
Publicacions Matemàtiques, Vol 40 (1996), 205–214.

SUFFICIENT CONDITIONS FOR THE
EXISTENCE OF A CENTER IN POLYNOMIAL

SYSTEMS OF ARBITRARY DEGREE

H. Giacomini and M. Ndiaye

Abstract
In this paper, we consider polynomial systems of the form ẋ =
y + P (x, y), ẏ = −x + Q(x, y), where P and Q are polynomials of
degree n wihout linear part.

For the case n = 3, we have found new sufficient conditions
for a center at the origin, by proposing a first integral linear in
certain coefficient of the system. The resulting first integral is in
the general case of Darboux type.

By induction, we have been able to generalize these results for
polynomial systems of arbitrary degree.

Introduction

In this paper, we consider systems of differential equations

(S)
ẋ = P (x, y),
ẏ = Q(x, y),

in which P (x, y) and Q(x, y) are polynomials of the form

P (x, y) = y +
n∑

j=2

j∑
i=0

aij−ix
iyj−i,

Q(x, y) = −x −
n∑

j=2

j∑
i=0

bij−ix
iyj−i,

and we seek for sufficient conditions under which the origin is a center
i.e., a critical point in a neighbourhood of which all orbits are closed.
The problem of the center is an important one in the theory of plane
polynomial vector fields. It plays an important role in the second part
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of Hilbert’s 16th problem, which asks for the maximum number of limit
cycles that a vector field given by polynomials of degree n should have.

The necessary and sufficient conditions for a center are known for very
few classes of systems. There are well-known conditions for quadratic
systems [1], [2], [3] (and references therein) and for systems in which
P (x, y) and Q(x, y) are cubic polynomials without quadratic terms [4],
[5]. Conditions have been obtained for other classes of cubic systems.
For instance, in [6] and [7], Kukles studied systems of the form:

ẋ = y,

ẏ = −x + a1x
2 + a2xy + a3y

2 + a4x
3 + a5x

2y + a6xy2 + a7y
3,

and claimed to have found necessary and sufficient conditions under
which the origin is a center. However, Jin and Wang showed in [8]
that Kukles’conditions are only sufficient but not necessary, by giving
explicitly another condition which is not covered by the Kukles’ones (see
also [9]). C. J. Christopher and N. G. Lloyd showed in [10] that Kuk-
les’conditions are necessary only in the case where a7 = 0.

More recently, important results have been obtained about the prob-
lem of the center for cubic polynomial vector fields [11], [12].

For polynomial systems of arbitrary degree, there are three classes for
which sufficient conditions for the existence of the center are known: a
family of homogeneous polynomial vector fields [13], reversible system
[14], the Hamiltonian case. For this case, the constant of motion (the
Hamiltonian) is linear in all the coefficients of the polynomials P (x, y)
and Q(x, y).

In the first section of this paper we analyse cubic systems. We pro-
pose a constant of motion which is linear in the coefficient of y2 in the
polynomial P (x, y). The reason of this choice comes from the analysis
of the form of the constant of motions for the quadratic systems [1], [2].
For one of integrability conditions, the first integral is linear in the coef-
ficient a02. For cubic system, by proposing a first integral linear in a02,
we have found several new sets of sufficient conditions for a center. The
corresponding first integrals are in general case of Darboux type [15],
[16], [17], [18]. We have also proposed first integrals that are linear in
the other coefficients of the system but we have not found new integra-
bility conditions. Let us remark that the first integrals of Darboux type
that we have found are not contains in the Sokulsky’s list [12]. We verify
that this associated constant of motion is also linear in the coefficients
of y and y3 (by symmetry, analogous constants of motion exist that are
linear in the coefficients of x, x2 and x3 of the polynomial Q(x, y)). It
is natural to think that this result is valid for polynomial systems of
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an arbitrary degree. In order to check this hypothesis, we perform the
calculations for polynomials P (x, y) and Q(x, y) of degree 4 ≤ n ≤ 8.
In all these cases, we find that the constant of motion is linear in the
coefficients of yj of P (x, y), with 1 ≤ j ≤ n.

The analysis of the integrability conditions and the explicit expressions
of constants of motion will enable us to conjecture a general result, valid
for an arbitrary degree n.

The conjectured expressions for the integrability conditions and con-
stants of motion reduce to the correct results for 2 ≤ n ≤ 8.

These results, valid for arbitrary n, are given in Section 2.

1. Case n = 3

We consider the system:

(S1)

ẋ = y +
3∑

j=2

j∑
i=0

aij−ix
iyj−i,

ẏ = −x −
3∑

j=2

j∑
i=0

bij−ix
iyj−i.

We propose a constant of motion f(x, y) linear in the coefficient a02:

f(x, y) = f1(x, y)a02 + f2(x, y)

where f1(x, y) and f2(x, y) are independent of a02.
Taking the rate of change of f(x, y) along a trajectory of (S1), we

obtain

ḟ(x, y) =
(

∂f1(x, y)
∂x

a02 +
∂f2(x, y)

∂x

)
P (x, y)

+
(

∂f1(x, y)
∂y

a02 +
∂f2(x, y)

∂y

)
Q(x, y).

If f(x, y) is a constant of motion, ḟ(x, y) must be identically zero
for arbitrary values of a02. In consequence, we obtain the following
conditions for the functions f1(x, y) and f2(x, y):

∂f1(x, y)
∂x

= 0,

Q(x, y)
∂f1(x, y)

∂y
+ y2 ∂f2(x, y)

∂x
= 0,

C(x, y)
∂f2(x, y)

∂x
+ Q(x, y)

∂f2(x, y)
∂y

= 0,
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which imply

f1(x, y) = f1(y),
∂f2(x, y)

∂x
= −Q(x, y)

y2

∂f1(y)
∂y

, (α)

∂f2(x, y)
∂y

=
C(x, y)

y2

∂f1(y)
∂y

, (β)

where

C(x, y) = y + a20x
2 + a11xy + a30x

3 + a21x
2y + a12xy2 + a03y

3.

By imposing the condition

∂2f2(x, y)
∂x∂y

=
∂2f2(x, y)

∂y∂x
.

We obtain from (α) and (β):

(−a11y
3 + (−a12 + b03)y4)

∂f1(y)
∂y

+ (b02y
4 + b03y

5)
∂2f1(y)

∂y2

+((−2y+(−2a20−b11)y2−2a21y
3)

∂f1(y)
∂y

+(y2+b11y
3+b12y

4)
∂2f1(y)

∂y2
)x

+ ((−2b20y + (−3a30 − b21)y2)
∂f1(y)

∂y
+ (b20y

2 + b21y
3)

∂2f1(y)
∂y2

)x2

+ ((−2y
∂f1(y)

∂y
+ y2 ∂2f1(y)

∂y2
)x3)b30 = 0.

As this condition must be satisfied for arbitrary values of x and y, and
f1(y) is a function only of y, we have the following equations for the
function f1(y):
(S2)

(1) (−a11 + (−a12 + b03)y)
∂f1(y)

∂y
+ (b02y + b03y

2)
∂2f1(y)

∂y2
= 0,

(2) (−2+(−2a20−b11)y−2a21y
2)

∂f1(y)
∂y

+(y+b11y
2+b12y

3)
∂2f1(y)

∂y2
=0,

(3) (−2b20 + (−3a30 − b21)y)
∂f1(y)

∂y
+ (b20y + b21y

2)
∂2f1(y)

∂y2
= 0,

(4) − 2
∂f1(y)

∂y
+ y

∂2f1(y)
∂y2

= 0, or

(5) b30 = 0.
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Then we must consider two different cases:

1) Equations (1), (2), (3) and (4) are satisfied:
These equations are compatible if and only if the following conditions

holds

−b21+3a30 = −b11+2a20 = −b12+a21 = −2b02+a11 = −3b03+a12 = 0.

These conditions insure that System (S1) is Hamiltonian. Therefore,
in order to obtain new results we must consider condition (1), (2), (3)
and (5).

2) Equations (1), (2), (3) and (5) are satisfied.
The compatibility relation between (1) and (2) gives:

(−2b02 + a11)y + ((−b11 − 2a20)b02 − 3b03 + a12 + a11b11)y2

+ (−2b11b03 − 2a20b03 − 2a21b02 + a12b11 + a11b12)y3

+ (−2a21b03 − b03b12 + a12b12)y4 = 0

for arbitrary values of y.
The compatibility condition between (1)-(2) and (2)-(3) gives, respec-

tively

((−2b02 +a11)b20)y +(−b21b02 − 3a30b02 − 3b20b03 + b20a12 + b21a11)y2

+ (−2b21b03 − 3a30b03 + b21a12)y3 = 0,

(3a30−2a20b20+b11b20−b21)y2+(3a30b11−2a21b20+2b12b20−2a20b21)y3

+ (3a30b12 − 2a21b21 + b12b21)y4 = 0.

As these conditions must be satisfied for arbitrary values of y, we have

b30 = 0,

−2b02 + a11 = 0,

−2b11b03 − 2a20b03 − 2a21b02 + a12b11 + a11b12 = 0,

−b11b02 − 2a20b02 − 3b03 + a12 + a11b11 = 0,

−2a21b03 − b03b12 + a12b12 = 0,

−b21b02 − 3a30b02 − 3b20b03 + b20a12 + b21a11 = 0,

−2b21b03 − 3a30b03 + b21a12 = 0,

3a30 − 2a20b20 + b11b20 − b21 = 0,

3a30b11 − 2a21b20 + 2b12b20 − 2a20b21 = 0,

3a30b12 − 2a21b21 + b12b21 = 0.
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If we assume that

(3a30 + b21)(3a30 + 2b21) �= 0, b20 �= 0,

the general solution of the above system of equations is

b11 =
2a21b21

3a30 + b21
+

b21

b20
, b02 =

a12b20

3a30 + 2b21
, b12 =

2a21b21

3a30+b21
,

b03 =
a12b21

3a30 + 2b21
, a20 =

a21b20

3a30 + b21
+

3a30

2b20
, a11 =

2a12b20

3a30+2b21
,

b30 = 0.

In this way, System (S2) is compatible. We can now determine the
function f1(y), in order to obtain an explicit expression for the constant
of motion f(x, y).

From Equation (3), and assuming that

a30(3a30 + b21)(3a30 + 2b21) �= 0, b21 �= 0,

we obtain

f1(y) = 2

(
y2(b20 + b21y)

3a30
b21

3a30
− 2(b20 + b21y)

3a30+b21
b21

3a30(3a30 + b21)

+
2(b20 + b21y)

3a30+2b21
b21

3a30(3a30 + b21)(3a30 + 2b21)

)
.

Now, from Equations (α) and (β), and assuming that

a30(3a30 + b21)(3a30 + 2b21)(a30 + b21) �= 0, b21 �= 0,

we determine f2(x, y):

f2(x, y) = 2
(

x2

2
+

b20

3
x3+

b11

2
x2y+b02xy2+

b21

3
x3y+

b12

2
x2y2+b03xy3

+ 2
(

y(b20 + b21y)
3a30

− (b20 + b21y)2

3a30(3a30 + b21)

)

+ 2a03

(
y3(b20 + b21y)

3a30
− 3y2(b20 + b21y)2

3a30(3a30 + b21)

+
6y(b20 + b21y)3

3a30(3a30 + b21)(3a30 + 2b21)

− 6(b20+b21y)4

3a30(3a30+b21)(3a30+2b21)(3a30+3b21)

))
(b20+b21y)

3a30−b21
b21

then, we conclude with the following theorem:
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Theorem 1. Under conditions

b11 =
2a21b20

3a30 + b21
+

b21

b20
, b02 =

a12b20

3a30 + 2b21
, b12 =

2a21b21

3a30+b21

b03 =
a12b21

3a30 + 2b21
, a20 =

a21b20

3a30 + b21
+

3a30

2b20
, a11 =

2a12b20

3a30+2b21
,

b30 = 0,

with b20 �= 0, b21 �= 0, a30(3a30 + b21)(3a30 + 2b21)(a30 + b21) �= 0, the
origin is a center of (S1) and the constant of motion is given by

f(x, y) =
(

2
(

y(b20 + b21y)
3a30

− (b20 + b21y)2

3a30(3a30 + b21)

)

+ 2a02

(
y2(b20 + b21y)

3a30
− 2y(b20 + b21y)2

3a30(3a30 + b21)

+
2(b20 + b21y)3

3a30(3a30 + b21)(3a30 + 2b21)

)

+ 2a03

(
y3(b20 + b21y)

3a30
− 3y2(b20 + b21y)2

3a30(3a30 + b21)

+
6y(b20 + b21y)3

3a30(3a30 + b21)(3a30 + 2b21)

− 6(b20 + b21y)4

3a30(3a30 + b21)(3a30 + 2b21)(3a30 + 3b21)

)

+ x2 +
2
3
b20x

3 + b11x
2y + 2b02xy2

+
2
3
b21x

3y + b12x
2y2 + 2b03xy3

)
(b20 + b21y)

3a30−b21
b21 .

We have written the constant of motion in such a way that it will
be possible later on, to guess its general form for polynomial systems of
arbitrary degree.

Let us remark that all the constants of motion that we have found in
this section are also linear in the coefficient a03.

New integrability cases and new constants of motion can be obtained
from the above results by interchanging x and y, aij and bji. This is
due to the invariance of (S) under the transformation x ↔ y, aij ↔ bji,
t → −t.

2. General case

Using the results obtained in Section 1, we remark that when we seek
for a constant of motion which is linear in a coefficient of ym in P (x, y),
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with 1 ≤ m ≤ 3, we obtain one which is linear in all coefficients of ym. It
is natural to think that this result will be valid for polynomial systems
of an arbitrary degree n. In order to verify this hypothesis, we have
carried out similar calculations as in Section 1, for polynomial systems
up to degree 8. We have found analogous results as for the case n = 3:
in all the cases, the constant of motion is linear in all coefficients of ym

in P (x, y). In addition, it is always possible to find explicit expressions
of the constant of motion.

By throughly inspecting expressions for integrability conditions and
constants of motion up to degree 8, we have been able to induce analogous
results for polynomial systems of an arbitrary degree. Let us remark
that, up to n = 8, we have found that for the System (S), which has
(n−1)(n+4) coefficients, the number of integrability conditions is given
by (n−1)(n+4)

2 for the principal case, where
∏n

k=0(nan,0 + kbn−1,1) �= 0,
bn−1,0 �= 0 and bn−1,1 �= 0.

The above remarks lead us to conjecture the following theorem:

Theorem 2.1. Consider the System (S). Assuming that

n∏
r=0

(nan,0 + rbn−1,1) �= 0, bn−1,0 �= 0, bn−1,1 �= 0,

and aij = 0 if i + j > n or j < 0, and under conditions

a20 =
nan,0

2bn−1,0
+

∑
m∈∗

(−1)m+1m!a2,mbm
n−1,0∏m

r=1 (nan,0 + rbn−1,1)
,

b11 =
bn−1,1

bn−1,0
+ 2

∑
m∈∗

(−1)m+1m!a2,mbm
n−1,0∏m

r=1 (nan,0 + rbn−1,1)
,

a11 =
∑
m∈∗

(−1)m+1(m + 1)!a1,1+mbm
n−1,0∏m

r=1(nan,0 + (r + 1)bn−1,1)
,

b02 =
1
2

∑
m∈∗

(−1)m+1(m + 1)!a1,1+mbm
n−1,0∏m

r=1(nan,0 + (r + 1)bn−1,1)
,

bi,j = (i + 1)

(
ai+1,j−1bn−1,1

nan,0 + (j − 1)bn−1,1
+ (nan,0 − bn−1,1)

∑
m∈∗

(−1)m−1

(j + m − 1)!
j!

ai+1,m+j−1b
m
n−1,0∏m+j

r=j (nan,0 + (r − 1)bn−1,1)

)
,

2 ≤ i + j ≤ n, (i, j) �= (0, 2), (i, j) �= (1, 1),
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O(0, 0) is a center and the associated constant of motion is

f(x, y) =
n∑

m=0

a0,m

m∑
l=0

(−1)l m!
(m − l)!

ym+1−l(bn−1,0 + bn−1,1y)
nan,0+lbn−1,1

bn−1,1∏l
k=0(nan,0 + kbn−1,1)

+ h(x, y),

with

h(x, y) =


 n∑

j=0

j∑
i=0

bi,j−i
xi+1

i + 1
yj−i


 (bn−1,0 + bn−1,1y)

nan,0−bn−1,1
bn−1,1 ,

and a0,0 = b0,0 = a1,0 = b0,1 = 0, a0,1 = b1,0 = 1.

We recall that this conjectured theorem has been verified for 2 ≤ n ≤
8. Let us remark that we have also considered all the particular cases by
using the same method. We have found nine particular cases, but due
to the size of the calculations we have not included these cases in the
present paper. We have also seek constants of motion which are linear in
the remaining coefficients of (S1), but the resulting differential equations
for the functions f1(x, y) and f2(x, y) are in all cases incompatible.

Much of calculations performed in this work have been made with
Mathematica computer algebra system.
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