formula expressing the gauge potential Λα

directly in terms of the holonomy H : GL∞(M) → G. Returning to
the framework of the local trivialization Tα we consider an arbitrary
point m ∈ Uα and a path q ∈ P∞(M, ∗) such that q(a) = m for some
a ∈]0, 1[. For each k ∈ [0, 1], qk ∈ P∞(M, ∗) is the restriction of q
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to [0, k], suitably reparametrized. Taking into account the equivalence
relation on P∞(M, ∗) ×G it’s easy to check that the following curves

[0, 1] � k �−→ Tα[(qk,H(qaγm
−1

α p−1))] ∈ Uα ×G

[0, 1] � k �−→ Tα[(pγq(k)α ,H(pγq(k)α q−1
k qaγ

m−1

α p−1))] ∈ Uα ×G

are actually the same curve and, since the intimacy relation “disregards
tails”, it may be further expressed, for k close to a, as

[0, 1] � k �−→ Tα[(pγq(k)α ,H(pγq(k)α q|[k,a]γ
m−1

α p−1))] ∈ Uα ×G

where q|[k,a] is to be read as q|[a,k]−1 whenever a ≤ k. This curve goes
through the point rα(m) = (m, e) when k = a, and is by construction a
horizontal lift of q with respect to ∇̂, so that

ω̂(m,e)

(
d

dk |k=a
Tα[(pγq(k)α ,H(pγq(k)α q|[k,a]γ

m−1

α p−1))]
)

= 0.

These remarks justify the following calculations:

Λα(m)
(
dq

dk
(a)

)
= r∗αω̂

(
dq

dk
(a)

)

= ω̂rα(m)

(
Drα(m)

(
dq

dk
(a)

))

= ω̂(m,e)

(
dq

dk
(a), 0

)

= ω̂(m,e)

((
dq

dk
(a),

d

dk |k=a
H(pγq(k)α q|[k,a]γ

m−1

α p−1)
)

+
(

0,− d

dk |k=a
H(pγq(k)α q|[k,a]γ

m−1

α p−1)
))

= ω̂(m,e)

(
d

dk |k=a
Tα[(pγq(k)α ,H(pγq(k)α q|[k,a]γ

m−1

α p−1))]
)

+ ω̂(m,e)

(
0,− d

dk |k=a
H(pγq(k)α q|[k,a]γ

m−1

α p−1)
)

= ω̂(m,e)

(
0,− d

dk |k=a
H(pγq(k)α q|[k,a]γ

m−1

α p−1)
)

= − d

dk |k=a
H(pγq(k)α q|[k,a]γ

m−1

α p−1)

where the last equality comes from the compatibility between the con-
nection 1-form ω̂ and the right G-action of G on Uα×G. The differential



On the kernel of holonomy 377

of G � x �−→ x−1 ∈ G at e ∈ G is G � u �−→ −u ∈ G so that the final
formula is:

Λα(m)
(
dq

dk
(a)

)
=

d

dk |k=a
H(pγmα q|[k,a]

−1γq(k)
−1

α p−1)

where q|[k,a]−1 is to be read as q|[a,k] whenever a ≤ k.
The reasoning we shall be using in the next section requires us to find

a similar formula for a larger family of gauge potentials. These will be
obtained through the pull-back of the connection 1-form ω by further
local sections of the form sα,g = sα.g, g ∈ G. The new potentials shall
be referred to as Λα,g = s∗α,gω.

Proposition 1. The vector space generated by the union of images
⋃
α

⋃
g∈G

⋃
m∈Uα

Im(Λα,g(m))

is a subalgebra of G. When g ∈ G is a holonomy value the potential Λα,g
may be expressed by the formula

Λα,H(l)(m)
(
dq

dk
(a)

)
=

d

dk |k=a
H(l−1pγmα q|[k,a]

−1γq(k)
−1

α p−1l)

where all the paths are to be understood as previously explained in this
section.

Proof: The gauge transformation law tells us that Λα,h =
Ad(h−1g).Λα,g + (g−1h)∗θ where θ is the canonical 1-form of G and
g−1h is regarded as a constant function defined on Uα. Obviously this
equation reduces to Λα,h = Ad(h−1g).Λα,g which shows that the vector
space mentioned in the proposition is invariant under the adjoint repre-
sentation of G and, therefore, is a subalgebra of G. The transformation
Λα,H(l) = Ad(H(l)−1).Λα shows how to calculate Λα,H(l) given a formula
for Λα:

Λα,H(l)(m)
(
dq

dk
(a)

)
= Ad(H(l)−1).

d

dk |k=a
H(pγmα q|[k,a]

−1γq(k)
−1

α p−1)

=
d

dk |k=a
H(l)−1H(pγmα q|[k,a]

−1γq(k)
−1

α p−1)H(l)

=
d

dk |k=a
H(l−1pγmα q|[k,a]

−1γq(k)
−1

α p−1l).
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4. The kernel theorem

Proposition 2. If the connection ∇ reconstructed from the holonomy
H : GL∞(M) → G is irreducible then the gauge potentials of Proposi-
tion 1 are such that the aforementioned vector space generated by the
union of images ⋃

α

⋃
g∈G

⋃
m∈Uα

Im(Λα,g(m))

is the whole Lie algebra G associated with G.

Proof: If ∇ is an irreducible G-connection then the holonomy H∇
is surjective, otherwise ∇ could be further reduced. In this context
the Ambrose-Singer theorem states that the set of all curvature values
{Ωb(x, y) : b ∈ B ∧ x, y ∈ TbB} generates the Lie algebra G. This
generator set is equal to {(s∗α,gΩ)

m
(x, y) : g ∈ G, m ∈ Uα ∧ x, y ∈ TmM ,

for some α} because the image of each subfamily of differentials D(sα,g),
g ∈ G, forms a distribution on π−1(Uα) which is in direct sum with the
vertical distribution of the bundle. The field strengths Ωα,g = s∗α,gΩ are
related to the gauge potentials Λα,g = s∗α,gω by

Ωα,g = dΛα,g +
1
2
[Λα,g,Λα,g]

so that the union of images of all 2-forms dΛα,g + 1
2 [Λα,g,Λα,g] is known

to generate G. The definition of the exterior derivative d makes sure
that all values generated by vectors (dΛα,g)m(x, y) must be generated
by vectors Λα,g(m)(x) and a similar remark can be made about the
remaining term 1

2 [Λα,g,Λα,g] because of Proposition 1.

Proposition 3. If H1 : GL∞(M) → G1 and H2 : GL∞(M) → G2

are surjective holonomies which share the same kernel, then G1 and G2

are isomorphic as Lie groups.

Proof: Ĥ1 and Ĥ2 are group isomorphisms obtained from H1 and
H2 quotienting by their respective kernels, which are identical. F =
Ĥ2 ◦ Ĥ−1

1 is a group isomorphism. Now, Propositions 1 and 2 show
that there exist indices α1, α2, . . . , αk, loops l1, l2, . . . , lk, paths
p1, p2, . . . , pk, q1, q2, . . . , qk and instants a1, a2, . . . , ak, such that for

ψi(s) = l−1
i piγ

qi(a
i)

αi
qi|[s,ai]

−1γqi(s)
−1

αi
p−1
i li

defined on a neighborhood of ai and where qi|[s,ai]
−1 is to be read as

qi|[ai,s] whenever ai ≤ s, the vectors

vi =
d

ds |s=ai
H1(ψi(s))
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form a basis v1, v2, . . . , vk for the Lie algebra associated with G1. Con-
sider the following function defined on a neighborhood A ⊆]0, 1[k of
(a1, a2, . . . , ak) by a product of loops:

Ψ : A ⊆]0, 1[k→ GL∞(M)

Ψ(s1, s2, . . . , sk) = ψ1(s1)ψ2(s2) . . . ψk(sk).

About H1 ◦ Ψ : A ⊆]0, 1[k→ G we know that:
a) H1 ◦ Ψ is smooth
b) H1 ◦ Ψ(a1, a2, . . . , ak) = e ∈ G
c) H1 ◦ Ψ(s1, s2, . . . , sk) = H1 ◦ ψ1(s1)H1 ◦ ψ2(s2) . . .H1 ◦ ψk(sk)
d) ∂(H1◦Ψ)

∂si (a1, a2, . . . , ak) = vi.
The inverse function theorem guarantees that there exist open neigh-

borhoods A′ ⊆ A of (a1, a2, . . . , ak) and B ⊆ G1 of e ∈ G1, such that the
restriction H1◦Ψ|A′ : A′ ⊆]0, 1[k−→ B ⊆ G1 is a diffeomorphism. Bring-
ing back the algebraic isomorphism F = Ĥ2 ◦ Ĥ−1

1 it is easy to check
that F|B = (H2 ◦ Ψ) ◦ (H1 ◦ Ψ)−1

|A′ and that F : G1 → G2 is smooth.
Exchanging G1 and G2 one shows that the inverse F−1 is also smooth
and, therefore, F is a Lie group isomorphism.

Theorem 2. If two irreducible connections ∇1 and ∇2, with struc-
tural groups G1 and G2, define holonomies H1 : GL∞(M) → G1 and
H2 : GL∞(M) → G2, which share the same kernel, then there exists a
principal bundle isomorphism that carries ∇1 into ∇2.

Proof: The two connections being irreducible means that their
holonomies are surjective. So Proposition 3 applies and there is a group
isomorphism F : G1 → G2. This allows us to define a map F̂ on the
bundle reconstructed from H1 to the bundle reconstructed from H2 by
means of F̂([(p, g)]1) = [(p,F(g))]2. To check that F̂ is well defined one
must recall that F = Ĥ2 ◦ Ĥ−1

1 and take into account the equivalence
relation used to reconstruct bundles. F̂ establishes a bijection between
both reconstructed bundles that is compatible with the G-right actions
and carries horizontal lifts, with regard to ∇1, into horizontal lifts with
respect to ∇2. The smoothness of F̂ and its inverse is ensured by the
smoothness of F and F−1.

5. Generalized holonomies

In some recent approaches to quantization of Yang-Mills and gravity
theories, certain authors ([AI], [AL], [L], [MM]) have been led to con-
sider objects which generalize the notions of connection and holonomy
by no longer insisting on smoothness. In particular one defines
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Definition 2. A generalized holonomy is a group morphism H :
GL∞(M) → G.

Whilst the image of a holonomy, known as the holonomy group, is
always a Lie subgroup of G (not necessarily closed), this may no longer
hold for generalized connections. By applying a theorem of Kuranishi
and Yamabe on arcwise-connected subgroups we can at least make the
following statement:

Theorem 3. If a generalized holonomy H : GL∞(M) → G is contin-
uous in the sense that the composition

[0, 1] ⊂ R1 ψ−→ Ω∞(M)
proj−→ GL∞(M) H−→ G

where proj is the natural projection, is continuous throughout the interval
[0, 1] ⊆ R1 for every smooth family of loops ψ : [0, 1] ⊆ R1 → Ω∞(M),
then the image ImH is a Lie subgroup of G (not necessarily closed).

Proof: Because intimacy is stronger then usual homotopy there arises
a canonical epimorphism C : GL∞(M) → π1(M). Let us consider the
normal subgroup ker(C) ⊆ GL∞(M). The image H(ker(C)) is a nor-
mal subgroup of ImH and H goes to the quotient to define an epi-
morphism from GL∞(M)/ ker(C) onto ImH/H(ker(C)). It follows that
ImH/H(ker(C)) is countable because C goes to the quotient to define an
isomorphism between GL∞(M)/ ker(C) and π1(M) and this last set is
countable due to the topology of M being second countable. So it will
be enough to show that H(ker(C)) is a Lie subgroup of G. Due to a
theorem of Kuranishi and Yamabe (see [KN] and [Y]) we just have to
show that H(ker(C)) is arcwise connected. Given g ∈ H(ker(C)) there is
a loop l ∈ Ω∞(M) whose generalized holonomy is H(l) = g and there is
a smooth homotopy ψ : [0, 1] ⊆ R1 → Ω∞(M) such that ψ(0) = l and
ψ(1) is the trivial loop. Obviously H◦ψ is a continuous curve contained
in H(ker(C)) and joining g and the identity.
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