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ADJUNCTION OF n-EQUIVALENCES
AND TRIAD CONNECTIVITY

P. J. Witbooi

Abstract
We prove a new adjunction theorem for n-equivalences. This the-
orem enables us to produce a simple geometric version of proof of
the triad connectivity theorem of Blakers and Massey. An impor-
tant intermediate step is a study of the collapsing map S∨X → S,
S being a sphere.

Since the invention of the concept of quasifibration by Dold and Thom,
their basic globalization theorem [7, Satz 2.2] has been applied widely.
Some of the applications make use of an adjunction theorem of Hardie
[9, Theorem 0.2]. This adjunction theorem, when applicable, is more
convenient to use than the original theorem of Dold and Thom. The
work [10] of May provides a new approach to quasifibrations. In Part I
of this article we prove an adjunction theorem, Theorem 7, which merges
the work of Hardie and that of May. As an application of this theorem,
in Part II we provide a quite straightforward geometric proof of the triad
connectivity theorem of Blakers and Massey [4].

Following the original proof due to Blakers and Massey, several al-
ternative proofs have emerged. Moore [11] gives a proof based on the
Serre spectral sequence of a fibration, and Namioka’s proof [12] uses the
Hurewicz isomorphism theorem. There are several other versions of the
proof such as in [6], [8], and [14], which do not make use of homol-
ogy. In these three citations the proofs follow by geometric arguments.
Using algebraic methods of a completely different nature, Brown and
Loday [3] give yet another proof of the triad connectivity theorem (in
fact they prove a stronger result, the homotopy excision theorem of [5]).
In cases where homology is not used in the arguments, we can deduce
simple alternative proofs of the Freudenthal suspension theorem and the
Hurewicz isomorphism theorems as shown in [8] and [14].

A special case of the homotopy excision theorem follows from Theo-
rem 13, and the more general homotopy excision theorem can be deduced
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from our result by making use of CW-approximation. We do not include
this latter step here since the arguments are similar to those in [8]. Our
method also supports proofs of the suspension theorem and the Hurewicz
theorems. The merit of the proof of Theorem 13 is its simplicity.

PART I: Adjunction of k-equivalences.
Definition 1. Let k be a positive integer and let p : (X,A)→ (Y,B)

be a map.
(a) The map p : X → Y of spaces is said to be a 0-equivalence if

it induces a surjective function on path components. For k > 0,
the map p is said to be a k-equivalence if it induces a bijection
on path components, and if, for every x ∈ X, the function p∗ :
πr(X,x) → πr(Y, x′) with x′ = p(x), is bijective whenever r < k
and surjective for r = k.

(b) The map p : (X,A) → (Y,B) of pairs of spaces is said to be a
0-equivalence if condition (1) below holds. If also condition (2)
holds, then the map of pairs is said to be a k-equivalence (k > 0).
(1) Im[π0(A)→ π0(X)] = p−1

∗ Im[π0(B)→ π0(Y )].
(2) For every a∈A, and b = p(a), the function p∗ : πr(X,A, a)→

πr(Y,B, b) is bijective whenever r < k and surjective for r =
k.

(c) A map of spaces or of pairs of spaces is said to be a weak equiva-
lence if it is a k-equivalence for all k > 0.

Definition 1(a) appears in textbooks such as [8] or [14], while Defi-
nition 1(b) is due to May [10]. For Definition 1(b), the condition (1)
on path components is automatically fulfilled if A = p−1(B). We note
that the composition of two k-equivalences is again a k-equivalence. The
proof of the following proposition is an easy exercise on the level of set
theory and we omit it.

Proposition 2. Suppose that we have a commutative triangle of maps
of spaces as below. If α is a (k−1)-equivalence and δ is a k-equivalence,
then β is a k-equivalence.

A

α



�

δ

B −−−−→
β

C

−−−−→

−−−

By Top2 we shall mean the category of which the objects are maps
of spaces, that is to say we take the morphisms of Top as objects. The
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morphisms in Top2 from an object q to an object p, is a pair of maps
(g, f) such that f ◦ q = p ◦ g, see Diagram (A) below.

We note that the mapping path fibration construction is an endo-
functor of Top2. We observe also that, given a Top2-morphism
(g, f) : q → p, then for every point b ∈ B, there is an induced map
of the homotopy fibre of q over b into the homotopy fibre of p over f(b).
If every such induced map is a k-equivalence, then the Top2-morphism
(g, f) is said to be a k-equivalence of homotopy fibres.

If (g, f) : q → p is a Top2-morphism, note also that there is an
obvious map r : Zg → Zf from the mapping cylinder of g into the
mapping cylinder of f .

(A)

A
g−−−−→ X

q



�



�p

B −−−−→
f

Y

Proposition 3. Consider the commutative Diagram (A).
(a) The following conditions are equivalent.

(1) The map r : (Zg, A) → (Zf , B) of mapping cylinders is a
k-equivalence.

(2) The Top2-morphism (g, f) : q → p is a (k − 1)-equivalence
of homotopy fibres.

(b) If the maps g and f are inclusions of subspaces, then the following
condition, (3), is equivalent to condition (2) in (a) above:
(3) The map p : (X,A)→ (Y,B) is a k-equivalence.

(c) Suppose that g and f are inclusion maps, and that A → B is a
k-equivalence.

Then p : (X,A) → (Y,B) is a k-equivalence if and only if
X → Y is a k-equivalence.

Proof: (c) This follows easily by the five-lemma applied to the ladder
formed by the homotopy sequences of the pairs (X,A) and (Y,B), to-
gether with the homomorphisms arising from the map (X,A)→ (Y,B).

(b) We consider the mapping path fibration factorization of p and q,
respectively.

X
p0−−−−→ W

p1−−−−→ Y A
q0−−−−→ E

q1−−−−→ B.

In each case it is a homotopy equivalence followed by a fibration. The
maps p0 and q0 are embeddings and we regard them as inclusions. Let
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F = q−1
1 (∗), F ′ = p−1

1 (∗) and E′ = p−1
1 (B). Then E ⊂ E′, F ⊂ F ′, and

q1(x) = p1(x) for every x ∈ E.
We first assume that (3) holds. Then p1 : (W,E) → (Y,B) is a k-

equivalence. Since p1 is a fibration, the map p1 : (W,E′) → (Y,B)
is a weak equivalence. Thus the injection (W,E) → (W,E′) is a k-
equivalence. Similar to the argument for (c), it follows that the inclusion
E → E′ is a (k − 1)-equivalence.

The pull-back of p1 over the inclusion B ⊂ Y , is (a fibration and thus)
a weak equivalence (E′, F ′) → (B, ∗). Similarly, q1 : (E,F ) → (B, ∗)
is a weak equivalence. Thus the injection (E,F ) → (E′, F ′) is a weak
equivalence. Since the inclusion E ⊂ E′ is a (k − 1)-equivalence, it
follows that also the inclusion F ⊂ F ′ is a (k−1)-equivalence. Therefore
condition (2) of (a) follows. This proves one of the implications claimed
in (b). The other implication claimed in (b) can be proved by simply
reversing the previous argument.

(a) This follows by (b).

The theorem which we quote without proof below, appears (in a
stronger form) in a paper by May [10, Theorem 1.2], and results from a
reworking of the fundamental theory of quasifibrations in the pioneering
paper [7] by Dold and Thom.

Theorem 4. Let Y be a space with open subspaces B1 and B2 such
that Y = B1 ∪ B2. Let B0 = B1 ∩ B2. Let p : X → Y be a map and let
Ai = p−1(Bi), i = 0, 1, 2.

If for each j = 1, 2, the map (Aj , A0) → (Bj , B0) is a k-equivalence,
then for each j = 1, 2, the map (X,Aj)→ (Y,Bj) is a k-equivalence.

From Theorem 4 we deduce an adjunction theorem, Theorem 7, gen-
eralizing the adjunction theorem for quasifibrations [9, Theorem 0.2] of
Hardie. We consider the commutative Diagram (B) in Top to be a
cotriad in the category Top2.

(B)

E1
g1←−−−− E0

g2−−−−→ E2

p1



�



�p0



�p2

B1 ←−−−−
f1

B0 −−−−→
f2

B2

The push-out of this Top2-cotriad is a map p : E → B, where E and B
are the spaces obtained as the push-outs (in Top) of the cotriads sitting
in the top row and bottom row of Diagram (B). There is a similar map
of double mapping cylinders. We denote this map by p′ : E′ → B′, and
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refer to it as the double mapping cylinder of the Top2-cotriad. Firstly
we note the following fact regarding the natural map B′ → B between
the double mapping cylinder and the push-out of a Top-cotriad,

(C) B1
f1←−−−− B0

f2−−−−→ B2.

Proposition 5 is a weaker form of the result [2, 7.5.4 on p. 275] in the
book of Brown. A proof in an axiomatic setting appears in Baues’s book
[1]. We state it without proof.

Proposition 5. If in the Top-cotriad of Diagram (C), f1 is a cofi-
bration, then the natural map B′ → B is a homotopy equivalence.

The homotopy fibres approach to the study of Top2-cotriads can
be observed in the work of Puppe [13]. Theorem 6 supplements and
generalizes Puppe’s work.

Theorem 6. Suppose that in Diagram (B), for each j = 1, 2, the
Top2-morphism (gj , fj) is a k-equivalence of homotopy fibres, and g1

and f1 are cofibrations.
Then for each j = 1, 2, the Top2-morphism pi → p′ to the map of

double mapping cylinders is a k-equivalence of homotopy fibres.

Proof: The double mapping cylinder B′ has open subsets V0, V1 and
V2 satisfying the following three conditions.

(1) V0 = V1 ∩ V2 and V1 ∪ V2 = B′.
(2) For the pull-back qi : Ui → Vi of p′ over the inclusion Vi ⊂ B′,

there are homotopy equivalences εi : Ui → Ei and βi : Vi → Bi,
such that for each i = 0, 1, 2, pi ◦ εi = βi ◦ qi.

(3) The Top2-morphisms (εi, βi), resulting from (2) above, fits into
a commutative diagram in Top2 as shown below.

(D)

q1 ←−−−− q0 −−−−→ q2

(ε1,B1)



� (ε0,β0)



� (ε2,B2)



�

p1 ←−−−− p0 −−−−→ p2

Due to the homotopy equivalences of (2) and the conditions of the
theorem, it follows that for each j = 1, 2, the Top2-morphism q0 → qj

is a k-equivalence of homotopy fibres. By Proposition 3(a) then, each
map (Uj , U0) → (Vj , V0) is a (k + 1)-equivalence. Thus by Theorem 4,
each map (E′, Uj)→ (B′, Vj) is a (k+1)-equivalence. Again by Proposi-
tion 3(a), each Top2-morphism qj → p′ is a k-equivalence of homotopy
fibres.
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Theorem 7. Suppose that for the commutative Diagram (B) we have
a subset T of B0 such that the inclusion T ⊂ B0 is a surjection of path
components.

Suppose that for each x ∈ T , there are subsets F x
0 ⊂ p0

−1(x) and
F x

j ⊂ pj
−1(fj(x)). We assume that F x

j = F y
j whenever fj(x) = fj(y).

It is also assumed that for each j = 1, 2, gj(F x
0 ) ⊂ F x

j so that there is
an induced map hx

j : F x
0 → F x

j .
Suppose further that for each x ∈ S, the following conditions hold

(k ≥ 0):

(1) p0 : (E0, F
x
0 )→ (B0, x) is a k-equivalence,

(2) pj : (Ej , F
x
j ) → (Bj , fj(x)) is a (k + 1)-equivalence for each j =

1, 2,
(3) hx

j : F x
0 → F x

j is a k-equivalence for each j = 1, 2.

Then for each j = 1, 2, the map of double mapping cylinders is a (k+1)-
equivalence, p′ : (E′, Ej)→ (B′, Bj).

Proof: Fix any x ∈ S and j ∈ {1, 2}. In Diagram (E) below, Hx
0 and

Hx
j are, respectively, the fibres of the mapping path fibration of p0 and

pj over x and fj(x). The vertical arrows are inclusions. The map β
is the induced map due to functoriality of the mapping path fibration
construction.

(E)

F x
0

hx
j−−−−→ F x

j

α



� α′



�

Hx
0 −−−−→

β
Hx

j

Due to condition (1), α is a (k − 1)-equivalence and due to (2), α′

is a k-equivalence. In view of condition (3), it follows that α′ ◦ hx
j is a

k-equivalence. We put δ = α′ ◦ hx
j and apply Proposition 2, by which β

is a k-equivalence. Since T ⊂ B0 is a surjection of path components, it
follows that the Top2-morphism (gj , fj) is a k-equivalence of homotopy
fibres (for both values of j). Thus by Theorem 6, for both values of j,
the Top2-morphism pj → p′ is a k-equivalence of homotopy fibres. Our
result follows from Proposition 3(b).

Corollary 8. We assume the conditions of Theorem 7 together with
the requirement that f1 and g1 are cofibrations.

Then for each j = 1, 2, the map of push-outs is a (k + 1)-equivalence
p : (E,Ej)→ (B,Bj).
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Proof: We deduce this result from Theorem 7 as follows. By Proposi-
tion 5, the canonical map E′ → E is a homotopy equivalence, and hence
a weak equivalence. By the five-lemma applied to the ladder formed by
the homotopy sequences of the pairs (E′, Ej) and (E,Ej) and the homo-
morphisms arising from the map (E′, Ej)→ (E,Ej), it follows that the
map of pairs is a weak equivalence.

Similarly, (B′, Bj) → (B,Bj) is a weak equivalence. The assertion
now follows from Theorem 7.

PART II: Relative homeomorphisms.
In the sequel, we assume spaces to have a base point, denoted by the

symbol ∗. The definition of k-equivalence remains as for free spaces.
Definition 9. Let p : (X,A) → (Y,B) be a map of pairs of spaces.

Then p induces maps p1 and p2 as in Diagram (F). The map of pairs
p is said to be a relative homeomorphism if Diagram (F) is a push-out
square.

↪

↪

(F)

A −−−−→ X

p1



�



�p2

B −−−−→ Y

Proposition 10. Suppose that f : V → A is a map with mapping
cone X, and p : (X,A)→ (Y,B) is a relative homeomorphism. Suppose
further that p0 : A→ B is a k-equivalence (k > 0).

Then each of the maps (X,A)→ (Y,B) and X → Y is a k-equivalence.

Proof: In Diagram (G) below, q is the identity map and thus the
diagram is commutative. The map of double mapping cylinders of this
Top2-cotriad is precisely our map p.

(G)

∗ ←−−−− V
f−−−−→ A

q′


�



�q p0



�

∗ ←−−−− V −−−−→
p0◦f

B

The Top2-morphism q → q′ is a weak equivalence of homotopy fibres.
Since the homotopy fibres of p0 are (k − 1)-connected, q → p0 is a
(k− 1)-equivalence of homotopy fibres. Thus by Theorem 7, the Top2-
morphism p0 → p is a (k − 1)-equivalence of homotopy fibres. From
Proposition 3(b), it follows that (X,A)→ (Y,B) is a k-equivalence, and
then from Proposition 3(c), X → Y is a k-equivalence.
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Lemma 11. Suppose that G is a subspace of a space F such that the
inclusion G ⊂ F is an m-equivalence (m > 0). Let Wn be a bouquet
of n-dimensional spheres, and let Cn be the subset F × ∗ ∪ G ×Wn of
F ×Wn.

Then the restriction of the projection map F ×Wn →Wn, is an (m+
n)-equivalence of pairs rn : (Cn, F × ∗)→ (Wn, ∗).

Proof: We proceed by induction on n. The case n = 0 is obviously
true. Now let us assume the statement to be true for all n such that
0 ≤ n ≤ t− 1, where t ≥ 1, and show that it is also true for n = t.

We apply Corollary 8 to Diagram (H) below. V is the corresponding
bouquet of the cones of the spheres of Wt−1. The map q is the restriction
of the projection map F ×Wt−1 →Wt−1, and h is the restriction of the
projection map F ×Wt−1 → F .

(H)

F × ∗ ∪G× V ←−−−− F × ∗ ∪G×Wt−1
h−−−−→ F

q



� α



�



�

V ←−−−− Wt−1 −−−−→ ∗

↩

↩ −−−−−−−−−− −−−− −

The diagram is commutative and the push-out of the Top2-cotriad is
a map of the form rt : Ct → Wt. Note that there is a one to one
correspondence between the spheres in Wt−1 and those in Wt.

In accordance with Theorem 7, we must choose a set T ⊂ Wt−1. If
t = 1, then we choose T = Wt−1, otherwise we choose T = {∗}. The
subsets F x

i required in Theorem 7 are chosen to be the complete inverse
images (of the relevant point with respect to the relevant vertical arrow
in Diagram (H)). For the horizontal arrows pointing to the left, every
induced map between fibres is a homeomorphism. For the horizontal
arrows pointing to the right, the induced map between fibres over ∗ is
a homeomorphism, and otherwise (only relevant in the case t = 1) it
is an m-equivalence. So, the conditions of Theorem 7 can be seen to
be fulfilled for k = m + t − 2, using the induction assumption. Thus
the push-out of the Top2-cotriad is a (m + t − 1)-equivalence. This
completes the induction and hence the proof of the lemma.

Proposition 12. Let p0 : A → B be an m-equivalence (m > 1). Let
(X,A) be a relative CW-complex having cells of dimension n only, and
let p : (X,A)→ (Y,B) be a relative homeomorphism.

Then p : (X,A)→ (Y,B) is an (m + n− 1)-equivalence.

Proof: We first prove the result assuming that p0 : A → B is a fibra-



Triad connectivity 375

tion, and thereafter we deduce the general case.
So let us assume that p0 : A → B is a fibration. Then the fibres of

p0 are (m − 1)-connected. Let g : W → A be the attaching map for
the cells of X, where W is a bouquet of (n − 1)-spheres. The cone on
W is denoted by V . Let F = p−1

0 (∗) be the fibre of p0 over the base
point of B. In Diagram (I), q and q′ are relative homeomorphisms which
collapse the subspace F . The map g′ has restrictions g′|W = g and g′|F
is a homeomorphism onto the subspace F of A. Thus Diagram (I) is
commutative.

(I)

F ∨ V ←−−−− F ∨W
g′

−−−−→ A

q′


� q



� p0



�

V ←−−−− W −−−−→
g◦p0

B↩

↩

By Lemma 11, q : (W ∨F, F )→ (W, ∗) is an (m+n−2)-equivalence (we
choose the space G required in Lemma 11 to be the one-point set {∗}).
Furthermore, we have weak equivalences q′ : (F ∨ V, F ) → (V, ∗), and
p0 : (A,F ) → (B, ∗). By Corollary 8 it follows that p : (X,A) → (Y,B)
is an (m + n− 1)-equivalence, and the special case is proved.

We now turn to the general case. For the mapping path fibration
factorization of p0 below, the inclusion is a homotopy equivalence and f
is a fibration.

A −−−−→ E
f−−−−→ B↪

This factorization induces relative homeomorphisms between relative
CW-complexes,

(X,A) h−−−−→ (Z,E)
f−−−−→ (Y,B),

and the composition of the two maps coincides with p. By Proposition 10,
the map h : (X,A) → (Z,E) is a weak equivalence. From the special
case of Proposition 12 that we have already proved, it follows that f :
(Z,E) → (Y,B) is an (n + m − 1)-equivalence. Thus f ◦ h : (X,A) →
(Y,B) is an (m + n− 1)-equivalence.

Theorem 13. Let p0 : A → B be an m-equivalence, m > 0, and
(X,A) a relative CW-complex having only cells of dimension n and
higher.

Then the relative homeomorphism p : (X,A)→ (Y,B) is an (m + n−
1)-equivalence.
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Proof: By direct limit considerations, it suffices to prove that for every
r ≥ n, the induced map pr : (Xr, A) → (Yr, B) on relative r-skeleta is
an (n + m− 1)-equivalence. We do it by induction on r. For r = n the
statement follows by Proposition 12.

Let t be an integer such that our statement is true for every r such
that n ≤ r ≤ t − 1. Then, in particular, pt−1 : (Xt−1, A) → (Yt−1, B)
is an (n + m − 1)-equivalence. Note that by repeated application of
Proposition 10, it follows that Xt−1 → Yt−1 is an m-equivalence, for
every r. Thus by Proposition 12, (Xt, Xt−1)→ (Yt, Yt−1) is an (t+m−1)-
equivalence, t > n. By the five-lemma applied to the ladder of which a
portion is shown in Diagram (J), it follows that (Xt, A)→ (Yt, B) is an
(n + m− 1)-equivalence.

(J)

πk(Xt−1, A) −→ πk(Xt, A) −→ πk(Xt, Xt−1) −→ πk−1(Xt−1, A)


�



�



�



�

πk(Yt−1, B) −→ πk(Yt, B) −→ πk(Yt, Yt−1) −→ πk−1(Yt−1, B)

This completes the induction and hence the proof of the theorem.
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