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Abstract. We study the concept of propagation connectivity on random
3-uniform hypergraphs. This concept is inspired by a simple linear time
algorithm for solving instances of certain constraint satisfaction problems. We
derive upper and lower bounds for the propagation connectivity threshold, and
point out some algorithmic implications.

1. Introduction and results

1.1. The propagation connectivity. There are several natural ways to define
connectivity for 3-uniform hypergraphs H = (V,E). For instance, a standard
concept is to consider H connected if the graph obtained by replacing each edge
e by a triangle is connected (recall that in a 3-uniform hypergraph each edge is
a set of three vertices).

In this paper we study a different concept that we call propagation connectivity.

Definition 1. Let H = (V,E) be a 3-uniform hypergraph on n = |V | vertices. We
call a sequence e1, . . . , en−2 ∈ E a propagation sequence if for any 1 ≤ l < n− 2

we have |el+1 ∩
⋃l
i=1 el| = 2. If H has a propagation sequence, then we say that

H is propagation connected.

This definition is motivated by a simple algorithm for a certain kind of con-
straint satisfaction problem. For the time being, let us focus on the concrete
example of a system of linear equations over a finite field with three variables per
equation. We can associate a hypergraph H with this system by thinking of the
variables as vertices and of the equations as hyperedges. If we are given a prop-
agation sequence e1, . . . , en−2 for H, then we can find a solution to the system
of equations in linear time (if there is one). Namely, suppose that the variables
of e1 are x, y, z. We can easily ‘guess’ the correct values of x, y (i.e., we can try
all possible assignments because the field is finite). Then the value of z is im-
plied. Now, assume inductively that we have obtained the values of the variables
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occurring in the first l edges/equations e1, . . . , el already. Then el+1 contains pre-
cisely one additional variable (by the definition of propagation sequence), whose
value we can thus infer directly. Thus, after passing through the entire sequence
e1, . . . , en−2, we have determined the values of all n variables. If this solves the
linear system, we are done. Conversely, if we find that no assignment to the first
two variables x, y leads to a solution, then it is safe to conclude that no solution
exists.

The contribution of this paper is close upper and lower bounds on the edge
probability that the propagation connectivity holds in random hypergraphs. More
precisely, we consider the following random hypergraph model H(n, p): the ver-
tex set of the random hypergraph is V = [n] = {1, . . . , n}, and each of the

(
n
3

)
possible edges is present with probability 0 ≤ p ≤ 1 independently. We write
H : H(n, p) to indicate that H is a random hypergraph chosen from this distri-
bution. Moreover, we say that the random hypergraph has some property with
high probability (w.h.p.) if the probability that the property holds converges to
one as n→∞.

Theorem 1. Suppose that p = c
n lnn

for a constant c > 0.
(1) If c < 0.16, then H : H(n, p) fails to be propagation connected w.h.p.
(2) If c > 0.25, then H : H(n, p) is propagation connected w.h.p.

Determining the threshold for ‘standard’ connectivity (where each hyperedge
is replaced by a triangle) is easy. The result is a hardly surprising p ∼ 2n−2 lnn,
and the proof is via a simple coupon collecting argument. By contrast, analyzing
propagation connectivity is quite non-trivial. Our proof is based on a kind of
large deviations analysis of a time-dependent random walk. A precise solution of
this problem might close the gap left by Theorem 1.

1.2. Computing a propagation sequence. For a propagation connected hy-
pergraph H one can determine a propagation sequence in polynomial time via
a generalized breadth first search procedure. However, the running time of this
algorithm is superlinear (in contrast to BFS on graphs). The following theorem
shows that there is an algorithm with linear expected running time.

Theorem 2. There is a randomized algorithm A that satisfies the following.
For any given hypergraph, A finds a propagation sequence if it exists. For any
parameter p, the expected running time of A applied to H : H(n, p) is linear in
the number of edges of H.

As an application, we show how Theorem 2 yields an algorithm for deciding a
class of random constraint satisfaction problems. A CSP instance with domain
[k] = {1, . . . , k} consists of a 3-uniform hypergraph H = (V,E) with V = [n]
and a family (fe)e∈E of maps fe : [k] × [k] × [k] → {0, 1}. Moreover, a solution
is a map σ : V → [k] such that for any triple 1 ≤ x < y < z ≤ n of vertices
with e = {x, y, z} ∈ E we have fe(σ(x), σ(y), σ(z)) = 1. Thus, intuitively the
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hypergraph H describes the interactions of the variables V , and for any edge e
the map fe characterizes the values that can be assigned to the variables in e so
as to satisfy the constraint that e represents.

Furthermore, we say that a CSP instance is propagating if for any x, y ∈ [k],
any i ∈ {1, 2, 3}, and any edge e ∈ E there is precisely one value zi ∈ [k] such that
fe(z1, x, y) = fe(x, z2, y) = fe(x, y, z3) = 1. In other words, once we assign two
variable in a constraint e, there is precisely one way to assign the third variable
so as to satisfy e. Clearly, systems of linear equations over a finite field provide
an example of propagating problems, but there are many others.

By combining Theorem 2 with the simple propagation procedure outlined after
Definition 1, we obtain the following result.

Corollary 3. Fix c > 0.25 and k ≥ 2 and let p = c/(n lnn). Moreover, assume
that P is a probability distribution over propagating CSP instance with domain
[k] such that the distribution of the random hypergraph underlying the problem
instance coincides with the distribution H(n, p). There is an algorithm with linear
expected running time that decides whether a random CSP instance chosen from
the distribution P has a solution w.h.p.

There are a variety of probability distribution over CSPs that satisfy the as-
sumptions of Corollary 3. Examples include uniformly random systems of linear
equations, which at the density assumed in Corollary 3 do not have solutions
w.h.p. Thus, for these problems running the algorithm in Corollary 3 will provide
a succinct proof that no solution exists w.h.p. On the other hand, distributions
that do admit solutions w.h.p. include systems of linear equations with a ‘planted’
solution, for which the algorithm will find a solution in linear time w.h.p.

1.3. Related work. The ‘standard’ concept of random hypergraph connectivity
(where edges are replaced by triangles) has been studied, e.g., in [1, 3], partic-
ularly with respect to the emergence and size of the giant component. These
results generalize what was known for random graphs (see [8] for a comprehen-
sive summary). A further related random hypergraph concept is that of a core.
This concept is related to local search algorithms such as the ‘pure literal rule’
for the satisfiability. Contributions on these subjects include [6, 11].

Berke and Onsjö [2] approached the propagation connectivity threshold for ran-
dom 3-uniform hypergraphs. They established a lower bound of p=Ω(1/n(log n)2)
and an upper bound of p = O(1/n(log n)0.4). As Theorem 1 shows, the correct
order of magnitude is p = Θ(1/(n lnn)).

With respect to the application to random constraint satisfaction problems,
it is clear that the case of linear equations over finite fields can be solved in
polynomial (albeit superlinear) time by Gaussian elimination. However, if the
underlying hypergraph comes with a propagation sequence, then the problem can
be solved in linear time as indicated. While linear equations provide an example
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of propagating constraint satisfaction problems, there exist NP-hard examples,
too [4].

1.4. Preliminaries and notation. We will use the following Chernoff bound
on the tails of a binomially distributed random variable X with mean µ (e.g.,
[8, p. 21]): letting ϕ(x) = (1 + x) ln(1 + x)− x, we have for any t > 0

(1)
Pr[X ≤ µ− t ] ≤ exp

(
−µ · ϕ(−t/µ)

)
, and

Pr[X ≥ µ+ t ] ≤ exp
(
−µ · ϕ(t/µ)

)
,

We will also use the following Stirling bounds, see, e.g., [9, Lemma 7.3]: for
any n, we have √

2πn
(n

e

)n
≤ n! ≤ 2

√
2πn

(n
e

)n
.

For simplifying our notations we omit specifying ceiling or floor functions so
long as they can be determined from the context.

2. The propagation process

In this section we show how the propagation connectivity problem can be
modeled by a stochastic process, which we call the propagation process. We start
out by describing this process for a fixed hypergraph H = (V,E) with vertex set
V = {1, . . . , n}. Let (v1, v2) be a pair of distinct vertices, which we refer to as
the initial pair. In the course of the prcoess, vertices are either active, neutral, or
dead. Initially v1 is dead, v2 is active, and all other vertices are neutral; formally,
we let

D(v1,v2)
0 [H] = {v1} , A(v1,v2)

0 [H] = {v2} .
Once there is no active vertex left, the process stops. Otherwise at each time
t ≥ 1, the least active vertex u is chosen (recall that V = [n] is an ordered set).
All neutral vertices v for which there is a dead vertex w such that {u, v, w} ∈
E are declared active, and then u is declared dead. In symbols, we let u =

minA(v1,v2)
t−1 [H] and

D(v1,v2)
t [H] = D(v1,v2)

t−1 [H] ∪ {u} ,

A(v1,v2)
t [H] =

(
A(v1,v2)
t−1 [H] \ {u}

)
∪{

v 6∈ D(v1,v2)
t−1 [H] : ∃w ∈ D(v1,v2)

t−1 [H] : {u, v, w} ∈ E
}
.

Thus, at time t the total number of dead vertices equals t+ 1. Let T (v1,v2) [H] be
the time when the process stops. To avoid case distinctions, we consider vertices
dead (or active, or neutral) at times t > T (v1,v2) [H] if they had the corresponding
predicate at time T (v1,v2) [H]. Observe that for a fixed hypergraph H, the process
is entirely deterministic.

The process is related to the propagation connectivity problem as follows. As-
sume that vertex v was declared active at time t ≥ 2. Then H has an edge et that
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contains v and two vertices from D(v1,v2)
t [H]. Proceeding inductively, we obtain a

sequence e2, . . . , et such that v1, v2 ∈ e2 and |el+1 ∩
⋃l
i=2 el| ≥ 2 for all 2 ≤ l < t.

Hence, if all vertices are declared dead eventually, i.e., if T (v1,v2) [H] = n − 1,
then we obtain a propagation sequence. Conversely, if there is a propagation
sequence e2, . . . , en−1 such that v1, v2 ∈ e2, then the propagation process will not
stop before time n− 1. Thus, we have the following.

Fact 1. H is propagation connected iff there is a pair (v1, v2) such that T (v1,v2) [H]
= n− 1.

To prove Theorem 1, we are going to study the propagation process on a
random hypergraph H : H(n, p). In this case we omit the reference to H, i.e., we

just write D(v1,v2)
t etc. It will be convenient to use the terminology of stochastic

processes. In particular, for t ≥ 0 we let F (v1,v2)
t signify the coarsest σ-algebra

on H(n, p) in which all events {v ∈ D(v1,v2)
s } and {v ∈ A(v1,v2)

s } for s ≤ t and

v ∈ V are measurable. Then (F (v1,v2)
t )t≥0 is a filtration. We will also use the

concept of conditional probabilities with respect to the filtration (Ft)t≥0 (see [5]).
To remind the reader, for an event A and a (fixed) hypergraph H0 the conditional
probability is

Pr
[
A|F (v1,v2)

t

]
(H0) =

Pr
[
A occurs and D(v1,v2)

s = D(v1,v2)
s [H0] , A(v1,v2)

s = A(v1,v2) [H0] for all s ≤ t
]

Pr
[
D(v1,v2)
s = D(v1,v2)

s [H0] , A(v1,v2)
s = A(v1,v2) [H0] for all s ≤ t

] .

In words, Pr
[
A|F (v1,v2)

t

]
(H0) is the probability of the event A in a random hy-

pergraph H : H(n, p) given that the first t steps of the propagation process on H
work out the same as in H0. As per standard practice, where the argument H0

is omitted, it is understood that the corresponding statement holds for all H0.
For any t ≥ 1 the first t steps of the propagation process on the random

hypergraph H : H(n, p) only depend on the presence (or absence) of edges that
contain at least two vertices that have been declared dead by time t, i.e., from

the set D(v1,v2)
t . This means that the presence of edges e with |e ∩D(v1,v2)

t | < 2 is
stochastically independent of the first t steps.

Fact 2. Given Ft, for all triples e = {u, v, w} such that
∣∣∣e ∩ D(v1,v2)

t

∣∣∣ < 2, the

edge e is present in H : H(n, p) with probability p independently. In symbols, for
any set

E ⊂
{
e ∈

(
V

3

)
:
∣∣∣e ∩ D(v1,v2)

t

∣∣∣ < 2

}
we have Pr

[
E ⊂ E(H)|F (v1,v2)

t

]
= p|E|.
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The above propagation process is similar in spirit to the branching process
approach for the giant component problem in random graphs/digraphs [10].
The difference between our proofs and the standard argument is that we need
to investigate whether there exists a pair (v1, v2) such that T (v1,v2) ≥ n − 1
(cf. Fact 1). Since there are a total of

(
n
2

)
initial pairs to choose from, this means

that we need to study unlikely trajectories of the propagation process (that occur
with probability merely about 1/

(
n
2

)
).

By contrast, for the giant component problem the corresponding process has
to be studied only from a random start vertex, a problem which relatively easily
reduces to the typical behavior of a standard Galton-Watson branching process.
Alternatively, the problem can be tackled via a whole arsenal of different tech-
niques, ranging from differential equations to random walks. Unfortunately, the
fact that here we need to study an ‘exceptional’ event puts these standard argu-
ments out of business.

To get started, we point out that the hypergraph distribution H : H(n, p) is
invariant w.r.t. permutations of the vertices. Therefore, the distribution of the
propagation process is the same for any initial pair. For the sake of concreteness
we will refer to (v1, v2) = (1, 2). For this initial pair we will omit the superscript
(v1, v2) from the notation. Moreover, we let At = |At| be the number of active
vertices at time t (from the initial pair (1, 2)). Then A0 = 1 by construction. For
any t ≥ 1, we define a further random variable Xt via

(2) Xt = At − At−1 + 1.

That is, Xt is the number of vertices that got declared active at time t.

Fact 3. If 1 ≤ t ≤ T , then given Ft−1, the random variable Xt is binomially
distributed Bin(n− t− At−1, 1− (1− p)t).

Proof. The number of neutral vertices at time t− 1 equals n− At−1 − |Dt−1| =
n−At−1−t. Suppose that v is neutral at time t−1 and let u = minAt−1. Then v
becomes active at time t iff there is w ∈ Dt−1 such that {u, v, w} ∈ E. By Fact 2
each of these t edges is present in H with probability p independently. Hence,
the probability that all of them are absent is 1− (1− p)t. �

To outline the proof of Theorem 1, let us interpret the propagation process in
terms of a time-dependent random walk. The process continues up to time t iff
As > 0 for all 1 ≤ s ≤ t. Due to (2), this is true iff

∑s
q=1(Xq − 1) ≥ 0 for all

1 ≤ s ≤ t. Thus, if we think of the random variables Xs − 1 as the steps of a
random walk, then the propagation process continues to time t iff the random
walk stays non-negative at all times s ≤ t. As Fact 3 shows, this random walk is
time-dependent.

In the regime p = Θ(1/(n lnn)) that we are interested in, and for times s �
lnn, the random walk has a negative drift. More precisely, for s � lnn Fact 3
implies that the expectation of Xs − 1 is (1 + o(1))nps − 1 < 0. Therefore,
standard results on random walks show that the probability that the random
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walk will continue to time, say, lnn is o(1). If, however, the process happens to
survive up to time t = (1 + ε)/(np) = Θ(lnn) for a fixed ε > 0, then Fact 3
shows that the ‘drift’ of Xt− 1 becomes positive and thus the process is likely to
continue up to time n− 1.

The previous paragraph shows that the probability that one specific initial pair
leads to a propagation sequence is o(1). But this does not imply that the random
hypergraph H : H(n, p) is not propagation connected w.h.p., because there is a
total

(
n
2

)
initial pairs to choose from. This observation suggests that in order find

the threshold for propagation connectivity we need to determine for what p the
random walk continues to time 1/(np) with probability 1/

(
n
2

)
. In Section 3 we

will derive a lower bound on this value of p. The more challenging problem is to
obtain an upper bound, which we address in Section 4.

3. The lower bound

In this section we prove the first part of Theorem 1, i.e., we show that the
random hypergraph H : H(n, p) is not propagation connected w.h.p. if p <
0.16/(n lnn). To this end, we will derive that the probability that the initial pair
(1, 2) leads to a propagation sequence is o(n−2). By symmetry and the union
bound, this implies that w.h.p. no initial pair (v1, v2) does. We start by reducing
the problem of estimating the probability that (1, 2) yields a propagation sequence
to an exercise in calculus.

Lemma 4. Let p = c/(n lnn) for a fixed c > 0 and assume that 0 < d ≤ 2/c is
such that d(cd/2 + ln(2/cd)− 1) > 2. Let t0 = d lnn. Then Pr [T > t0] = o(n−2).

Proof. Let {X̃t}t≥1 be a family of mutually independent random variables such

that X̃t has distribution Bin(nt, p). Let t ≥ 1. By construction, for each vertex
v ∈ At \ At−1 that becomes active at time t, there is an edge {u, v, w} in H :
H(n, p) such that u = minAt−1 and w ∈ Dt−1. In particular, the number Xt =
|At \ At−1|+ 1 of newly active vertices v is bounded by the number of such edges
{u, v, w}. By Fact 2, given Ft−1, each such edge is present in H with probability
p independently. As |Dt−1| = t and because the number of neutral vertices v to
choose from is bounded by n, this shows that Xt|Ft−1 is stochastically dominated

by the binomial variable X̃t = Bin(nt, p).
If the stopping time T exceeds some specific time t0, then At ≥ 1 for all t ∈ [t0].

Hence, (2) implies
∑

1≤t≤t0 Xt ≥ t0. Because each Xt is dominated by X̃t, we can
bound the probability of this event by

Pr [T ≥ t0] ≤ Pr

[ ∑
1≤t≤t0

Xt ≥ t0

]
≤ Pr

[ ∑
1≤t≤t0

X̃t ≥ t0

]

= Pr

[
Bin

(
n ·

∑
1≤t≤t0

t, p

)
≥ t0

]
=Pr

[
Bin

(
n · t0(t0 + 1)

2
, p

)
≥ t0

]
.(3)



8 AMIN COJA-OGHLAN, MIKAEL ONSJÖ, AND OSAMU WATANABE

Let µ0 denote the expectation of this last binomial distribution. Then

(4) µ0 = n · t0(t0 + 1)

2
· p =

cd2

2

(
1 +

2

d lnn

)
lnn ∼ cd2

2
lnn.

We are going to verify that our assumption on c, d implies that the r.h.s. of (3)

is o(n−2). Since we assume d ≤ 2/c, we have cd2

2
lnn = µ0 ≤ t0 = d lnn.

Therefore, we can bound the probability (3) via Chernoff (1) as follows:

Pr

[
Bin

(
n · t0(t0 + 1)

2
, p

)
≥ t0

]
≤ Pr

[
Bin

(
nt0(t0 + 1)

2
, p

)
≥ µ0 + (t0 − µ0)

]
≤ exp

(
−µ0 · ϕ

(
t0
µ0

− 1

))
= n

− µ0
lnn
·ϕ
(
t0
µ0
−1
)
.

Thus, we just need to verify that

(5)
µ0

lnn
· ϕ
(
t0
µ0

− 1

)
> 2.

Using the approximation (4), we obtain

µ0

lnn
· ϕ
(
t0
µ0

− 1

)
=

µ0

lnn
·
(
t0
µ0

ln
t0
µ0

− t0
µ0

+ 1

)
∼ cd2

2

(
2

cd
ln

2

cd
− 2

cd
+ 1

)
= d

(
cd

2
+ ln

2

cd
− 1

)
.

Thus, our assumption on c, d implies (5). �

Proof of Theorem 1, part (1). Let c = 0.16 and p = c/(n lnn). Letting
f(d) = d(cd/2+ln(2/cd)−1), we see that max0<d<2/c f(d) > 2. Hence, Lemma 4
entails that for c < 0.16, we have Pr [T > t0] = o(n−2) for a certain t0 = O(lnn).
By the union bound, this implies that w.h.p. there is no pair (v1, v2) such that
T (v1,v2) = n − 1, whence H : H(n, p) is not propagation connected w.h.p. by
Fact 1. �

4. The upper bound

In this section we outline the proof of part (2) of our main theorem, that
is, an upper bound for p such that H : H(n, p) is propagation connected w.h.p.
The proofs of the three propositions stated here will be given in the following
subsections. As we saw in Section 2, the propagation process can be viewed as a
time-dependent random walk. At first, the drift of this random walk is negative,
but after a certain time the drift turns positive. The following proposition reflects
this fact by showing that once the process has survived up to a certain time, it
will likely continue to time n− 1. In the following, we let ν = d(lnn)3e.

Proposition 5. Suppose that c > 0 is a constant and let p = c/(n lnn). Then
w.h.p. there is no pair (u, v) such that ν ≤ T (u,v) < n− 1.
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In the light of Proposition 5, we call a pair of vertices (u, v) good if T (u,v) ≥ ν.
Let N be the number of good pairs of H : H(n, p). Then by Proposition 5 in
order to prove that H : H(n, p) is propagation connected w.h.p., we just need to
establish that N > 0 w.h.p. We first estimate the expected number of good pairs.

Proposition 6. For any fixed c > 0.25 there is a number δ = δ(c) > 0 such that
for p = c/(n lnn) we have E[N ] ≥ Ω(nδ).

Then by the following proposition, we relate the above result on the expectation
of N to showing that N > 0 w.h.p. The proof of this proposition is based on a
second moment argument.

Proposition 7. Assume that δ, c > 0 are constants such that for p = c/(n lnn)
we have E [N ] ≥ Ω(nδ). Then in fact N ≥ Ω(nδ) > 0 w.h.p.

Now the second part of Theorem 1 is a direct consequence of Propositions 5–7.

4.1. Proof of Proposition 5. Fix any constant c > 0, and let p = c/(n lnn).
Also fix any sufficiently large n. Recall that ν = d(lnn)3e.

Consider a random hypergraph H : H(n, p). For any L ⊆ V , we say that L is
closed if there is no edge in H having two vertices in L and one vertex in V \ L.
Below we estimate the probability that H has some Z ⊆ V satisfying

(6) Z is closed ∧ ν < |Z| < n.

Note that, starting from some vertex pair (u, v), if ν ≤ T (u,v) [H] < n − 1, then

the set D(u,v)
t [H] of dead vertices at time t = T (u,v) [H] has exactly t+ 1 vertices

and satisfies (6). Thus, the proposition is proved by showing this probability is
o(1).

Consider any z, ν + 1 ≤ z ≤ n− 1. Then we have

Pr[∃Z [Z is closed ∧ |Z| = z ] ]

≤
(
n

z

)
(1− p)(

z
2)(n−z) ≤ n · nn

zz · (n− z)n−z
· exp

(
−p · z(z − 1)(n− z)

2

)
≤ exp(lnn+ z lnn− z ln z) ·

(
1 +

z

n− z

)n−z
· exp

(
−p · z(z − 1)(n− z)

2

)
≤ exp(lnn+ z lnn− z ln z) · exp(z) · exp

(
−pz2n/8

)
≤ exp

(
z ·
(

lnn

z
+ lnn− ln z + 1− pzn

8

))
= exp

(
z ·
(

1

(lnn)2
+ lnn− ln z + 1− c(lnn)2

8

))
≤ exp(−z) = n−(lnn)2 .

Now by the union bound, the target probability is bounded by n ·n−(lnn)2 = o(1).
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4.2. Proof of Proposition 6. As indicated in Section 2, we basically need to
analyze the probability that the random walk described by the variables Xt =
At − At−1 + 1 remains positive. From now on, we fix a number c > 0.25 and let
p = c/(n lnn) for n sufficiently large. We will keep the notation from Section 2.

For a time t and a number g ≥ 1, we let AT(t, g) denote the event that At ≥ g.
That is, the process does not stop before time t, and at this time there are at
least g active vertices. As we saw in Section 2, the ‘drift’ of the time-dependent
random walk described by the variables Xt is negative for t� lnn. The following
lemma will help us get over the first few steps of the process. Intuitively, it shows
that with a decent probability the process will not only survive up to time γ lnn,
but also amass an excess of γ lnn active vertices for a small γ > 0.

Lemma 8. For any δ > 0, there is γ0 = γ0(c, δ) > 0 such that for all 0 < γ < γ0,
the event AT(dγ lnne, dγ lnne) holds with probability at least n−δ.

Proof. As limγ→0 2γ ln(c)− cγ2/2+2γ ln(γ/2) = 0, for any δ > 0, there is γ0 > 0
such that for all 0 < γ < γ0, we have 2γ ln(c)− cγ2/2+2γ ln(γ/2) > −δ. Assume
that γ, 0 < γ < γ0, is sufficiently small so that this is the case. Let t1 = dγ lnne
and t0 = bt1/2c. Then

Pr [AT(dγ lnne, dγ lnne)] ≥ Pr

[ ∧
1≤t≤t0

Xt = 1 ∧
∧

t0<t≤t1

Xt = 3

]
.

(For if Xt > 0 for all t ∈ [t1], then the process won’t stop before time t1, i.e.,
T ≥ t1. Moreover, the number of active vertices at time t1 equals

∑t1
t=1(Xt−1) =

2(t1− t0) ≥ γ lnn.) For 0 ≤ t ≤ t1, we let Et signify the event that Xs = 1 for all
1 ≤ s ≤ min {t, t0} and Xs = 3 for all t0 < s ≤ t. Then our objective is to lower
bound Pr [Et1 ].

If we condition on the event Et−1 for some t ∈ [t1], then the number of neutral
vertices at time t works out to be n − (t + 1) − At ≥ n − 2t1 − 2 = n −
O(lnn). Furthermore, Fact 3 entails that Xt given Et−1 is binomially distributed
Bin(n− t− At−1, 1− (1− p)t). Consequently,

Pr [Xt = 1|Et−1] ≥ (n−O(lnn))(1−(1−p)t)(1−p)tn ∼ ct

lnn
· exp(−ct/ lnn), and

Pr [Xt = 3|Et−1] ≥
(
n−O(lnn)

3

)
(1−(1−p)t)3(1−p)tn ∼ (ct)3

(lnn)3
· exp(−ct/ lnn).

Therefore,

Pr [Et1 ] =
∏

1≤t≤t0

Pr [Xt = 1|Et−1] ·
∏

t0<t≤t1

Pr [Xt = 3|Et−1]

≥ c3t1−2t0n−cγ
2/2
(γ

2

)3γ ln(n)/2

·
exp

(∑t0
t=1 ln t

)
(lnn)t0

≥ Ω
(
n2γ ln(c)−cγ2/2+2γ ln(γ/2)

)
.
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Since we have chosen γ so that 2γ ln(c)− cγ2/2 + 2γ ln(γ/2) > −δ, the assertion
follows. �

Lemma 8 shows that with a decent probability the first few steps of the process
will yield a good number of active vertices. The following lemma studies the
continuation of the process up to the time c−1 lnn where the ‘drift’ of the random
walk turns positive.

Lemma 9. There exists δ > 0 such that Pr[T ≥ d(c−1 + δ) lnne ] ≥ nδ−2.

Proof. Since c > 0.25, we can choose δ > 0 so that 4c(1 − δ) > 1. Let γ0 be
the number promised by Lemma 8. Moreover, choose 0 < γ < γ0 sufficiently
small so that 1 + 4cγ − ln(1 − cγ) < 4c(1 − δ). We may also assume that
d(c−1 + δ) lnne ≤ dγ lnne · (b(cγ)−1c+ 1).

Let g = dγ lnne and s0 = b(cγ)−1c. Then our goal is to estimate the probability
that the propagation process lasts at least (s0 + 1)g steps. To this end, we
partition this period into s0 + 1 chunks of size g. That is, for each s ∈ [s0], we
define Ys =

∑
sg<t≤(s+1)gXt. We are going to lower bound the probability of the

event

(7) AT(g, g) ∧ (Y1 ≥ g) ∧ · · · ∧ (Ys0 ≥ g).

If this event occurs, then T ≥ g(s0 + 1). To see this, we show by induction that
for each 1 ≤ s ≤ s0 at time t = sg there are at least g active vertices. For s = 1
this follows directly from the definition for AT(g, g). Proceeding inductively, we
note that the following period up to time (s + 1)g will generate g new active
vertices, because Ys+1 ≥ g. This ensures that at time (s + 1)g there are at least
g active vertices as well.

Thus, in order to establish the proposition, we just need to prove that the
event (7) holds with probability nδ−2. Lemma 8 shows that Pr [AT(g, g)] ≥
n−δ. In addition, we are going to estimate the probability that Ys ≥ g given
AT(g, g) ∧ (Y1 ≥ g) ∧ · · · ∧ (Ys−1 ≥ g) for any s ∈ [s0]. In doing so we may
assume that Asg ≤ 2c−1 lnn, because otherwise the process will continue to time
2c−1 lnn > (c−1 + δ) lnn with certainty. Hence, we may assume that there are
always more than n′ = (n − 2c−1 lnn) = n(1 − o(1)) neutral vertices. On the
other hand, at times sg < t ≤ (s+ 1)g there are at least sg dead vertices. Thus,
Fact 3 implies that

Pr
[
Asg ≥ 2c−1 lnn ∨ Ys ≥ g |AT(g, g) ∧ (Y1 ≥ g) ∧ · · · ∧ (Ys−1 ≥ g)

]
≥ Pr

 ∑
sg<t≤(s+1)g

Xt≥g

∣∣∣∣∣∣ (Asg<2c−1 lnn
)
∧AT(g, g) ∧ (Y1≥g)∧ · · · ∧(Ys−1≥g)


≥ Pr [ Bin(gn′, 1− (1− p)sg) ≥ g ] ≥

(
g2n′s

g

)
pg(1− p)g2n′s−g.
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Let µs = g2n′sp and xs = g/µs. Applying Stirling’s formula, we obtain(
g2n′s

g

)
pg(1− p)g2n′s−g ≥ c′ ·

√
m

g(m− g)
· mm

gg · (m− g)m−g
· pg(1− p)m−g

≥ c′
√
g
·
(
pm

g

)g
·
(
m− pm
m− g

)m−g
= exp

(
ln c′− ln g

2
−g lnxs+(m− g) ln

(
1− µs − g

m− g

))
≥ exp

(
ln c′ − ln g

2
− g lnxs − (µs − g)− (µs − g)2

m− g

)
≥ exp (−g lnxs + g − µs −O(ln lnn) ) .

Hence,

Pr[ (7) ] = Pr[ AT(g, g) ] · Pr[ (Y1 ≥ g) ∧ · · · ∧ (Ys0 ≥ g) |AT(g, g) ]

≥ n−δ ·
∏

1≤s≤s0

exp (−g lnxs + g − µs − c′′ ln lnn )

= n−δ · exp

( ∑
1≤s≤s0

(−g lnxs + g − µs − c′′ ln lnn)

)
(8)

Approximating the sum in the exponent by an integral, we see that∑
1≤s≤s0

(−g lnxs + g − µs − c′′ ln lnn) ≥ − lnn

2c
·
(
1 + o(1) + 3cγ − ln(1− cγ)

)
> −2 lnn+ 2δ lnn,

where the last step is due to our choice of γ and δ. Finally, combining this
estimate with (8) yields Pr[ (7) ] ≥ n−δ · n−1/2cpos+2δ = nδ−2, as desired. �

The basic idea in the above proof was to study the behavior of the random
walk by partitioning the time up to about c−1 lnn in short periods of length
g = dγ lnne with a small γ > 0. What we estimated was the probability that
for each of these periods the total number of newly generated active vertices
is at least g, without taking into account how these g vertices are distributed
over the period. Alternatively, one could lower bound the probability that the
process survives up to time c−1 lnn by the probability that the process generates
at least one active vertex at each individual step. However, this argument gives a
significantly weaker result. Intuitively, this means that typically the process will
generate a little bit of ‘leeway’ for itself by aggregating a certain excess of active
vertices.

Once the process ‘survives’ up to time c−1 lnn, we are on firm ground, because
then the ‘drift’ of the underlying random walk becomes positive. This observation
yields the following corollary to Lemma 9, which in turn implies Proposition 6.
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Corollary 10. There is δ > 0 such that Pr [(1, 2) is good] = Ω(nδ−2).

Proof. Let δ be as in Proposition 6 and set θ = d(c−1 + δ) lnne. We condition
on the event that the propagation process for (1, 2) continues for at least θ steps,
i.e., Aθ 6= 0. Then at time θ there is a set of Aθ of active vertices, and a set of
θ + 1 of dead vertices. Let

τ = min {t > θ : At = 0 or (t+ 1) + At ≥ (lnn)3} .

In order to prove the proposition, we need to show that

(9) Pr [Aτ 6= 0 |Aθ 6= 0] = Ω(1).

This implies the assertion, because Lemma 9 shows that Pr [Aθ 6= 0] ≥ nδ−2.
In order to prove (9), we are going to approximate the propagation process for

times θ < t < τ by a Galton-Watson branching process with successor rate greater
than one. This is possible because for θ < t < τ , the number of neutral vertices
at time t is at least n−(t+1)−At ≥ n−(lnn)3. Therefore, the number Xt of new
active vertices at time t has a binomial distribution Bin(n−(t+1)−At, 1−(1−p)t)
(see Fact 3). Its expectation is bounded away from one. That is, for all t,
θ < t < τ , we have

E [Xt|Ft−1 ] ∼ t(n− t− At)p ≥ (1− o(1))θnp = 1 + δ − o(1).

To set up the analogy with the branching process, let {X̃s}s≥1 be a family of
mutually independent random variables with distribution Bin(θ(n − (lnn)3), p)

with mean E(X̃s) ≥ 1+δ−o(1) > 1. Let A′0 = Aθ > 0 and let A′s = A′s−1 +X̃s−1

for all s ≥ 1 be the branching process corresponding to the sequence (X̃s)s≥1.
Furthermore, let τ ′ be the least s ≥ 1 such that A′s = 0 if there is such an s, and
set τ ′ =∞ otherwise. Because n−At − t ≥ n− (lnn)3, the random variable Xt

dominates X̃t−θ for all θ < t < τ . Therefore,

Pr [Aτ = 0|Aθ > 0] ≤ Pr [τ ′ ≤ τ − θ] ≤ Pr [τ ′ <∞] .(10)

Finally, as the random variables of {X̃s}s≥1 are i.i.d. with expectation greater than
one, the theory of branching processes (e.g., [7, p. 297]) shows that Pr [τ ′ <∞] ≤
1− α for some number α = α(δ) > 0 that depends on δ only. Thus, (10) implies
(9). �

4.3. Proof of Proposition 7. Recall that a pair (x, y) of (distinct) vertices is
good if T (u,v) ≥ ν (= d(lnn)3e), in other words, the process from (x, y) continues
at least to time ν.

To bound the probability that there exists some good initial pair, we study
the propagation process first from (1, 2) and, given its outcome, the process from

either π = (3, 4) or from π = (1, 3). Thus, let At = A(1,2)
t , Dt = D(1,2)

t , T =
T (1,2), At = |At|, Xt be the quantities that characterize the process from (1, 2)
as in Section 3. Then (1, 2) is good iff T ≥ ν. Let (Ft)t≥0 be the filtration



14 AMIN COJA-OGHLAN, MIKAEL ONSJÖ, AND OSAMU WATANABE

corresponding to this process. (Recall that At, Ft, etc. are defined even for
t > T.)

In addition, we consider random sets/variables A′t = Aπt , D′t = Dπt , T ′ = T π,

A′t = |A′t|, X̃t = Xπ
t associated to the process commencing from π (= either (3, 4)

or (1, 3)). Let

Ct =

{
1, if |(A′t ∪ D′t) ∩ (Aν ∪ Dν)| ≥ 2,
0, otherwise.

Let F ′0 = Fν . Moreover, for t ≥ 1, let F ′t be the coarsest σ-algebra such that
F ′t ⊃ Fν and such that all events {v ∈ A′s} for s ≤ t and v ∈ V are F ′t-measurable.
Intuitively, F ′t captures the propagation process from (1, 2) up to time min {ν, T}
and the process from (3, 4) (or (1, 3)) up to time t. In analogy to Fact 2, we have
the following.

Fact 4. Given F ′t, for all triples e={u, v, w} such that max {|e ∩ Dν | , |e ∩ D′t|}<
2, the edge e is present in H : H(n, p) with probability p independently.

Fact 5. Given F ′t−1, random variable (1−Ct−1)X̃t is stochastically dominated by

Bin(n− t− A′t−1, 1− (1− p)t).

Proof. If Ct−1 = 1 or t > T ′, then the statement is trivially true. Thus, we may
condition on Ct−1 = 0 and t ≤ T ′. Let a = minA′t−1 be the active vertex chosen
at time t, and let d ∈ D′t−1 be any dead vertex. Since Ct−1 = 0, Aν ∪Dν contains
at most one of a, d. Let b 6∈ A′t−1 ∪ D′t−1 be another vertex and set e = {a, b, d}.
We are going to show that given F ′t−1, the edge e is present with probability at
most p independently. We consider several cases; note that |e ∩ Dt−1| < 2.

Case 1: (a, d 6∈ Aν ∪Dν) In this case |e ∩ Dν | ≤ 1, and thus Fact 4 shows that
e is present with probability p.

Case 2: (b 6∈ Aν ∪Dν) As Ct−1 = 0 and a, d ∈ A′t−1∪D′t−1, at most one of a, d
is in Aν ∪Dν . Thus, |e ∩ Dν | < 2, and therefore e is present with probability
p by Fact 4.

Case 3: (a, b ∈ Aν ∪Dν) We have d 6∈ Aν ∪Dν , because otherwise A′t−1∪D′t−1

would contain two vertices from Aν ∪ Dν and thus Ct−1 = 1. If in the (1, 2)-
process both a, b are dead at time ν, then e is not present, because otherwise
d would have been included in Aν ∪ Dν as well. If in the (1, 2)-process at
least one of a, b is in Aν , then |e ∩ Dν | < 2 and thus the probability that e is
present equals p by Fact 4.

Case 4: (a, d ∈ Aν ∪ Dν) Identical to Case 3.

We have shown that for each of the n − t − A′t−1 vertices b 6∈ A′t−1 ∪ D′t−1 and
each of the t vertices d ∈ D′t−1 the edge e = {a, b, d} is present with probability
at most p. Hence, for any b the probability that at least one such edge is present
is bounded by 1− (1− p)t. �

Lemma 11. Let H0 be any hypergraph such that Aν [H0] ≤ ν2.
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• If π = (3, 4), then Pr [Cν = 1|F ′0] (H0) ≤ ν8n−2.
• If π = (1, 3), then Pr [Cν = 1|F ′0] (H0) ≤ ν4n−1.

Proof. If Cν = 1, then at least two vertices in Aν ∪ Dν belong to A′ν ∪ D′ν .
Consider the first assertion for the case π = (3, 4). For a pair 1 ≤ s ≤ s′ ≤ ν,

we let E(s, s′) be the event that (A′s \ A′s−1) ∩ (Aν ∪ Dν) 6= ∅, Cs′−1 = 0, and
Cs′ = 1. In other words, E(s, s′) is the event that s ≤ s′ are the first times when
vertices from Aν ∪ Dν become active in the (3, 4)-process.

Let a = minA′s and a′ = minA′s′ . Note that the event E(s, s′) implies the
existence of edges e = {a, b, d} and e′ = {a′, b′, c′} for some d ∈ D′s, d′ ∈ D′s′ and
b, b′ ∈ Aν ∪ Dν in a random H : H(n, p) consistent with H0. For these edges,
by construction, we have

∣∣e ∩ D′s−1

∣∣ < 2 and
∣∣e′ ∩ D′s′−1

∣∣ < 2; also |e′ ∩ Dν | < 2
holds. Moreover, if |e ∩ Dν | ≥ 2, then b′ ∈ Dν and d′ = b ∈ Dν , and in this case e′

is not present in H because otherwise we would have Cs′−1 = 1. Thus, by Fact 4,
the probability that the random H contains e (resp., e′) is bounded as

(11) Pr
[
e ∈ H|F ′s−1

]
(H0) = p, and Pr

[
e′ ∈ H|F ′s′−1

]
(H0) ≤ p.

Note that the total number of possible ways to choose each of d, d′ is bounded
by ν + 1 (because s ≤ s′ ≤ ν and |D′ν | = ν + 1) and that there are |Aν ∪ Dν | ≤
ν2 + ν + 1 ways to choose each of b, b′ (because Aν ≤ ν2 by assumption). Thus,
from (11) and p = O(1/(n lnn)), we obtain

Pr [E(s, s′)|F ′0] (H0) ≤ (ν2 + ν + 1)2(ν + 1)2p2 = o(ν6/n2)

Hence, by the union bound, it holds that

Pr [Cν = 1|F ′0] (H0)

≤ Pr [∃s < s′ ∈ [ν] [E(s, s′) occurs] | F ′0 ] (H0) ≤ ν2·o(ν6/n2) ≤ ν8/n2.

This proves the first assertion.
Next consider the case π = (1, 3). For 1 ≤ s′ ≤ ν, let E(s′) be the event

that Cs′−1 = 0 and Cs′ = 1. Let a′ = minAs′ ; then a′ 6∈ Aν ∪ Dν , because
Cs′−1 = 0. If E(s′) occurs, then e′ = {a′, b′, d′} is present in the random graph for
some d′ ∈ D′s′−1 and b′ ∈ Aν ∪ Dν . Then we have

∣∣e′ ∩ D′s′−1

∣∣ < 2. More-
over, if |e′ ∩ Dν | = 2, then d′ = 1 and b′ ∈ Dν , because Cs′−1 = 0; but
then e′ is not present, because otherwise the process from (1, 2) would have in-
cluded a′ into Aν ∪ Dν . Furthermore, if |e′ ∩ Dν | < 2, then by Fact 4, we have
Pr
[
e′ ∈ H|F ′s−1

]
(H0) = p. Thus, in any case, it holds that

(12) Pr
[
e′ ∈ H|F ′s−1

]
(H0) ≤ p.

Now because the number of ways to choose each of d′ is bounded by ν + 1, and
as there are |Aν ∪ Dν | choices for b, b′, from p = O(1/(n lnn)) and (12), we have

Pr [E(s′)|F ′0] (H0) ≤ Pr [E(s′)|F ′0] (H0) ≤ (ν2 + ν + 1)(ν + 1)p = o(ν3/n).
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Finally, taking the union bound over s′ ≤ ν, we get

Pr [Cν = 1|F ′0] (H0)

≤ Pr [∃s′ ∈ [ν] [E(s′) occurs] |F ′0] (H0) ≤ ν · o(ν3/n) ≤ ν4/n,

as desired. �

Lemma 12. We have Pr [Aν > ν2] = o(n−4).

Proof. We have Aν ≤
∑ν

t=1Xt. Furthermore, by Fact 3 the variable Xt given
Ft−1 is dominated by

X̃t
def
= Bin(n, 1− (1− p)t),

where X̃1, X̃2, . . . are mutually independent.
As a consequence,

(13) Pr
[
Aν > ν2

]
≤ Pr

[
ν∑
t=1

X̃t > ν2

]
.

Furthermore,

E

[
ν∑
t=1

X̃t

]
=

ν∑
t=1

n(1− (1− p)t) ≤ νn(1− (1− p)ν)

≤ (1 + o(1))ν2np = o(ν2).(14)

Combining (13) and (14) with the Chernoff bound (1), the bound of the lemma
is shown. �

Lemma 13. Let π∈{(1, 3), (3, 4)}. Let H0 be any hypergraph such that T [H0]≥ν
and Aν [H0] ≤ ν2. Then we have

Pr [T ′ ≥ ν ∧ Cν = 0 |F ′0 ] (H0) ≤ Pr
[
T (3,4) ≥ ν

]
.

Proof. Since T ′ is the least time t such that A′t = 0, we have T ′ ≥ ν iff A′t > 0
for all t ∈ [ν]. Recall that A′t = A′t−1 +X ′t− 1; hence, T ′ ≥ ν implies that X ′t ≥ 1
for all t ∈ [ν]. On the other hand, Cν = 0 implies Ct−1 = 0 for all t ∈ [ν]. Thus,
T ′ ≥ ν ∧ Cν = 0 implies (1− Ct−1)X

′
t ≥ 1 for all t ∈ [ν]. In other words, letting

A′′t = A′′t−1 + (1− Ct−1)X
′
t − 1,

we see that

Pr [T ′ ≥ ν ∧ Cν = 0 | F ′0 ] (H0) ≤ Pr [∀t ∈ [ν] [A′′t > 0] | F ′0 ] (H0).

Thus, in order to prove the lemma, it suffices to show that

(15) Pr [ ∀t ∈ [ν] [A′′t > 0] | F ′0 ] (H0) ≤ Pr [∀t ∈ [ν] [At > 0] ] = Pr [T ≥ ν ]

since Pr [T ≥ ν] = Pr
[
T (3,4) ≥ ν

]
by symmetry.
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For simplifying expressions, we let µ denote the probability measure
Pr [ · | F ′0] (H0). Now we are going to prove that

(16) µ [A′′t ≥ a | ∀s ∈ [t− 1] [A′′s > 0] ] ≤ Pr [At ≥ a | ∀s ∈ [t− 1] [As > 0] ]

holds for any t, 0 ≤ t ≤ ν, and for any integer a ≥ 1.
Fix any a ≥ 1. We proceed by induction on t. As A′′0 = A0 = 1, (16) is trivial

for t = 0. Consider any t ≥ 1. Note that given A′′t−1 = b > 1 we have A′′t ≥ a iff
(1− Ct−1)X

′
t ≥ a− b+ 1. Thus, it holds that

µ [A′′t ≥ a | ∀s ∈ [t− 1] [A′′s > 0] ]

=
∑

1≤b≤n

µ
[
A′′t ≥ a |A′′t−1 = b

]
· µ
[
A′′t−1 = b | ∀s ∈ [t− 2] [A′′s > 0]

]

=
∑

1≤b≤n

µ
[
(1−Ct−1)X

′
t=a− b+ 1 |A′′t−1 =b

]
· µ
[
A′′t−1 =b | ∀s ∈ [t− 2] [A′′s>0]

]
.

(17)

Here (and in the following) we omit unrelated conditions and write, e.g.,
µ
[
A′′t ≥ a|A′′t−1 = b

]
instead of µ

[
A′′t ≥ a|A′′t−1 = b ∧ ∀s ∈ [t− 2] [A′′s > 0]

]
.

By Fact 5 the variable (1−Ct−1)X
′
t given A′′t = b is stochastically dominated by

a binomial distribution Bin(n−t−b, 1−(1−p)t). By comparison, Fact 3 shows that
givenAt−1 = b the variableXt has a binomial distribution Bin(n−t−b, 1−(1−p)t).
Hence, Xt given At−1 = b dominates (1 − Ct−1)X

′
t given A′′t−1 = b. Therefore,

(17) yields

µ [A′′t ≥ a | ∀s ∈ [t− 1] [A′′s > 0] ]

≤
∑

1≤b≤n

Pr [Xt ≥ a− b+ 1 |At−1 = b ] · µ
[
A′′t−1 = b | ∀s ∈ [t− 2] [A′′s > 0]

]

=
∑

1≤b≤n

Pr [At ≥ a |At−1 = b ] · µ
[
A′′t−1 = b | ∀s ∈ [t− 2]A′′s > 0

]
.

(18)

By induction, At−1 given As > 0 for all s ∈ [t− 2] dominates A′′t−1 given
A′′s > 0 for all s ∈ [t− 2]. Furthermore, the function b 7→ Pr [At ≥ a|At−1 = b] is
monotonically increasing. Combining these two facts with (18), we obtain

µ [A′′t ≥ a | ∀s ∈ [t− 1] [A′′s > 0] ]

≤
∑

1≤b≤n

Pr [At ≥ a |At−1 = b ] · Pr [At−1 = b | ∀s ∈ [t− 2] [As > 0] ]

= Pr [At ≥ a | ∀s ∈ [t− 1] [As > 0] ] .

This proves (16) for all t ∈ [ν]. Then using the fact that A′′0 = A0 = 1, we can
show

Pr [∀s ∈ [t] [A′′s > 0] | F ′0 ] (H0) ≤ Pr [∀s ∈ [t] [As > 0] ] ,

for any t ∈ [ν]. In particular, our goal (15) is obtained as its special case. �
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Now we assume that δ > 0 is the one promised by Proposition 6 for any
constant c > 0.25 and p = c/(n lnn).

Lemma 14. We have

Pr [ both (1, 2) and (3, 4) are good ] ≤ (1 + o(1)) (Pr [(1, 2) is good])2 .

Proof. Note first that

Pr [ (1, 2), (3, 4) are good ]

=Pr
[

(3, 4) is good | (1, 2) is good ∧ Aν≤ν2
]
· Pr [ (1, 2) is good ]+Pr

[
Aν>ν

2
]
.

Since Pr [Aν > ν2] = o(n−4) (from Lemma 12) and Pr [(3, 4) is good] = Ω(nδ−2)
(from Corollary 10 and by symmetry), we see that Pr [Aν > ν2] =
o
(
(Pr [(3, 4) is good])2). Thus, we just need to prove

(19)
Pr
[

(3, 4) is good | (1, 2) is good ∧ Aν ≤ ν2
]
≤ (1 + o(1)) Pr [ (3, 4) is good ] .

Let π = (3, 4). In order to establish (19), it suffices to prove that for any
hypergraph H0 such that T [H0] ≥ ν (i.e., (1, 2) is good in H0) and Aν ≤ ν2, we
have

(20) Pr [T ′ ≥ ν | F ′0 ] (H0) ≤ (1 + o(1)) · Pr
[
T (3,4) ≥ ν

]
.

Fix any such H0. Then
(21)
Pr [T ′ ≥ ν | F ′0 ] (H0) ≤ Pr [Cν = 1|F ′0 ] (H0) + Pr [T ′ ≥ ν ∧ Cν = 0 | F ′0 ] (H0).

Since we are assuming that Pr
[
T (3,4) ≥ ν

]
= Pr [(3, 4) is good] = Ω

(
nδ−2

)
,

Lemma 11 yields that

(22) Pr [Cν = 1|F ′0 ] (H0) ≤ ν8n−2 = o
(
Pr
[
T (3,4) ≥ ν

])
.

In addition, Lemma 13 shows that

(23) Pr [T ′ ≥ ν ∧ Cν = 0|F ′0] (H0) ≤ Pr
[
T (3,4) ≥ ν

]
Finally, combining (21), (22), and (23), we obtain (20), thereby completing the
proof. �

Lemma 15. We have

Pr [ both (1, 2) and (1, 3) are good ] ≤ o(n) (Pr [(1, 2) is good])2 .

Proof. We use a similar argument as in the proof of Lemma 14. As in the that
proof, we have

Pr [(1, 2), (1, 3) are good]

=Pr
[

(1, 3) is good | (1, 2) is good ∧ Aν≤ν2
]
· Pr [ (1, 2) is good] + Pr

[
Aν>ν

2
]
.

(24)
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Now from Lemma 12, it suffices to show that
(25)
Pr
[

(1, 3) is good | (1, 2) is good ∧ Aν ≤ ν2
]
≤ (1 + o(1))n · Pr [ (1, 3) is good ] .

Let π = (1, 3). To prove (25), we are going to show that for any hypergraph H0

such that T [H0] ≥ ν (i.e., (1, 2) is good) and Aν ≤ ν2, we have

(26) Pr [T ′ ≥ ν|F ′0 ] (H0) ≤ (1 + o(1)) · Pr
[
T (3,4) ≥ ν

]
.

For any such H0, we have
(27)
Pr [T ′ ≥ ν |F ′0 ] (H0) ≤ Pr [Cν = 1 | F ′0 ] (H0) + Pr [T ′ ≥ ν ∧ Cν = 0 | F ′0 ] (H0).

Since we are assuming that Pr
[
T (1,3) ≥ ν

]
= Pr [(1, 3) is good] = Ω

(
nδ−2

)
,

Lemma 11 yields

(28) Pr [Cν = 1|F ′0] (H0) ≤ ν4n−1 = o
(
n · Pr

[
T (1,3) ≥ ν

])
.

In addition, Lemma 13 shows that

(29) Pr [T ′ ≥ ν ∧ Cν = 0|F ′0 ] (H0) ≤ Pr
[
T (3,4) ≥ ν

]
.

Finally, combining (27), (28) and (29), we obtain (26), thereby completing the
proof. �

Proof of Proposition 7. Let N be the number of good pairs. We are going to
show that E [N2] ∼ (E [N ])2. More specifically, we analyze E [N(N − 1)]. Let
W be the set of all pairs (x, y) ∈ V 2 such that x 6= y. We use (x, y) and (x′, y′)
to denote distinct elements of W . Then

(30) E [N(N − 1)] =
∑

(x,y),(x′,y′)∈W

Pr [ both (x, y), (x′, y′) are good ] .

We split the sum into two cases where

• the summands (x, y), (x′, y′) are pairwise distinct, that is, |{x, y, x′, y′}| = 4,
and

• the summands (x, y), (x′, y′) satisfy |{x, y, x′, y′}| = 3.
There are n(n− 1)(n− 2)(n− 3) possibilities for (x, y, x′, y′) in the first case, and
2n(n−1)(n−2) possibilities in the second case. Since the hypergraph distribution
H : H(n, p) is symmetric with respect to permutations of the vertices, in the first
case we have

Pr [ both (x, y), (x′, y′) are good ] = Pr [ both (1, 2), (3, 4) are good ] ,

and in the second case we get

Pr [ both (x, y), (x′, y′) are good ] = Pr [ both (1, 2), (1, 3) are good ] .
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Hence, we can rephrase (30) as

E [N(N − 1)] = n(n− 1)(n− 2)(n− 3) · Pr [ both (1, 2), (3, 4) are good ]

+ 2n(n− 1)(n− 2) Pr [ both (1, 2), (1, 3) are good ] .

Then invoking Lemmas 14 and 15, we thus obtain

E [N(N − 1)] ≤ (1 + o(1))n(n− 1)(n− 2)(n− 3) (Pr [ (1, 2) is good ])2

+ o
(
n2(n− 1)(n− 2) (Pr [ (1, 2) is good ])2)

≤ (1 + o(1))
(
n(n− 1) Pr [ (1, 2) is good ]

)2
= (1 + o(1)) (E [N ])2 .

As a consequence, we get Var [N ] = E [N2]−(E [N ])2 = o
(
(E [N ])2). Therefore,

for any γ > 0, Chebyshev’s inequality shows that

Pr [N < (1− γ)E [N ]] ≤ Var [N ]

(γE [N ])2 =
o(1)

γ2
= o(1).

From this, the proposition follows. �

5. Computing a Propagation Sequence

An algorithm A with the properties claimed in Theorem 2 is outlined in Fig-
ure 1. This algorithm behaves as stated for any probability parameter p; for con-
venience we write p = c(n)/(n lnn). We will assume c(n) ≥ lnn/n, as otherwise
the corresponding graph will have less than n edges with very high probability
and the statements of the theorem follow trivially.

The algorithm is divided into two steps. At the first step (i.e., step (1) of
Figure 1) a random hash table HashTable is constructed. For any given pair
of vertices x and y, the hash table yields a list (e.g. by reference to a linked
list) of edges in E that contain both x and y. If this list is not empty, the pair
x, y is called positive. The second step (i.e., step (2) of of Figure 1) is based on
the propagation process we introduced in section 2. In this step the algorithm
searches for an initial pair, that is called good, such the propagation process
succeeds, i.e., such that n − 1 edges are obtained in order with each (after the
first) covering exactly one previously uncovered vertex. Pairs that are not good
are called bad. Let D, A, and N be variables for the current set of dead, active, and
neutral vertices respectively. Note that we only need to start from pairs of vertices
that appear in some edge of E, which we call an initial edge. As soon as a good
initial edge (an edge containing a good initial vertex pair) is found, the algorithm
outputs the candidate propagation sequence that by manner of its construction at
this point must be a proper propagation sequence as in Definition 1. To facilitate
the analysis we shall assume that the order in which edges are tried in step (2)
is chosen randomly by the algorithm.

Clearly this algorithm finds a propagation sequence if the given graph is propa-
gation connected. Thus our task is to show that the expected running time of the
algorithm is linear in the number of edges. In the following consider a random
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Algorithm A (for computing a propagation sequence);
given H = (V,E) following H(n, p), where V = [n] and E = {e1, . . . , em};
(1) prepare a random hash table HashTable with O(m) entries such that

one may search for edges containing any pair of vertices using the pair
as a key;

(2) for each initial edge e ∈ E that has not been examined do {
let the candidate propagation sequence be (e);
let u, v, w be the vertices of edge e;
D ← {u}; A ← {v}; N ← V − D ∪ A;
// start the propagation process from edge e

while A 6= ∅ and N 6= ∅ do {
x ← any one element of A;

(a) for each y ∈ D do {
use HashTable to search for edges containing x and y;

(b) for each such edge with x and y do {
z ← the third vertex of the edge;
if z ∈ N then {

append this edge to the candidate propagation sequence;
A ← A ∪ {z}; N ← N − {z};

} }
}
A ← A − {x}; D ← D ∪ {x};

} // end of the while loop
if N = ∅ (i.e., the process succeeds) then

output the candidate propagation sequence and terminate;
} // end of the for loop
report failure;

Figure 1. Outline of Algorithm A

hypergraph H : H(n, p); let E and m denote its edge set and |E| respectively.
Note that m is a binomially distributed random variable, sharply concentrated
around its expectation E[m] =

(
n
3

)
p. We shall assume without further remark

from here on that m ∝ n3p.
Let us go through the algorithm to check what is necessary to show the desired

time bound. The first step of the algorithm is to prepare an appropriate hash
table for checking whether a given pair of vertices is positive. By using a standard
pairwise independent random hash function family (see, e.g., [9, Theorem 13.11]),
we can construct a ‘perfect’ random hash table with O(m) entries in O(m) time
on average. Here by ‘perfect’ we mean a hash table with which each query can
be answered in constant time.

Thus it remains to show that the second step, the main step of the algorithm,
can be executed in time O(m) on average. Notice that for the propagation process
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of step (2) to reach some i vertices, the worst case time is trivially O(i3) as
each vertex pair is used at most once and each time at most i new vertices are
processed. Furthermore the worst case time of the entire algorithm is O(n6) as
there are less than n2 initial vertex pairs to try.

Before proceeding however, let us point out that for the sake of brevity and
readability, the exposition of algorithm A in Figure 1 is slightly wrong on one
point and should be refined. Namely, if an initial edge in step (2) is good, the
process will eventually deplete the set, N, of neutral vertices; but when N becomes
small the number of pairs x, y the algorithm must try to find an appropriate z,
may be too large.

Modification of the algorithm: Let n′ = n−|N| be the number of active and
dead vertices at some point in stage (2) of the algorithm. If n′ > (lnn)3, then
the way to search for a new vertex z is changed as follows: Fix any active vertex
x and scan the edges containing x for an edge {x, y, z} where z ∈ N and y ∈ D.

Proposition 16. If an initial vertex pair is good, the time to complete step (2)
in algorithm A with the modification described, is O(m) on average.

Proof. After reaching (lnn)3 vertices in expected O((lnn)9) time, the algorithm
investigates active vertices and corresponding edges. No vertex is investigated
more than once as it is moved from active to dead immediately after. Since
an edge contains exactly three vertices, no edge is investigated more than three
times. Thus the total time is O((lnn)9 + 3m) = O(m). �

Since the algorithm terminates as soon as it has found (and processed) a good
pair, it remains now to show that the time spent on bad initial pairs before this,
is not too large on average. From the proof of Proposition 5, it is easy to show
that the probability there is some bad initial vertex pair from which we reach
(lnn)3 vertices, is smaller than O(n−6). Since the worst case time of algorithm
A is trivially O(n6) we may therefore assume without further remark that any
initial pair that propagates to (lnn)3 vertices will propagate to the entire graph
(the total expected time for the other case is at most a constant and therefore
negligible). We now come to the key points of our analysis of the expected
running time for step (2). First we consider a parameter range in which we know
the graph is almost surely propagation connected.

Proposition 17. Let c(n) > 0.3. The time spent on step (2) in algorithm is
O(m) on average.

Proof. By the proof of Proposition 7 we have that with probability > 1 − n−ε
the graph has at least nδ good pairs for some positive constants δ and ε. This is
true for c(n) > 0.3. If there are indeed more than nδ good pairs, and the pairs
are investigated in random order, then we expect to hit on a good pair in O(n2−δ)
tries. Since the propagation from bad pairs must finish before reaching (lnn)3

vertices, the expected time is trivially O((lnn)9n2−δ) = O(m).
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With probability less than n−ε it happens that there is not a sufficient number
of good pairs in the graph. But then the expected time spent on bad pairs is still
O((lnn)9n2−ε) = O(m). �

Finally we have the case where there may or may not exist a propagation
sequence, but the graph at any rate has not too many edges. In this region, any
given vertex pair is in fact very bad with high probability, as will be seen.

Proposition 18. Let c(n) ≤ 0.3. The time spent on step (2) in algorithm is
O(m) on average.

Proof. Consider the argument for the lower bound in Section 3, but this time
choose a constant stopping time, t0 = 100. The probability that a given vertex
pair will propagate past the corresponding number of vertices is therefore bounded
as

Pr

[
Bin

(
n
t0(t0 + 1)

2
, p

)
≥ t0

]
≤ exp (−µ0ϕ(t0/µ0 − 1))

≤ exp

(
−t0

2
ln lnn

)
= (lnn)−50

for sufficiently large n. We have the following three cases, each of which has
expected linear time.

(i) The process stops short of 100 vertices: Expected time is O(1003m) = O(m).
(ii) The process stops between 100 and (lnn)3 vertices: Expected time is

O(m(lnn)9−50) = O(m).
(iii) The process propagates to the entire graph: Expected time O(m) as given

by Proposition 16.

Note again that we ignored the possibility that the process stops after (lnn)3 but
short of the whole graph, as this case is exceedingly unlikely and the expected
time no more than a constant. �

Proof of Theorem 2. The Propositions 17 and 18 together with the previous
argument about step (1), show that the expected time of the algorithm is linear
in m. If the algorithm fails, it must have tried all possible initial pairs and found
them bad, hence there is no propagation sequence. On the other hand, any
sequence outputted by the algorithm is trivially a propagation sequence.
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