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Abstract. Higher order Delaunay triangulations are a generalization of the
Delaunay triangulation which provides a class of well-shaped triangulations,
over which extra criteria can be optimized. A triangulation is order-k Delaunay
if the circumcircle of each triangle of the triangulation contains at most k

points. In this paper we study lower and upper bounds on the number of
higher order Delaunay triangulations, as well as their expected number for
randomly distributed points. We show that arbitrarily large point sets can have
a single higher order Delaunay triangulation, even for large orders, whereas for
first order Delaunay triangulations, the maximum number is 2n−3. Next we
show that uniformly distributed points have an expected number of at least
2ρ1n(1+o(1)) first order Delaunay triangulations, where ρ1 is an analytically
defined constant (ρ1 ≈ 0.525785), and for k > 1, the expected number of
order-k Delaunay triangulations (which are not order-i for any i < k) is at
least 2ρkn(1+o(1)), where ρk can be calculated numerically.

1. Introduction

A triangulation is a decomposition into triangles. In this paper we are in-
terested in triangulations of point sets in the Euclidean plane, where the input
is a set of points in the plane, denoted P, and a triangulation is defined as a
subdivision of the convex hull of P into triangles whose vertices are the points
in P.

It is a well-known fact that n points in the plane can have many different
triangulations. For most application domains, the choice of the triangulation is
important, because different triangulations can have different effects. For exam-
ple, two important fields in which triangulations are frequently used are finite
element methods and terrain modeling. In the first case, triangulations are used
to subdivide a complex domain by creating a mesh of simple elements (triangles),
over which a system of differential equations can be solved more easily. In the
second case, the points in P represent points sampled from a terrain (thus each
point has also an elevation), and the triangulation provides a bivariate interpolat-
ing surface, providing an elevation model of the terrain. In both cases, the shapes
of the triangles can have serious consequences on the result. For mesh genera-
tion for finite element methods, the aspect ratio of the triangles is particularly
important, since elements of large aspect ratio can lead to poorly-conditioned
systems. Similarly, long and skinny triangles are generally not appropriate for
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Figure 1. Left: A Delaunay triangulation (k = 0). Center: an
order-1 triangulation (with useful-1, non-Delaunay, edges in gray).
Right: an order-2 triangulation, with order-1 triangles in light gray
and order-2 triangles in medium gray.

surface interpolation because they can lead to interpolation from points that are
too far apart.

In most applications, the need for well-shaped triangulations is usually ad-
dressed by using the Delaunay triangulation. The Delaunay triangulation of a
point set P is defined as a triangulation where the vertices are the points in P and
the circumcircle of each triangle (that is, the circle defined by the three vertices
of each triangle) contains no other point from P. The Delaunay triangulation
has many known properties that make it the most widely-used triangulation. In
particular, there are several efficient and relatively simple algorithms to compute
it, and its triangles are considered well-shaped. This is because it maximizes the
minimum angle among all triangle angles, which implies that its angles are—in
a sense—as large as possible. Moreover, when the points are in general position
(that is, when no four points are cocircular and no three points are collinear) it
is uniquely defined. However, this last property can become an important limi-
tation if the Delaunay triangulation is suboptimal with respect to other criteria,
independent of the shape of its triangles, as it is often the case in applications.

To overcome this limitation, Gudmundsson et al. proposed higher order De-
launay triangulations [10]. They are a natural generalization of the Delaunay
triangulation that provides well-shaped triangles, but at the same time, flexibil-
ity to optimize some extra criterion. They are defined by allowing up to k points
inside the circumcircles of the triangles (see Figure 1). For k = 0, each point set
in general position has only one higher order Delaunay triangulation, equal to
the Delaunay triangulation. As the parameter k is increased, more points inside
the circumcircles imply a reduction of the shape quality of the triangles, but also
an increase in the number of triangulations that are considered. This last aspect
makes the optimization of extra criteria possible, thus providing triangulations
that are a compromise between well-shaped triangles and optimality with respect
to other criteria.

Therefore the importance of higher order Delaunay triangulations lies in multi-
criteria triangulations. Their major contribution is providing a way to optimize
over a—hopefully large—class of well-shaped triangulations.
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A particularly important subclass of higher order Delaunay triangulations are
the first order Delaunay triangulations, that is, when k = 1. It has been observed
that already for k = 1, a point set with n points can have an exponential num-
ber of different triangulations [16]. This, together with the fact that for k = 1
the shape of the triangles is as close as possible to the shape of the Delaunay
triangles (while allowing more than one triangulation to choose from), make first
order Delaunay triangulations especially interesting. In fact, first order Delau-
nay triangulations have been shown to have a special structure that facilitates
the optimization of many criteria [10]. For example, it has been shown that many
criteria related to measures of single triangles, as well as some other relevant pa-
rameters like the number of local minima, can be optimized in O(n log n) time
for k = 1. In a recent paper [17], Van Kreveld et al. studied several types of
more complex optimization problems, constrained to first order Delaunay trian-
gulations. They showed that many other criteria can be also optimized efficiently
for k = 1, making first order Delaunay triangulations even more appealing for
practical use.

For larger values of k, fewer results are known. The special structure of first
order Delaunay triangulations is not present anymore, which complicates exact
optimization algorithms. Several heuristics and experimental results have been
presented for optimization problems related to terrain modeling, showing that
very small values of k (k = 1, . . . , 8) are enough to achieve important improve-
ments for several terrain criteria [4, 5, 8].

However, despite the importance given to finding algorithms to optimize over
higher order Delaunay triangulations, it has never been studied before how many
higher order Delaunay triangulations there can be in the first place. In other
words, it is not known what the minimum and maximum number of different
triangulations are, as functions of k and n, not even for the simpler (but—in
practice—most important) case of first order Delaunay triangulations.

The problem of determining bounds on the number of higher order Delaunay
triangulations is of both theoretical and practical interest.

From a theoretical point of view, determining how many triangulations a point
set has is one of the most intriguing problems in combinatorial geometry, and has
received a lot of attention (e.g. [2, 15, 14]). Higher order Delaunay triangulations
are a natural and simple generalization of the Delaunay triangulation, hence the
impact of such generalization on the number of triangulations is worth studying.

From a more practical point of view, knowing the number of triangulations
for a given k gives an idea of how large the solution space is when optimizing
over this class of well-shaped triangulations. Ideally, one expects to have many
different triangulations to choose from, in order to find one that is good with
respect to other criteria.

Up to now, only trivial bounds were known: every point set has at least one
order-k Delaunay triangulation, for any k (equal to the Delaunay triangulation),
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and there are point sets of size n that have 2Θ(n) triangulations, already for
k = 1. In this paper we present the first non-trivial bounds on the number of
higher order Delaunay triangulations. Given the practical motivation mentioned
above, we are mostly interested in results that have practical implications for the
use of higher order Delaunay triangulations. Thus low values of k are our main
concern. Our ultimate goal—achieved partially in this paper—is to determine to
what extent the class of higher order Delaunay triangulations (for small values
of k, which has the best triangle-shape properties), also provides a large number
of triangulations to choose from.
Results. We study lower and upper bounds on the number of higher order Delau-
nay triangulations, as well as the expected number of order-k Delaunay triangu-
lations for uniformly distributed points. Let Tk(n) denote the maximum number
of order-k Delaunay triangulations that a set with n points can have, and let
tk(n) denote the minimum number of order-k Delaunay triangulations that a set
with n points can have. First we show that the lower bound tk(n) ≥ 1 is tight.
In other words, there are arbitrarily large point sets that have a single higher
order Delaunay triangulation, even for large values of k. Next we show that,
for first order Delaunay triangulations, T1(n) = 2n−3. Since these extreme cases
do not describe an average situation when higher order Delaunay triangulations
are used, we then study the number of higher order Delaunay triangulations for
a uniformly distributed point set. Let Rk denote the number of order-k (and
not order-i, for any i < k) Delaunay triangulations of a uniformly distributed
point set of size n. We show that E[R1] ≥ 2ρ1n(1+o(1)), where ρ1 is an analyti-
cally defined constant (ρ1 ≈ 0.525785). We also prove that, for constant values
of k, E[Rk] ≥ 2ρkn(1+o(1)), where ρk can be calculated numerically (asymptotics
are with respect to n). The result has interesting practical consequences, since
it implies that it is reasonable to expect an exponential number of higher order
Delaunay triangulations for any k ≥ 1.
Related work. As mentioned earlier, there is no previous work on counting higher
order Delaunay triangulations. A related concept, the higher order Delaunay
graph, has been studied by Abellanas et al. [1]. The order-k Delaunay graph of a
set of points P is a graph with vertex set P and an edge between two points p, q
when there is a circle through p and q containing at most k other points from P.
Abellanas et al. presented upper and lower bounds on the number of edges of this
graph. However, since a triangulation that is a subset of the order-k Delaunay
graph does not need to be an order-k Delaunay triangulation, it is difficult to
derive good bounds for higher order Delaunay triangulations based on them.

There is an ample body of literature on the more general problem of counting
all triangulations. Lower and upper bounds on the number of triangulations
that n points can have have been improved many times over the years, with the
current best ones establishing that there are point sets that have Ω(8.48n) [2]
triangulations, whereas no point set can have more than O(43n) [15].
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In relation to our expected case analysis of the number of higher order Delau-
nay triangulations, it is worth mentioning that many properties of the Delaunay
triangulation—and related proximity graphs—of random points have been stud-
ied. The expected behavior of properties of the Delaunay triangulation that have
been considered include the average and maximum edge length [12, 3], the mini-
mum and maximum angles [3], and its expected weight [6]. Expected properties
of other proximity graphs, such as the Gabriel graph and some relatives, are
investigated in [9, 7, 11].
Outline. This paper is structured as follows. The next section presents some
previous results related to higher order Delaunay triangulations, needed for the
following sections. In Section 3 we give lower and upper bounds for the number of
higher order Delaunay triangulations. Section 4 deals with the expected number
of higher order Delaunay triangulations. Finally, some concluding remarks are
made in Section 5.

2. Higher order Delaunay triangulations

We begin by introducing higher order Delaunay triangulations more formally,
and presenting a few properties that will be used throughout the paper. From
now on, we assume that point sets are in general position.

Definition 1. (from [10]) A triangle △uvw in a point set P is order-k Delaunay
if its circumcircle C(u, v, w) contains at most k points of P. A triangulation of
P is order-k Delaunay if every triangle of the triangulation is order-k.

Note that if a triangle or triangulation is order-k, it is also order-k′ for any
k′ > k. A simple corollary of this is that, for any point set and any k ≥ 0, the
Delaunay triangulation is an order-k Delaunay triangulation.

Definition 2. (from [10]) An edge uv is an order-k Delaunay edge if there exists
a circle through u and v that has at most k points of P inside. An edge uv is
a useful order-k Delaunay edge (or simply useful-k edge) if there is an order-k
Delaunay triangulation that contains uv.

The useful order of an edge can be checked using the following lemma, illus-
trated in Figure 2.

Lemma 1. (from [10]) Let uv be an order-k Delaunay edge, let s1 be the point
to the left1 of −→vu, such that the circle C(u, v, s1) contains no points to the left of−→vu. Let s2 be defined similarly but to the right of −→vu. Edge uv is useful-k if and
only if △uvs1 and △uvs2 are order-k Delaunay triangles.

1We sometimes treat edges as directed, to be able to refer to the right or left side of the
edge. The left side of −→vu denotes the halfplane defined by the line supporting uv, such that a
polygonal line defined by v, u and a point interior to that halfplane, makes a counterclockwise
turn. In the right side, the turn is clockwise.
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s1

u

v

s2

Figure 2. The useful order of edge uv is determined by the lowest
order of triangles △uvs1 and △uvs2. In the example, the (lowest)
useful order of uv is max{3, 1} = 3.

The concept of a fixed edge is important in order to study the structure of
higher order Delaunay triangulations.

Definition 3. Let P be a point set and T its Delaunay triangulation. An edge
of T is k-fixed if it is present in every order-k Delaunay triangulation of P.

Some simple observations derived from this are that the convex hull edges are
always k-fixed, for any k, and that all the Delaunay edges are 0-fixed.

First order Delaunay triangulations have a special structure. If we take all
edges that are 1-fixed, then the resulting subdivision has only triangles and con-
vex quadrilaterals (and an unbounded face). In the convex quadrilaterals, both
diagonals are possible to obtain a first order Delaunay triangulation (see Fig-
ure 1, center). We say that both diagonals are flippable, and similarly we call the
quadrilateral flippable. More formally, based on results in [10], we can make the
following observation.

Observation 1. Let e be a useful order-1 Delaunay edge in an order-1 Delaunay
triangulation, such that e is not a Delaunay edge. Then flipping e results in a
Delaunay edge. Moreover, the four edges (different from e) that bound the two
triangles adjacent to e are 1-fixed edges.

An implication of this special structure is that instead of counting triangula-
tions, we can count flippable quadrilaterals or, equivalently, useful-1 edges that
are not Delaunay.

Corollary 1. Let P be a point set. If P has q flippable quadrilaterals, then P
has exactly 2q order-1 Delaunay triangulations.

For k > 1, the structure is not so simple anymore and it seems difficult to
provide an exact expression for the number of order-k Delaunay triangulations
in terms of the number of useful-k edges. However, we can derive a lower bound
by combining a number of known results, as follows. First we need some extra
definitions and previous results:

Definition 4. (from [10]) The hull of an order-k Delaunay edge uv (k ≥ 1) is
the closure of the union of all Delaunay triangles whose interior intersects uv.
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Lemma 2. (from [10]) The hull of an order-k Delaunay edge (k ≥ 1) is a simple
polygon consisting of at most 2k + 2 vertices.

Lemma 3. (from [10]) Let uv be a useful-k edge (and not useful-i for any i < k),
with k ≥ 1. There exists an order-k (and not order-i for any i < k) Delaunay
triangulation of the hull of uv that contains uv.

Lemma 4. Let uv be an order-0 edge. The number of useful-k edges (k ≥ 1)
that intersect uv is at most (2k + 1)2.

Proof. It follows directly from the proof of Lemma 8 in [10]. �

We have now the necessary tools to prove the following lower bound on the
number of order-k triangulations, expressed as a function of the number of useful-
k edges.

Lemma 5. Let P be a point set and let ek, for k > 1, be the number of useful-k
edges (which are not useful-i for any i < k) of P. Then P has at least 2ek/Ck − 1
order-k (and not order-i, for any i < k) Delaunay triangulations, where Ck =
(4k + 1)(2k + 1)2 + 1.

Proof. Let Ek denote the set of useful-k edges (which are not useful-i for any
i < k) of P and let ek denote the cardinal number of Ek. We select a subset E ′

k of
the edges of Ek in the following way: We pick an edge e of Ek, we remove all the
edges in Ek whose hull intersects the hull of e in at least one Delaunay triangle,
and we repeat until Ek does not contain any edge.

Let e′ be an edge in E ′
k and e be an edge in Ek whose hull intersects the hull

of e′ in at least one Delaunay triangle T. Then e intersects at least one edge of
T. By Lemma 2, all Delaunay triangles included in the hull of e′ contain at most
4k + 1 edges. By Lemma 4, each of them intersects at most (2k + 1)2 useful-k
edges. Hence if e′ is selected, at most (4k + 1)(2k + 1)2 edges in Ek are removed.
Therefore E ′

k contains at least ek/((4k + 1)(2k + 1)2 + 1) edges.
Each non-empty subset of E ′

k gives rise to a different order-k (and not order-i,
for any i < k) Delaunay triangulation proceeding as follows: If an edge e is in
the subset, we triangulate the hull of e as in Lemma 3, that is, we use an order-k
(and not order-i, for any i < k) Delaunay triangulation containing e. If an edge e
is not in the subset E ′

k, we triangulate the hull of e using the Delaunay triangles
crossed by e. Finally, we complete the triangulation by adding Delaunay triangles
in the regions that have not been triangulated (that is, computing a constrained
Delaunay triangulation). This construction is consistent because the hulls of the
edges in E ′

k can only intersect in points and boundary edges, and because the
boundary edges of the hulls belong to the Delaunay triangulation. �

3. Lower and upper bounds

In this section we derive upper and lower bounds on the number of first order
Delaunay triangulations. As mentioned in the introduction, due to the practical
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C(s1, s2, p1)

pi
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qi
′s

ri
′s

pi
′s

Figure 3. Construction of a point set (left) whose only order-k
Delaunay triangulation is the Delaunay triangulation (right).

motivation of this work, we are mostly interested in lower bounds. However, for
completeness and because the theoretical question is also interesting, this section
also includes a result on upper bounds.

The main question that we address in this section is: what is the minimum
number of higher order Delaunay triangulations that n points can have? Are
there arbitrarily large point sets that have only O(1) higher order Delaunay tri-
angulations? To our surprise, the answer to the second question is affirmative.

The lemma below presents a construction that has only one higher order Delau-
nay triangulation, regardless of the value of k, for any k ≤ ⌊n/3⌋ − 1. Note that
this implies that for any value of k of practical interest, there are point sets that
have no other order-k Delaunay triangulation than the Delaunay triangulation.

Lemma 6. Given any n ≥ 6 and any k such that k ≤ ⌊n/3⌋ − 1, there are
point sets with n points in general position that have only one order-k Delaunay
triangulation.

Proof. We give a construction with n points that can be shown to have only one
order-k Delaunay triangulation, for any value of k ≤ ⌊n/3⌋−1. The construction
is illustrated in Figure 3.

To simplify the explanation, in the following we assume that n is a multiple of
3. Since any order-i Delaunay triangulation is also order-k for all k ≥ i, for the
proof it is enough to use k = n/3 − 1.

We start with a triangle △s1s2s3. Then we add three groups of points, which
we will denote with letters p, q, and r. The points in the first group are denoted
p1 . . . pm, where m = n/3. These points are initially placed on a circle Cp that
goes through s3, as shown in the figure; they are sorted from top to bottom. The
second group comprises k points q1 . . . qk, placed very close to each other on a
circle Cq through s3, as shown in the figure. In addition, we must also make sure
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that the points q1 . . . qk are close enough to s3 in order to be contained inside
C(s1, s2, p1). Finally, the points in the third group, r1 . . . rk−1, are placed very
close to each other on a third circle Cr, which goes through s2. The important
properties of these circles are: (i) Cp contains s2 and all the points ri, (ii) Cr and
Cq contain all the points of the type pi, and (iii) C(s1, s2, p1) contains s3 and all
points of type qi.

Clearly, the point set as constructed is degenerate, but this can be easily solved
by applying a slight perturbation to each point, without affecting the properties
just mentioned. Moreover, the perturbation can be made such that the Delaunay
triangulation of the point set looks like the one in the right of Figure 3.

We now argue that all the edges in the Delaunay triangulation are k-fixed, by
considering the different types of edges that, potentially, could cross a Delaunay
edge to make it non-fixed. Suppose an edge of the shape s1pi is not k-fixed. Then
there must be some triangulation in which the edge is crossed by some other useful
order-k edge. Such edge can be of three types: (i) it connects two points pj, pk,
(ii) it connects two points pj, qk (or s3), or (iii) it connects two points pj , rk (or
s2). An edge of the type pjpk that crosses s1pi must be an edge of the shape pipi+2

or force a such an edge to appear in the triangulation. However, the circumcircle
of the triangle defined by any three consecutive points pi, pi+1, pi+2 contains at
least k + 1 points because it is a slightly perturbed version of Cp. Thus no such
edge can be part of an order-k triangulation. A similar situation occurs with any
edge of the shape pjqk, since it forces a triangle of the form △piplqm (or △pipls3).
Finally, edges of type pjrk force a triangle of the form △s1pirl (or △s1pis2),
whose circumcircle includes at least as many points as contained in C(s1, s2, p1),
hence cannot be part of an order-k triangulation either. Therefore all the edges
of the shape s1pi are k-fixed. Similar arguments can be used to show that the
edges in the other groups are also k-fixed, hence no other order-k triangulation
can exist. �

Having determined that some point sets can have as little as one first order
Delaunay triangulation, it is reasonable to ask what is the maximum number
of first order Delaunay triangulations that a point set can have. The following
lemma gives a precise—and tight—bound on the maximum number of first order
Delaunay triangulations.

Lemma 7. Every point set P with n points in general position has at most 2n−3

first order Delaunay triangulations, and this bound is tight.

Proof. To see that no point set can have more than n−3 flippable quadrilaterals,
observe that the subdivision of the convex hull of P induced by the fixed edges
is a plane graph. It follows from Euler’s equation that any triangulation has at
most 2n − 5 triangles. Since each quadrilateral is formed by two triangles, there
can be at most n − 3 quadrilaterals.
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Figure 4. Construction achieving the maximum number of first
order Delaunay triangulations. Left and right: point set and flip-
pable quadrilaterals, for points not in general position.

Now we give a construction with n (for n any multiple of 4) points that has
n− 3 flippable quadrilaterals, thus a total of 2n−3 first order Delaunay triangula-
tions. The construction is illustrated in Figure 4, and consists of a series of points
placed on the vertices of concentric squares with the same orientation. Clearly,
the edges in Figure 4 are Delaunay edges and the four vertices of each quadri-
lateral are cocircular. If we apply a small perturbation to the point set so that
it reaches a general position, one of the diagonals of each quadrilateral becomes
a Delaunay edge, while the other one becomes a useful order-1 (non-Delaunay)
edge. Therefore, all quadrilaterals are flippable. �

4. Expected number of triangulations

Let P be a set of n points uniformly distributed in the unit square. In this
section we give lower bounds on the expected number of higher order Delaunay
triangulations of P.

Note that the events that four points in P are cocircular and that three points
in P form a right angle happen with probability zero, and hence we can safely
ignore these cases. Throughout this section we will use the notation x ∼ y if
x = y(1 + o(1)).

We start with first order Delaunay triangulations. We aim to compute the
probability that two randomly chosen points u, v in P form a useful-1, non-
Delaunay, edge. Assume that the edge is directed −→vu. Let w be the point to the
left of −→vu, such that the circle C(u, v, w) contains no points to the left of −→vu, and
let t be the point to the right of −→vu, such that the circle C(u, v, t) contains no
points to the right of −→vu. Let E be the event defined as follows: the edge uv is
useful-1 (but not Delaunay), t is to the right of −→vu and the circle C(u, v, t) contains
no points of P to the right of −→vu, w is to the left of −→vu and the circle C(u, v, w)
contains no points of P to the left of −→vu. It is well-known that uv belongs to the
Delaunay triangulation of P if and only if ∠uwv + ∠utv < π. Thus the event E
can be decomposed into the disjoint union E = E1 ∪E2 ∪E3, where E1 denotes the
event E with the additional conditions that ∠uwv > π/2, ∠utv > π/2, E2 denotes
the event E with the conditions that ∠uwv < π/2, ∠utv > π/2, and E3 denotes
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Figure 5. Left: the event E1 and the regions Aw, Bw, At and Bt.
Middle: in the event E1, the region Aw is a circular sector minus a
triangle. Right: the event E2 and the regions Aw, Bw, At and Bt.

the event E with the conditions that ∠uwv > π/2, ∠utv < π/2 (in all cases we
must have ∠uwv + ∠utv > π). Consequently, P[E ] = P[E1] + P[E2] + P[E3].

Lemma 8. P[E1] ∼ c1/n
3 and P[E2] ∼ c2/n

3, where c1
·
= 0.23807 and c2

·
=

0.40675.

Proof. Let us first compute P[E1].
Let Aw (respectively, At) be the interior of the set consisting of all points in

C(u, v, w) ∩ C(u, v, t) that are to the left (resp. right) of −→vu. Let Bw (respec-
tively, Bt) denote the interior of the set containing all points in C(u, v, w) (resp.
C(u, v, t)) that are to the right (resp. left) of −→vu and do not lie in At (resp. Aw)
(see Figure 5, left). Since w is the point such that the circle C(u, v, w) contains
no points to the left of −→vu, the region Aw is empty of points in P. In order for the
edge uv to be useful-1, the region Bt also has to be empty of points in P. Anal-
ogously, under the hypothesis of E1, the regions At and Bw are empty of points
in P. It is not difficult to see that the reverse implications also hold. Therefore,
the event E1 is equivalent to the event that Aw, Bt, At, and Bw do not contain
any point in P.

Now let us denote by rw the radius of the circle C(u, v, w) and by ℓ the length
of the edge uv (see Figure 5, center). A straightforward calculation leads to the
following expression for the area of Aw:

area (Aw) = r2
w arcsin

(

ℓ

2rw

)

− ℓ

2

√

r2
w − ℓ2

4
.

In order to compute P[E ], we will be interested in having certain areas being
empty of n points, which happens with probability (1−area (A))n (for A the area
in question). Since the contribution of areas A of size Θ(1) is O(λn) for some
0 < λ < 1 (which is far less than the asymptotic value of the integrals, as we
shall see below), for any constant j we can safely assume in the integrals below
the asymptotic equivalence (1 − area (A))n−j ∼ e−area (A)n, without affecting the
first order terms of the asymptotic behavior of the integral 2.

2In fact, this formula arises in a homogeneous Poisson point process of intensity n in the
unit square, and it is not surprising that both distributions give the same asymptotic results
(see the ideas of depoissonization given in [13]).
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Observe that ℓ may take values from 0 to
√

2 and that the probability density
of the event |uv| = ℓ is 2πℓ dℓ. Notice also that rw ∈ (ℓ/2, +∞) and that the event

of having a radius rw has probability density

(

−2rw arcsin
(

ℓ
2rw

)

+ ℓrw
q

r2
w− ℓ2

4

)

drw,

since it corresponds to the negative derivative −f ′(rw)drw of the function f(r) =

r2 arcsin
(

ℓ
2r

)

− ℓ
2

√

r2 − ℓ2

4
.

Denoting by rt the radius of the circle C(u, v, t), we obtain analogous expres-
sions for rt.

Now we have all the necessary ingredients to develop an expression for P[E1] :

P[E1] ∼
∫

√
2

0

2πℓ

∫ ∞

ℓ/2

∫ ∞

ℓ/2



−2rw arcsin

(

ℓ

2rw

)

+
ℓrw

√

r2
w − ℓ2

4







−2rt arcsin

(

ℓ

2rt

)

+
ℓrt

√

r2
t − ℓ2

4





e
−n(πr2

w+πr2
t
−r2

w arcsin( ℓ

2rw
)+ ℓ

2

q

r2
w− ℓ2

4
−r2

t
arcsin( ℓ

2rt
)+ ℓ

2

q

r2
t
− ℓ2

4
)
drtdrwdℓ

(1)

Since classical methods for asymptotic integration fail for the integral given by (1)
(the derivative of the exponent is infinity at the point where the exponent max-
imizes), we apply the following change of variables: ℓ/2 = a/

√
n, rt = b/

√
n,

rw = c/
√

n. The integral (1) then becomes (replacing the integration limit
√

2n
by ∞, which can be done since the dominant contribution comes from small
values of a)

P[E1] ∼ 1

n3

∫ ∞

0

∫ ∞

a

∫ ∞

a

8πa

(

−2c arcsin
(a

c

)

+
2ac√

c2 − a2

)

(

−2b arcsin
(a

b

)

+
2ab√

b2 − a2

)

e−πb2+b2 arcsin(a

b
)−a

√
b2−a2−πc2+c2 arcsin(a

c
)−a

√
c2−a2

db dc da.

Given that it does not seem possible to evaluate this integral symbolically,
we resort to applying numerical methods. For reasons of numerical stability
(especially in the case of P[E2] below) we apply another change of variables b =

a
sin(σ/2)

, c = a
sin(θ/2)

:

P[E1] ∼ 1

n3

∫ ∞

0

∫ π

0

∫ π

0

8πa

(

a2θ cot(θ/2) − 2a2

1 − cos(θ)

) (

a2σ cot(σ/2) − 2a2

1 − cos(σ)

)

ea2( θ−2π

1−cos(θ)
−cot(θ/2)+ σ−2π

1−cos(σ)
−cot(σ/2))dσdθda.
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Solving this integral numerically (using Mathematica), we obtain that P[E1] ∼
c1/n

3, where c1
·
= 0.23807.

Let us now consider E2. Let Aw, Bw, At and Bt be defined as in the event E1

(see Figure 5, right). By the same arguments, the event E2 is equivalent to the
event that the regions Aw, Bt, At, and Bw are empty of points in P. Analogous
observations as in the previous case yield

P[E2] ∼
∫

√
2

0

2πℓ

∫ ∞

ℓ/2

∫ ∞

rw



2rwπ − 2rw arcsin

(

ℓ

2rw

)

+
ℓrw

√

r2
w − ℓ2

4







−2rt arcsin

(

ℓ

2rt

)

+
ℓrt

√

r2
t − ℓ2

4





e
−n(πr2

t
−r2

t
arcsin

“

ℓ

2rt

”

+ ℓ

2

q

r2
t
− ℓ2

4
+r2

w arcsin( ℓ

2rw
)− ℓ

2

q

r2
w− ℓ2

4
)
drtdrwdℓ.(2)

As before, we apply the substitution ℓ/2 = a/
√

n, rt = b/
√

n, rw = c/
√

n to
the integral (2) and obtain

P[E2] ∼ 1

n3

∫ ∞

0

∫ ∞

a

∫ ∞

c

8πa

(

2cπ − 2c arcsin
(a

c

)

+
2ac√

c2 − a2

)

(

−2b arcsin
(a

b

)

+
2ab√

b2 − a2

)

e−πb2+b2 arcsin(a

b
)−a

√
b2−a2−c2 arcsin(a

c
)+a

√
c2−a2

db dc da.

For reasons of numerical stability, we again apply the change of variables b =
a

sin(σ/2)
and c = a

sin(θ/2)
and obtain

P[E2] ∼ 1

n3

∫ ∞

0

∫ π

0

∫ θ

0

8πa

(

a2(θ − 2π) cot(θ/2) − 2a2

1 − cos(θ)

) (

a2σ cot(σ/2) − 2a2

1 − cos(σ)

)

e
a2(cot(θ/2)− θ

1−cos(θ)
+ σ−2π

1−cos(σ)
−cot(σ/2))

dσdθda.

Solving this integral numerically (using Mathematica), we obtain that P[E2] ∼
c2/n

3, where c2
·
= 0.40675. �

Denote by U1 the random variable counting the number of useful-1 (and not
Delaunay) edges. We have the following corollary:

Corollary 2. E[U1] ∼ c1+2c2
2n

=: d1n, where d1
·
= 0.525785.

Proof. Since E2 and E3 are symmetric, we obviously have that P[E3] = P[E2].
Hence, P[E ] ∼ c1+2c2

n3 . Since for a fixed edge uv there are (n − 2)(n − 3) ∼ n2

ways to choose the points w and t to the left and to the right of −→vu, and these
events are all disjoint, the edge uv is useful-1 (and not Delaunay) with probability
c1+2c2

n
. Hence, E[U1] ∼

(

n
2

)

c1+2c2
n

∼ c1+2c2
2n

=: d1n, where d1
·
= 0.525785. �
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Recall that Rk denotes the number of order-k (and not order-i, for any i < k)
Delaunay triangulations of a uniformly distributed point set. We can now state
the following theorem:

Theorem 1. Given n points distributed uniformly at random in the unit square,
E[R1] ≥ 2ρ1n(1+o(1)), where ρ1

·
= 0.525785.

Proof. By Corollary 1, E[R1] = E[2U1 ]. Now, by Jensen’s inequality, E[2U1 ] ≥
2E[U1], and the result follows by Corollary 2. �

Combining the ideas for the case k = 1 with the result from Lemma 5, we
obtain the following generalization for constant values of k:

Theorem 2. Given n points distributed uniformly at random in the unit square,
for any constant value of k, E[Rk] ≥ 2ρkn(1+o(1)), where ρk is a constant that can
be calculated numerically.

Proof. Denote by Uk the number of useful-k edges (which are not useful-i for any
i < k) for any constant k > 1. We want to know the value of E[Uk].

In order for an edge uv to be useful-k (and not useful-i for i = 0, . . . , k − 1),
using the notation of Figure 5, first observe that the regions Aw and At have to
be empty of points. Moreover, either the region Bt \ Aw has to contain exactly
k− 1 points (w is excluded), whereas the region Bw \At can contain any number
of points i = 0, . . . , k − 1 (t is excluded), or vice versa. For any constant i, the
probability of having exactly i points in an area A of size o(1) (as before, for
constant i only such areas count for the asymptotic behaviour of the integrals)
is ∼ e−nA(nA)i/i!. Thus, defining the events E1, E2, and E3 analogously as in
Section 4,

P[E1] ∼
k−1
∑

i=0

∫

√
2

0

2πℓ

∫ ∞

ℓ/2

∫ ∞

ℓ/2



−2rw arcsin

(

ℓ

2rw

)

+
ℓrw

√

r2
w − ℓ2

4







−2rt arcsin

(

ℓ

2rt

)

+
ℓrt

√

r2
t − ℓ2

4





e
−n(πr2

w+πr2
t
−r2

w arcsin( ℓ

2rw
)+ ℓ

2

q

r2
w− ℓ2

4
−r2

t
arcsin

“

ℓ

2rt

”

+ ℓ

2

q

r2
t
− ℓ2

4
)

(area (Bt \ Aw) n)k−1(area (Bw \ At) n)i 1

(k − 1)!i!
drtdrwdℓ

+
k−2
∑

i=0

∫

√
2

0

2πℓ

∫ ∞

ℓ/2

∫ ∞

ℓ/2



−2rw arcsin

(

ℓ

2rw

)

+
ℓrw

√

r2
w − ℓ2

4







−2rt arcsin

(

ℓ

2rt

)

+
ℓrt

√

r2
t − ℓ2

4
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e
−n(πr2

w+πr2
t
−r2

w arcsin( ℓ

2rw
)+ ℓ

2

q

r2
w− ℓ2

4
−r2

t
arcsin

“

ℓ

2rt

”

+ ℓ

2

q

r2
t
− ℓ2

4
)

(area (Bt \ Aw) n)i(area (Bw \ At) n)k−1 1

(k − 1)!i!
drtdrwdℓ.

Now, since

area (Bt \ Aw) = r2
t π − r2

t arcsin

(

ℓ

2rt

)

+
ℓ

2

√

r2
t −

ℓ2

4
−

− r2
w arcsin

(

ℓ

2rw

)

+
ℓ

2

√

r2
w − ℓ2

4

and

area (Bw \ At) = r2
wπ − r2

w arcsin

(

ℓ

2rw

)

+
ℓ

2

√

r2
w − ℓ2

4
−

− r2
t arcsin

(

ℓ

2rt

)

+
ℓ

2

√

r2
t −

ℓ2

4
,

after applying the substitutions ℓ/2 = a/
√

n, rt = b/
√

n, rw = c/
√

n, in these new
factors n disappears and the integral again yields Θ(1/n3). The same argument
also holds for P[E2], and by the same reasoning as in the case of useful-1 edges,
we obtain that the expected number of useful-k edges (that are not useful-i for
any i < k) is dkn for any constant k. We point out that using our formula the
constant dk can be calculated numerically.

By Lemma 5, Rk≥2Uk/Ck−1, where Ck =(4k+1)(2k+1)2+1. Therefore E[Rk]≥
E[2Uk/Ck ] − 1 and as before, by Jensen’s inequality, E[2Uk/Ck ] ≥ 2E[Uk]/Ck . �

5. Discussion and further work

We have given the first non-trivial bounds on the number of higher order De-
launay triangulations. We showed that there are sets of n points that have only
one higher order Delaunay triangulation for values of k ≤ ⌊n/3⌋− 1, and that no
point set can have more than 2n−3 first order Delaunay triangulations. Moreover,
we showed that for any constant value of k (in particular, already for k = 1) the
expected number of order-k triangulations of n points distributed uniformly at
random is exponential. This supports the use of higher order Delaunay triangula-
tions for small values of k, which had already been shown to be useful in several
applications related to terrain modeling [8]. From a more theoretical perspec-
tive, it would be interesting to obtain tighter bounds on the expected number of
order-k Delaunay triangulations for uniformly distributed points.
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