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Abstract. To describe the collective behavior of large ensembles of neurons
in neuronal network, a kinetic theory description was developed in [13, 12],
where a macroscopic representation of the network dynamics was directly de-
rived from the microscopic dynamics of individual neurons, which are modeled
by conductance-based, linear, integrate-and-fire point neurons. A diffusion ap-
proximation then led to a nonlinear Fokker-Planck equation for the probability
density function of neuronal membrane potentials and synaptic conductances.
In this work, we propose a deterministic numerical scheme for a Fokker-Planck
model of an excitatory-only network. Our numerical solver allows us to obtain
the time evolution of probability distribution functions, and thus, the evolution
of all possible macroscopic quantities that are given by suitable moments of
the probability density function. We show that this deterministic scheme is ca-
pable of capturing the bistability of stationary states observed in Monte Carlo
simulations. Moreover, the transient behavior of the firing rates computed
from the Fokker-Planck equation is analyzed in this bistable situation, where
a bifurcation scenario, of asynchronous convergence towards stationary states,
periodic synchronous solutions or damped oscillatory convergence towards sta-
tionary states, can be uncovered by increasing the strength of the excitatory
coupling. Finally, the computation of moments of the probability distribution
allows us to validate the applicability of a moment closure assumption used in
[13] to further simplify the kinetic theory.

1. Introduction

As large-scale neuronal networks models in computational neuroscience become
more common [49, 53, 51, 29, 41, 24], the need to develop efficient methods and
effective representations for simulating and analyzing the dynamics of large-scale
networks becomes urgent. The multitude of spatial and temporal scales of brain
phenomena presents a challenge for model simulation and reduction. While the
modularity of brain regions motivates simplification via spatial coarse-graining,
irregular temporal fluctuations in the neuronal membrane potentials and the
synaptic inputs [50, 46, 3, 45] suggest time-scales for temporal coarse-graining.
Various theoretical approaches, based on spatial and temporal coarse-graining
assumptions, have led to the development of dimensional-reduced descriptions of
the network dynamics through examining a probabilistic representation of the
network dynamics and deriving an evolution equation governing a probability
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density function (pdf) [26, 55, 1, 52, 18, 5, 39, 7, 20, 38, 37, 35, 36, 22, 19].
In this work, we propose an efficient numerical scheme for the simulation of a
nonlinear Fokker-Planck equation representation for neuronal network dynamics.

The starting point for our description of neuronal network dynamics is a
system of ordinary differential equations (ODEs) for a network of recurrently
coupled, single compartment, conductance-based, linear integrate-and-fire (LIF)
point neurons. In this work, we restrict the discussion to all-to-all coupled, exci-
tatory neuronal networks. We consider the following dynamical system governing
the temporal evolution of the membrane potential Vi and the excitatory conduc-
tance Gi ≥ 0 of the ith neuron in a pool PE of N excitatory neurons,

τ
dVi

dt
= −(Vi − VR) − Gi(Vi − VE)(1)

σE
dGi

dt
= −Gi +

∑

µ

fE δ(t − tiµ) +
SEE

NE

∑

j∈PE

∑

µ

pE
jµδ(t − tjµ)(2)

where VE is the (excitatory) reversal potential, τ is a typical leak (i.e., relax-
ation) time for the membrane potential, and σE is the decay time constant of
the excitatory conductance. To complete the LIF dynamical system, whenever
a membrane potential, Vi, reaches the spiking threshold (VT ), the spike time is
recorded and Vi is immediately set to the reset potential VR.

The first sum in Equation (2) is due to incoming spikes (i.e., spikes from neurons
external to the network): tiµ is the time of the µ-th incoming spike received by the

ith neuron. We model each incoming spike train with independent realizations
of a Poisson process with rate ν0E(t). The second sum in Equation (2) describes
the recurrent interaction with the other neurons in the pool via neuronal action
potentials, i.e., tjµ is the time of the µth spike of the jth neuron. The parameter
SEE describes the strength of network excitatory couplings. The factor of NE

provides the overall normalization of the coupling strength. pE
jµ is the probability

of synaptic release after the arrival of each spike. We model each synaptic release
as a Bernoulli process, with probability equal to p = NE/N , that is, pE

jµ = 1 with
probability p; and 0, otherwise.

Following [13, 12], by assuming that the spike trains contributing to the sec-
ond sum in Equation (2) to be Poisson, the collective behavior of this network
can be described in terms of a partial differential equation (PDE) for the time
evolution of the probability density function (pdf), ρ(t, v, g), of finding a neuron
with a potential v ∈ [VR, VT ] and conductance g ≥ 0 at time t ≥ 0. A diffusive
approximation, by assuming that fE and SEE/NE to be small, then leads to the
following Fokker-Planck equation [12]:
(3)

∂tρ = ∂v

{[(
v − VR

τ

)

+ g

(
v − VE

τ

)]

ρ

}

+ ∂g

{
1

σE
(g − ḡE(t)) ρ +

σ2
g(t)

σE
∂gρ

}
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which can be rewritten as a continuity equation

∂tρ(t, v, g) + ∂vJV (t, v, g) + ∂gJG(t, v, g) = 0,

where the fluxes are

JV (t, v, g) =

[(
VR − v

τ

)

+ g

(
VE − v

τ

)]

ρ(t, v, g)

and

JG(t, v, g) =
1

σE
(ḡE(t) − g) ρ(t, v, g) −

σ2
g(t)

σE
∂gρ(t, v, g) .

The effective drift and effective diffusivity in the conductance variable are given
by:

ḡE(t) = fEν0E(t)+SEE mE(t) and σ2
g(t) =

1

2σE

(

f 2
Eν0E(t) +

S2
EE

NE

mE(t)

)

and are dependent on the average firing rate of the network mE(t). The network
firing rate can be computed as the probability that a neuron at time t achieves
the voltage threshold value VT . Thus, the firing rate is given by the probability
flux at VT , regardless of the value of the conductance, g, i.e.,

(4) mE(t) =

∫
∞

0

JV (t, VT , g) dg .

All neurons arriving at the threshold voltage VT emit a spike and we assume that
they instantaneously relax to their rest value VR. Therefore, we need to supply
boundary conditions for the PDE consistent with the evolution of a pdf for the
trajectories of the ODE system (1)-(2) with a reset boundary condition in the
membrane potential variable:

(5) JV (t, VT , g) = JV (t, VR, g) for all g ∈ [0,∞)

(6) JG(t, v, 0) = JG(t, v,∞) = 0 for all v ∈ [VR, VT )

That is, the flux of spiking neurons at the threshold voltage re-enters instan-
taneously through the reset voltage (5) and that no neuron can have negative
conductances or a non-decaying conductance distribution at large conductance
values (6). We point out that the g-boundary condition (6) can be rewritten
as ρ(t, v, 0) = 0 and ρ(t, v, g) → 0 for all v ∈ [VR, VT ) as g → ∞. Let us
also remark that the v-boundary condition (5) on the threshold voltage implies
that ρ(t, VT , g) = ρ(t, VR, g) = 0 for 0 ≤ g ≤ gT with the critical conductance
determined by VT − VR = gT (VE − VT ) since for excitatory neurons we have
VR < VT < VE . For g ≥ gT , the boundary condition (5) imposes a relation
between ρ(t, VT , g) and ρ(t, VR, g). Let us finally mention that this kinetic model
(3) generalizes other Fokker-Planck equations derived from some current-based
LIF neuronal networks where one considers only the evolution of the voltage (see,
for instance, [7, 6, 30]).
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Most studies of the behavior of neuronal networks as described by (1)-(2)
through a kinetic theory [12, 44, 13, 11, 42, 33, 34] have approached the compu-
tational simulation of this neuronal ensemble through direct Monte-Carlo simu-
lations of the stochastic differential system (see also [47, 40], for details of the
numerical schemes). Based on this Fokker-Planck equation, further dimensional
reduction was obtained by a moment closure method [12] and then analyzed both
numerically and theoretically [43, 28].

The direct simulation of the (2+1)-dimensional nonlinear Fokker-Planck equa-
tion (3) for a neuronal network has not been tackled thus far. Furthermore, a
deterministic simulation has several advantages over direct Monte-Carlo simu-
lations due to the results being noise-free, the accurate resolution of transients,
and the possibility of obtaining all macroscopic quantities of interest directly from
suitable moments of the pdf, ρ(t, v, g). A similar strategy was adopted for obtain-
ing highly accurate resolution of the charged particle transport in semiconductors
(see [14, 15, 10] and references therein). One of the possible drawbacks of the
deterministic simulation of the Fokker-Planck equation (3) is its computational
cost. However, if one wants to resolve (1)-(2) by direct Monte-Carlo simulation
and obtain good statistics for distribution functions and for both dynamical tran-
sients and stationary states, the number of different realizations needed can be
large, thus making the direct deterministic simulation of (3) competitive with
the Monte-Carlo approach. We will comment on computational costs at the end
of Section 2.

The main objectives of this work are then: to propose a highly accurate finite
differences scheme for the solutions of the Fokker-Planck equation (3), to cross-
validate it against direct Monte-Carlo simulations, to analyze its performance,
and to study numerically the transients of the ensemble dynamics showing the
appearance of synchronous and asynchronous solutions. Concerning determinis-
tic methods for related kinetic models, we are only aware of the results in [4].
There the authors proposed a deterministic scheme to directly solve an integro-
differential equation for a model system that included refractory effect, that is,
the spiking neurons went into a refractory state which could also described by
another kinetic integro-differential equation. The authors also proposed two de-
terministic methods: One based on a direct upwind first-order discretization of
the advection derivatives together with an implicit time-stepping; the other based
on splitting methods to decrease the computational time, though some time-steps
are done implicitly.

In our deterministic scheme for the Fokker-Planck equation (3), we approxi-
mate the advection derivatives in voltage by finite-differences WENO (weighted
essentially non-oscillatory) methods developed in [48, 25] for nonlinear systems
of conservation laws. Since the voltage variable does not have diffusion terms
(second derivatives in the voltage), a high-order method is important for the
accuracy and stability for the cases where sharp fronts in the voltage develop.
Both the advection and the diffusion term in the conductance variable are approx-
imated together, as is usually done in drift-diffusion equations for semiconductors
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or in granular media models [9]; keeping good stability properties of the
g-discretization leads to an approximation scheme known as the Chang-Cooper
method. Both approximations are assembled in an ODE system which is solved
by explicit 3rd-order Runge-Kutta methods as in [48]. The accurate approxima-
tion of the v and g derivatives allows us to use explicit time integrators with
a fairly moderate CFL condition. The derivation of this scheme follows similar
ideas as in work done in Boltzmann-Poisson kinetic systems for semiconductors
[14, 15, 10]. Also, splitting schemes were developed for plasmas and semiconduc-
tor modelling [17, 16], which may be applied to the present situation for further
computational savings.

After cross-validating our numerical results by direct comparisons to Monte-
Carlo simulations, we focus on simulating two behaviors commonly observed
in neuronal network models. We first examine the appearance of bistability.
Bi- and multi-stable networks have been used in models of short term work-
ing memory [54], of oculomotor integrators [27], of visual perception [32] and of
neuronal populations involved in decision making [2]. We then examine a model
that exhibits synchronous periodic solutions. Synchronous or oscillatory solutions
have been used to model oscillations observed during cortical processing (for in-
stance, [21, 23]). Various studies have examined how oscillatory solutions may
arise in networks (see, for instance, [1, 7, 6, 8] and references therein). With our
Fokker-Planck solver, we examine the transients as we increased the connectivity
strength. We observe a bifurcation from asynchronous behavior or convergence
towards stationary states to synchronous periodic solutions and back to conver-
gence towards stationary solution. Finally, one advantage of the full deterministic
simulation of the equation (3) is that we can compute accurately the evolution of
the macroscopic moments of the pdf and their form in stationary states. Using
these solutions, we validate the moment closure assumptions as proposed in [12].

The paper is structured as follows. In Section 2, we present a derivation of
the deterministic scheme and compare its results to direct Monte-Carlo simula-
tions. Section 3 details the simulation results obtained for the bistability issue,
the transients synchronous versus asynchronous behavior and the validation of
moment closures. We offer concluding remarks in Section 4.

2. Numerical scheme for the kinetic equation

Our deterministic scheme for the Fokker-Planck equation (3) is based on a
fifth order WENO-finite differences approximation for the advection part in the
voltage variable and an “upwind” scheme mixed with a “θ-scheme”, known as
the Chang-Cooper method, for the advection and the diffusion term in the con-
ductance variable. The evolution in time is done by means of a TVD third-
order Runge-Kutta method. Both finite differences schemes (WENO and Chang-
Cooper methods) produce very accuracy and stable approximations of derivatives
on v and g and allow us to use explicit TVD third-order Runge-Kutta method
with a fairly moderate CFL condition.
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To discretize the Fokker-Planck equation, we rewrite (3) as follows:

(7) ∂tρ(t, v, g) = −∂vJV (t, v, g) +
σ2

g(t)

σE
∂g

{

M(g) ∂g

(
ρ(t, v, g)

M(g)

)}

where

M(g) = exp

{

−
|g − ḡE(t)|2

2σ2
g(t)

}

.

and consider uniform meshes in v and g:

vi = VR + i ∆v i = 0, . . . , Nv

gj = j ∆g j = 0, . . . , Ng

where ∆v = VT −VR

Nv
and ∆g = gmax

Ng
. The maximum value of the conductance

gmax is adjusted in the numerical experiments in such a way that for all t, v,
ρ(t, v, g) ≈ 0 for g ≥ gmax. The approximations to the point values of the
solution ρ(tn, vi, gj) (denoted by ρn

i,j) are obtained with a dimension by dimension
approximation to the derivatives on v and g.

2.1. WENO-scheme. The advection term of the Equation (7) in the voltage
variable is approximated using a fifth order conservative finite difference WENO
scheme [48, 25]. The weighted essentially non-oscillatory scheme was originally
developed for hyperbolic conservation laws. These finite difference methods com-
bine the high accuracy for the smooth parts of the evolution together with a nice
treatment of possible steep fronts by locally weighting the best stencils. We re-
mark that here, the flux in the voltage is completely linear and thus, this choice
of finite differences approximation is just a simple high-order choice which adapts
itself just in case of need due to the nonlinear effect in the g variable and its pos-
sible transmission to the voltage variable through the drift JV (t, v, g). We give a
summary of the WENO method below for the sake of completeness. The variable
g is fixed and we consider the approximation in the v variable:

∂v (a(vi, gj)ρ(tn, vi, gj))
︸ ︷︷ ︸

JV (tn,vi,gj)

≈
1

∆v

(

ĥi+1/2 − ĥi−1/2

)

where a(vi, gj) =
(

VR−vi

τ

)
+ gj

(
VE−vi

τ

)
. To explain the WENO scheme, here we

assume that a(vi, gj) > 0, without loss of generality (otherwise the procedure

would just be mirror symmetric with respect to i + 1/2 when computing ĥi+1/2).
We denote by

(8) hi = a(vi, gj)ρ(tn, vi, gj), i = −2,−1, ..., Nv + 2

where j and n are all fixed. We obtain the numerical flux by

ĥi+1/2 = ω1ĥ
(1)
i+1/2 + ω2ĥ

(2)
i+1/2 + ω3ĥ

(3)
i+1/2
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where ĥ
(m)
i+1/2 are the three third order fluxes on three different stencils given by

ĥ
(1)
i+1/2 =

1

3
hi−2 −

7

6
hi−1 +

11

6
hi,

ĥ
(2)
i+1/2 = −

1

6
hi−1 +

5

6
hi +

1

3
hi+1,

ĥ
(3)
i+1/2 =

1

3
hi +

5

6
hi+1 −

1

6
hi+2,

The nonlinear weights ωm are given by

ωm =
ω̃m

∑3
l=1 ω̃l

, ω̃l =
γl

(ε + βl)2
,

with ε = 10−6, the linear weights γl given by

γ1 =
1

10
, γ2 =

3

5
, γ3 =

3

10
,

and the smoothness indicators βl given by

β1 =
13

12
(hi−2 − 2hi−1 + hi)

2 +
1

4
(hi−2 − 4hi−1 + 3hi)

2

β2 =
13

12
(hi−1 − 2hi + hi+1)

2 +
1

4
(hi−1 − hi+1)

2

β3 =
13

12
(hi − 2hi+1 + hi+2)

2 +
1

4
(3hi − 4hi+1 + hi+2)

2 .

As usual with this kind of schemes, some ghost points are necessary in the mesh,
which are chosen to impose numerically the boundary conditions (5). This condi-
tion for the flux in v means that for every g if a(t, VT , g) < 0 then JV (t, VT , g) = 0
and consequently JV (t, VR, g) = 0, otherwise JV (t, VR, g) = JV (t, VT , g). There-
fore, for n, j fixed, the values at the ghost points are defined as: if a(tn, VT , gj) < 0
then h−i = 0 and hNv+i = 0 for i = 1, 2, 3, otherwise if a(tn, VT , gj) ≥ 0 thus
h−i = hNv+1 and hNv+i = hNv+1 for i = 1, 2, 3, using the notation (8).

2.2. Chang-Cooper Method. For the derivatives of the conductance variable
in the Equation (7) we follow the Chang-Cooper method as considered in [9].
Originally, the Chang-Cooper method was designed to preserve the equilibrium
state of the Fokker-Plank equation. Moreover, this scheme is also an entropy
decay preserving method. This feature is important to get accurate behavior
for large times of the discretization scheme in g. In fact, it ensures that the
maxwellian equilibria M(g) are preserved for the discretized scheme in the ab-
sence of the external time dependent inputs and for homogeneous data in v. In
the jargon of the numerical conservation law community, this property is known
as well-balanced. Moreover, it keeps the associated Liapunov functional (called
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entropy in statistical mechanics) decreasing in time for the scheme. As in the
voltage variable we approximate the term of conductance using finite differences:

∂g

σ2
g(tn)

σE

{

M(gj) ∂g

(
ρ(tn, vi, gj)

M(gj)

)}

≈
Fj+1/2 − Fj−1/2

∆g

where, for n and i fixed, the numerical flux is

Fj+1/2 =
σ2

g(tn)

σE∆g
M̃j+1/2

(
ρj+1

Mj+1

−
ρj

Mj

)

and

M̃j+1/2 =
MjMj+1

Mj+1 − Mj
(ln (Mj+1) − ln (Mj))

is a value between Mj and Mj+1. We have used the following notations: Mj =
M(gj) and ρj = ρ(tn, vi, gj). After some computations, see [9] for details, Fj+1/2

can be rewritten as:

(9) Fj+1/2 =
σ2

g(t)

σE∆g
(ρj+1 − ρj) +

σ2
g(t)ω

σE∆g
(θρj + (1 − θ)ρj+1)

where ω = ln(Mj/Mj+1) and θ = 1
ω
− 1

eω−1
. Now we observe, as we announced

above, that (9) is an “upwind” scheme, mixed with a “θ-scheme”. To conclude
with the description of the numerical approximation in g, we remark that the
ghost flux for j = −1 and j = Ng +1 are considered null, taking into account the
boundary condition for g flux in (6).

2.3. TVD 3rd-order RK. The evolution in time is implemented by means of
the third order TVD Runge-Kutta method as in [48]:

ρ(1) = ρn + ∆tL(ρn, tn)

ρ(2) =
3

4
ρn +

1

4
ρ(1) +

1

4
∆tL(ρ(1), tn + ∆t)

ρn+1 =
1

3
ρn +

2

3
ρ(2) +

2

3
∆tL(ρ(2), tn +

1

2
∆t),

where L is the approximation to the advection and diffusion terms:

L(ρ(t, g, v), t) ≈ −∂vJV (t, v, g) +
σ2

g(t)

σE
∂g

{

M(g) ∂g

(
ρ(t, v, g)

M(g)

)}

and ∆t is the time step, which is conditioned on the following CFL restriction
since an explicit scheme is considered:

∆t ≤ CFL min

{

∆v

max |a(vi, gj)|
,

(∆g)2

σ2
g(tn)

σ
+ ∆g max |Fj+1/2|

}
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where we recall that a(v, g) =
(

VR−v
τ

)
+ g

(
VE−v

τ

)
. Due to the accurate approxi-

mations of the WENO-scheme and the Chang-Cooper method of the fluxes, the
CFL condition does not yield restrictive time-stepping.

Finally, since the system is nonlinear due to the firing rate:

mE(t) =

∫
∞

0

JV (t, VT , g) dg,

which need to be incorporated in a self-consistent fashion, at each time step, we
approximate mE by the composite mid-point rule and re-inject it in the next
step. In our simulations we consider as initial data the product of two different
Maxwellian functions in g and v both normalized to be probability densities, i.e.,
unit numerical mass. For the bistable systems we proceed in a different way, as
we explain below in Section 3.

2.4. Comparison to Monte-Carlo Simulations. We solve the set of Equa-
tions (1)-(2) with a modified second-order Runge-Kutta scheme [47] with a numer-
ical time-step of 0.01 ms. In a few cases, runs with a numerical time-step of 0.001
ms were performed and no significant quantitative differences were observed. We
note that Equations (1)-(2) are already written in reduced-dimensional units, in
which only time has dimensions, in ms; see, for instance, [31]. We set the network
pool size to be N = 100, 000 neurons, each one connected to NE = 100 neurons in
the direct Monte-Carlo simulations. The parameters of the system are as follows:
τ = 20 ms, σE = 3 ms, VE = 14/3, VT = 1, VR = 0 and we set equal the rest and
reset potentials. We set fE = 10 ms and SEE = 0.05 for our comparison between
the Monte-Carlo and Fokker-Planck solvers.

We compare our numerical Fokker-Planck solver to direct Monte Carlo simula-
tions via the following examples, going from stationary to non-stationary cases.

Stationary case. Case (A) We consider a network in which the rate of input
Poisson process ν0E(t) = A with constant A ∈ [1000, 1500].

Figure 1 compares the network firing rate versus mean ginp = fEν0E between
the Monte-Carlo and the Fokker-Planck simulations. We observe very good agree-
ment between the simulations. In Figure 5 we compare the pdfs between the two
simulations. We fix A = 1400 and we display marginal probability distribution
functions ρv and ρg for the stationary solutions. Again we observe that the nu-
merical results from the two solvers are in excellent agreement. We would like to
point out that for the results from the deterministic Fokker-Planck simulations,
the distribution functions ρv and ρg were obtained by numerical integrations of
ρ, therefore there was not need for us to consider derived Fokker-Planck systems
(say, by assuming a closure hypothesis) for ρv or for ρg. Consequently, we obtain
the time evolution of these distribution functions as we observe in Figure 6, ρg

at times 0.05, 0.1 and 0.15 is the same (steady state), however, at time 0.05 ρv

has not still achieved the stationary state.
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Non stationary case. We also analyze cases where the rate of Poisson process is
not constant in time. We consider the two following cases:

• Case B: The input Poisson process has a rate that depends on time con-
tinuously

ν0E(t) = A (1 + ǫ sin(ωt))

B1: A = 1500, ǫ = 300, ω = 8π

B2: A = 1000, ǫ = 200, ω = 8π

• Case C: The input Poisson process has a rate that has a discrete jump in
time

ν0E(t) = Aθ(t − t0) + B , θ being the Heaviside function

A = 500, B = 1000, t0 = 1

Figures 2 and 3 compares the time evolution of the firing rate for the Case B
(B1 and B2), whereas Figure 4 shows the firing rate in the Case C. Comparing
these figures we observe how the shape of the external input is reflected in the
evolution of the firing rate.

We note that simulating accurately ensembles of 100, 000 LIF neurons to get
good statistics took 20-50 times longer than the corresponding Fokker-Planck
equation in all cases. The difference is more pronounced in the cases where we
are interested in the dynamical transients (for instance, in Case C), when a larger
number of ensembles (and/or realizations) are needed for a accurate resolution
of the pdfs.

3. Simulation Results

Here we illustrate the use of our numerical Fokker-Planck solver by examining
the solutions to the following problems, produced by different choices of input
forcing, ν0E : stationary case with a unique steady state, non-stationary solutions
and a case exhibiting bistability. Finally, using our numerical solver we check the
closure condition (10) in a variety of circumstances.

3.1. Bistability. Bistability is typical of systems with strong excitatory feed-
back. Even in situations as in Case A above, there are circumstances, when
the recurrent excitatory coupling is sufficiently strong, that exhibit two dis-
tinct steady state solutions (with different firing rates) for the same input forc-
ing. For instance, let us consider an example with the following parameters:
fE = 1/200 s, SEE = 0.2, NE = 200 and σE = 2 ms. Figure 7 shows bistability
in the firing rate vs. input strength diagram. Here the two different branches
have different firing rates and can be distinguished by the choice of initial data.
To obtain this firing rate diagram we fit for an input of fEν0E = 11 as initial
data the product of two different Maxwellian functions: one for the variable g
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and other one for the variable v, each normalized to have unit numerical integral
(since ρ(v, g) is a probability distribution). Then the stationary solution of this
problem is considered as initial data for the system with fEν0E = 10.9, whose
stationary state is taken as initial data for the case fEν0E = 10.8 and and so on,
to obtain the firing rates of the top branch. However, to obtain the lower branch,
it is not necessary to produce in a similiar fashion, since this branch appears
considering the same initial data for all the input fEν0E .

In Figures 8-9, we display temporal evolution (of network firing rates) and the
(eventual) steady-state pdf for fEν0E = 10.8 which is in the parameter regime
exhibiting bistability. Figure 8 shows the evolution of the firing rate and the
stationary solution for the lower branch, whereas Figure 9 shows the same for
the upper branch. Note that we needed to start with initial data with high
firing rates to access the upper branch. We also remark that there are damped,
oscillatory transients in the latter case. Let us next turn to the development
of oscillatory solutions.

3.2. Synchronous versus Asynchronous solutions. In Figure 10 we exhibit
the firing rate for fEν0E = 11 where there is no bistability. (Thus any initial
data will eventually approach the unique, high firing rate, steady state solution.)
The damped oscillatory transients may be the signature of oscillatory solutions
that are nearby in parameter space. Therefore, let us now consider the following
case, SEE = 0.15, NE = 500, fE = 0.002 s and fEν0E = 12, where firing rate
is periodic in time; see Figure 11. In fact, if we fix NE = 500, fE = 0.002 s
and fEν0E = 12 and vary SEE, we obtain Figure 12, which shows that there is
a range in the excitatory coupling strength, SEE, approximately, between 0.13
and 0.17 where periodic solutions appear (and outside of this interval oscillations
do not happen). For small SEE , solutions go quickly to the steady state but for
slightly larger values over this interval (SEE ≥ 0.17), the solution reaches the
steady state in an oscillatory way, starting with huge oscillations which vanish
after some time.

In the case where 0.13 ≤ SEE ≤ 0.17 and periodic solutions appear, we also
observe that maximum firing rate increases when SEE is increased. Figure 12
shows that the maximum value for SEE = 0.13 is around 250 spikes/sec, while
for SEE = 0.14 is around 350 spikes/sec, for SEE = 0.16 is less than 500 spikes/sec
and for SEE = 0.17 is more than 500 spikes/sec. At the same time, as we increase
SEE the frequency of oscillations increases also. However, eventually the oscilla-
tions damp out again and steady state solutions are obtained and asynchronous
behavior is observed again (see last panel of Figure 12).

3.3. Validation of moment closure assumptions. Equation (3) is a nonlinear
(2+1) dimensional problem and requires a numerical solver, one of which has
been the subject of this paper. To simplify the mathematical representation
further, one can project out the g variable by defining the conditional moments
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µn(v) =
∫
∞

0
gnρ(g|v)dg, for n = 1, 2, ... where ρ(g|v) is the (conditional) pdf of

g given v and can be computed from ρ(t, v, g) = ρ(g|v)ρv(t, v). However, this
will lead to a hierarchy of moment equations, where the dynamical equations for
lower order moments depend on higher order moments. To close this hierarchy,
in [12] the authors postulated a closure condition

(10) Σ2(t, v) = σ2
g(t),

for the conditional variance, Σ2(t, v) ≡ µ2(t, v) − µ2
1(t, v), and derived a system

of two (1+1) dimensional PDEs for ρv(t, v) =
∫

∞

0
ρ(t, v, g)dg and µ1(t, v):

∂tρv(t, v) = ∂v

{[(
v − VR

τ

)

+ µ1(t, v)

(
v − VE

τ

)]

ρv(t, v)

}

(11)

∂tµ1(t, v) = −
1

σE

[µ1(t, v) − ḡ(t)] +
σ2

g(t)

ρv(t, v)
∂v

[(
v − VE

τ

)

ρv(t, v)

]

+

[(
v − VR

τ

)

+ µ1(t, v)

(
v − VE

τ

)]

∂vµ1(t, v).(12)

With our numerical scheme we can validate the closure assumption Σ2(t, v) =
σ2

g(t) (10) since we can easily compute moments of the distribution function.

Figure 13 compares the conditional variance Σ2(t, v) with the variance σ2
g(t) for

different values of A in Case A where unique, steady state solutions exist. We
note that, in the steady state, the closure condition is satisfied, on average, away
from the v-boundaries. More precisely, the maximum L∞ difference of the two
variances occurs at v = 1 (for all but the briefest of initial transients). In Figure
14 we observe similar behavior in the case of where bistable solutions exist. In
general, we observe that the closure assumption is reasonable for most values of
v, away from the boundaries.

4. Conclusions

Our numerical Fokker-Planck solver is an efficient and accurate way of sim-
ulating the effective dynamics of a large-scale LIF neuronal network. This de-
terministic representation of the dynamics at the macroscopic level allows us to
efficiently track the temporal evolution of the pdfs and to obtain any macroscopic
quantities of the network dynamics. In this work, we have validated our numer-
ical scheme by comparing it with stochastic Monte Carlo simulations. We have
also used our numerical solver to analyze a series of numerical examples. In fu-
ture work, we will extend our numerical scheme to networks with both excitatory
and inhibitory couplings and to networks with spatial dependencies. This future
project is not a direct nor obvious modification of the scheme developed in this
paper: the boundary conditions in voltage are more complicated when networks
with both excitatory and inhibitory couplings are considered, more variables
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(and thus more equations) are needed, the spatial dependence has to be clar-
ified at the level of the Fokker-Plank equation, etc. Therefore, the work included
in this paper is an essential step towards simulating realistic, large-scale neuronal
network behavior.
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[10] M. J. Cáceres, J. A. Carrillo, I. M. Gamba, A. Majorana, and C.-W. Shu. Deterministic
kinetic solvers for charged particle transport in semiconductor devices. In Transport phe-
nomena and kinetic theory, Model. Simul. Sci. Eng. Technol., pages 151–171. Birkhäuser
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Figure 1. Evolution on time of the firing rate for Case A. Com-
parison between Monte Carlo and deterministic simulations.
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Figure 2. Evolution on time of the firing rate for Case B1. Com-
parison between Monte Carlo and deterministic simulations.
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Figure 3. Evolution on time of the firing rate for Case B2. Com-
parison between Monte Carlo and deterministic simulations.
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Figure 4. Evolution on time of the firing rate for Case C. Com-
parison between Monte Carlo and deterministic simulations.
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simulations for the stationary distribution functions ρv and ρg in
the Case A with A=1400.
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1/200 s, SEE = 0.2, NE = 200 and σE = 2 ms.
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Figure 10. Evolution on time of the firing rate in the Case A
where fE =1/200 s, SEE =0.2, NE =200, σE =2 ms and fEν0E =11.
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Figure 12. Evolution on time of the firing rates for different val-
ues of SEE for Case A with constant: NE = 500, fE = 0.002 s and
fEν0E = 12.
From top to bottom and left to right: SEE = 0.1,SEE = 0.12,
SEE = 0.13, SEE = 0.14, SEE = 0.16, SEE = 0.17, SEE = 0.18 and
SEE = 0.2.
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Figure 13. For Case A validation of the closure (10).
Left: A = 1200. Right: A = 1400.
Top: Σ2(v), σ2

g and |Σ2(v)−σ2
g | as functions of v for the stationary

solution, which was reached before 0.5 s.
Middle: Evolution on time of the L∞-norm of Σ2(v) − σ2

g .
Bottom: Maximum value of v where |Σ2(v)−σ2

g | reaches the value

||Σ2 − σ2
g ||∞.
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Figure 14. For Case A where fE = 1/200 s, SEE = 0.2, NE =
200, σE = 2 ms and fEν0E = 10.8 validation of the closure (10).
Left: Lower branch. Right: Upper branch.
Top: Σ2(v), σ2

g and |Σ2(v)−σ2
g | as functions of v for the stationary

solution.
Middle: Evolution on time of the L∞-norm of Σ2(v) − σ2

g .

Bottom: Maximum value of v where |Σ2(v)−σ2
g | reaches the value

||Σ2 − σ2
g ||∞.
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