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WEIGHTED NORM INEQUALITIES FOR FOURIER
TRANSFORMS OF RADIAL FUNCTIONS

D. GORBACHEV, E. LIFLYAND, AND S. TIKHONOV

ABSTRACT. Weighted LP(R™) — L9(R™) Fourier inequalities are studied. We
prove Pitt—Boas type results on integrability with general weights of the Fourier
transform of a radial function.

1. INTRODUCTION

Weighted norm inequalities for the Fourier transform provide a natural way
to describe the balance between the relative sizes of a function and its Fourier
transform at infinity. What is more, such inequalities with sharp constants im-
ply the uncertainty principle relations ([1], [2]). The celebrated Pitt inequality
illustrates this idea at the spectral level ([1]):

| e/ifiay < Ca [ a(lel)l s,

where ® is an increasing function and fis the Fourier transform of a function f
from the Schwartz class S(R"),

~

(1) fy) =Ffly) = . flz)e™¥da.

In the (LP, LY) setting such inequalities have been studied extensively (see, for
instance, [1]-[5], [9], [10], [11], [17], [22]). In this case Pitt’s inequality is written
as follows: for 1 <p<g<o0,0<y<n/qg, 0<B<n/pandn>1

@ ([rreys) o ([ @rsere)”

with the index constraint
1 1
B—y=n—n (——|——>
P q

primes denote the dual exponents, 1/p+ 1/p’ = 1).
(
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The restrictions on v and [ can be written as

1 1
(3) maX{O,n<—+——1>}§fy<ﬁ.
p q q

It is worth mentioning that inequality (2) contains classical (non-weighted)
versions of the Plancherel theorem, that is, ||f]j» = ||f|., Hardy-Littlewood’s
theorem (1 <p=¢ <2, 6=0o0rp=gq>2 v=0), and Hausdorff—Young’s
theorem (¢ =p > 2, 8 =~v=0).

For n = 1, inequality (2) can be found in [3], [15], [16], [20]; for n > 1 see [2],
[3]. In [1], W. Beckner found a sharp constant in (2) for p = ¢ = 2 and used this
result to prove a logarithmic estimate for uncertainty.

In this paper we address the following two problems.

Problem 1: The range (3) is sharp if f is simply assumed to be in LP u(z) =
|z|P?. Ts it possible to extend this range if additional regularity of f is
assumed?

Problem 2: Under which additional assumption on f it is possible to reverse
inequality (2) for p = ¢7

Let us first recall several known results in dimension 1. Some progress toward
extending the range of v in (3) was made in [4], [17], and [22], where the authors
assumed that the function has vanishing moments up to certain order.

Another approach, which is related to both Problems 1 and 2, is due to Hardy,
Littlewood, and, later, Boas. The well-known Hardy-Littlewood theorem (see
23, Ch.IV]) states that if 1 < p < oo and f is an even non-increasing function
which vanishes at infinity, then

@ o ( 17 dx> e ( / e dt) Teg ( / \ﬂx)v’d:c) "

Boas conjectured in [7] that the weighted version of (4) should also be true:
under the same conditions on f and p,

~

(5) x| f(z)| € LP(R) if and only if "7 ¥Pf(t) € LP(R,),

provided —1/p' = =1+ 1/p <y < 1/p.
Relation (5) was proved in [18]. Thus, assuming a function to be monotone
allows one to extend the range of v as well as to reverse inequality (2) for p = q.
In [12], Boas-type results were obtained for the cosine and sine Fourier trans-
forms, separately. To describe it briefly, we denote

folz) = /000 f(t)cosxtdt and fo(z) = /000 f(t) sinxt dt.

We call a function admissible if it is locally of bounded variation on (0, 00) and
vanishes at infinity. For any admissible non-negative function f satisfying
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(6) / df(u)] < C /t; | f(w)] du

for some ¢ > 1, relation (5) holds for f and fAC provided —1/p’ < v < 1/p, while

for f and f; provided —1/p’ <y < 1/p+ 1 (note the larger range).
In the higher-dimensional setting, the situation is expectedly more complex.
For radial functions f(x) = fo(|z]), « € R", the Fourier transform is also ra-

dial, i.e., f(z) = Fy(]z|). One can then apply the one-dimensional results. For
example, in R? the Fourier transform is given by

J/C\(ZL’) = 4n|x|™ /000 tfo(t) sin |z|t dt.

So, applying the result for the sine transform ]/C; to the function ¢ fy(t), we obtain
(7)  |z| 77 f(x) € LP(R?) ifand only if Y7 f(¢) € LP(0, 00),

provided —2 + 3/p < v < 3/p. Note that it is enough to assume that f; itself
satisfies (6), since this implies the same for ¢ fo(¢).
For n # 3, we can also apply (5) using fractional integrals. If fy is such that

®) / T (1 )02 o) de < oo,

one has the following Leray’s formula (see, e.g., Lemma 25.1" in [19]):

~

(9) F(z) = 2nn-D/2 /O " I(t) cos [alt dt,

where the fractional integral I is given by

2 - 2 2\(n-3)/2
—F("T_l)/t sfo(s)(s” —t%) ds.

I(t) =

Then, the one-dimensional Boas’ relation (5) implies that if f, > 0 satisfies (8),
then

|z| 77 f(x) € LP(R™) if and only if ¢~ HDP1(4) € LP(0, 00),

provided —1+n/p <~ < n/p. However, the condition on [ is difficult to verify
and so it is desirable to obtain more direct Boas-type conditions. This is the
main goal of the present paper.

Definition. We call an admissible function fy general monotone, written GM,
iof for any t >0

(10) [ <o [ il

for some ¢ > 1.
In the context of our results, we always deal with functions satisfying
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I 1 fo(u)| duju < oo. Tt is clear that any such function being monotone, or
satisfying (6), is general monotone. However, this class also contains functions
with much more complex structure (see, e.g., [13]-[14]).

It is natural in our study that fy € GM satisfies a less restrictive condition
than (8):

1 [e’)
(1) / £ o) dt + / (D12 ()] < oo

1

Let us present the main result of this paper with power weights.

Theorem 1. Let 1 < p < 0o and n > 1. Then, for any radial function f(z) =
follz]), z € R™, such that fo >0, fo € GM, and satisfying (11),

12 it 7)), ., = [[000)
(12 o7 F@)] g = 60,
if and only if
n+1 n+l n n
B=~v+n— and — + <y < -
2 p p

We immediately have the following generalization of Hardy-Littlewood’s the-
orem (4).

Corollary 1. Let 1 < p < 0o and n > 1. Then, for any radial function f(x) =
follz]), = € R™, such that fo >0, fo € GM, and satisfying (11),

o ([ 1fwpa) Ve ([ wree2a) "eq ([ Fwras) v

if and only iof

2n o

n+1 P < o0
and

~ 1/p 1/p R 1/p
“ ( [F@)lP |2 dw) S( !f@)\”dt) <G ( F@)l? |~ dx>
R™ R Rn
iof and only iof
2n
l<p< ——.
n—1

The paper is organized as follows. Section 2 provides some useful facts about
the Fourier transform of a radial function. In Sections 3 and 4, we prove auxiliary
upper and lower estimates for the Fourier transform; these estimates are used in
the next sections to obtain (L?, L) Fourier inequalities with general weights and
partial cases for power weights.
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Concerning Problem 1, we observe that the upper estimate of fA in Theorem 3

is Pitt’s inequality, which holds in the case of general monotone functions only
n n+1
when — —
q 2

n . .
< v < —. Since in any case
p

n n+1 1 1
- — < max 0,n<—+——1) ,
q 2 P q

we extend the range of 7y given by (3). Theorem 1 exhibits a solution of Problem 2.
Note that for n =1 and n = 3 Theorem 1 gives (5) and (7), correspondingly.

The notation “<” and “2” means “< C'”7 and “> C7, respectively (with
C' independent of essential quantities), while “=<" stands for “<” and “2” to
hold simultaneously.

2. THE FOURIER TRANSFORM OF RADIAL FUNCTIONS

The facts we are going to make use of can be found in [6, 19, 21]. For n > 1,
x € R" let f(x) = fo(|z]) be a radial function. Then

(13) f(z)de =|S™ /oo fo(t)t"tdt,
R" 0

where |S"7!| = 27"/2/T'(n/2) is the area of the unit sphere S"~! = {z € R":
|z| = 1}.

The Fourier transform (1) of the radial function f is also radial and is given
via the Hankel-Fourier transform [21] as

(14) Fly) = Follyl) = 15" /OOO fo®)ja(lylt)t" " dt.

Here j,(2) is the normed Bessel function

, Z2\ " 22
(15) Ja(2) =T(a+1) (§> Jo(2) = kl_Il (1 - a) :
where J,(z) is the classical Bessel function of first kind and order «, and
0 < Pa1 < Pa2 < ...are the positive zeros of J,(z). We denote

n 1
=——=1>——.
Ty T =)

Let us give several useful properties of the function j,(2), a > —1/2, which

follow from the known properties of J,(2) (see, e.g., [6, Ch.VII]): j_1/2(2) = cos 2,

Ji2(2) = =7
(16) lJa(2)] < Ja(0) =1, 2z 2>0;

(17) (2 (2) = (2a+ D22 o)
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(18)
29T (v + 1)(2/m) /2 m(a+1/2 o
Ja(z) = ( za+3/(2/ ) cos (Z - ( 2 / )) +0(z 3/2)7 z — 00;
, M,
(19> |j0l<z)| S Za+1/27 z > O’
(20) Par =7k +O(1/k), k — oc;

the zeros of the Bessel function are separated:

(21) 0 < pa1 < Patit < Pa2 < Pat12 < Paz < ----

It follows from (17) and (21) that the function 22**2j,.(2) increases when
2 € [0, pa1] and decreases when z € [pa1, pat1.1]. The function j,.q(2) decreases
on the interval [0, po+1.1]. This yields the estimate

(22) 22252 () >mp >0, 1/b<z2<b 1<b=by< paii1.

In what follows we understand integral (14) as improper:

A
@) R =15t [ A0 s =yl >0

A—oo

Note that for admissible fy, (16) implies

A A
/ fo(t)ja(st)t™! dt‘ < / |fo®)[t" dt < .

Further, for a radial function f(x) = fo(|z|), by properties (16) and (19), the
integral in (14) converges uniformly for s > 0 in improper sense to the continuous
function Fy(s), provided (8) holds (see [19]). In Lemma 1 below, we prove this
fact for Fy(s) via a pointwise estimate of Fy. Note that for n > 2 condition (11),
as well as condition (8), is less restrictive than f € L'(R").

3. ESTIMATES FROM ABOVE FOR THE FOURIER TRANSFORMS

Let f(x) = fo(Jz|) with fo admissible and satisfying (11), that is,
fol Y fo()] dt + [t D2 |dfo(t)] < oo. We observe that (11) implies for ¢ > 1

(DRI <1002 i) < [ s (o)
t

t

Therefore

(24) tn=D2 g — 0 as  t— oo
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Lemma 1. Given fy as above, for s > 0 the Fourier transform Fy(s) is continu-
ous, and satisfies

1/s )
RS [ e @]+ s [ )
0 1

Proof. Let for s > 0

o K
(25) I = / fO(t)ja(St)tn_l dt = ’S(:q(sl)|
0

Let p > 1 be a zero of the Bessel function J,11(+). Then, by (16),
(26)

1/s p/s )
r< [Tin@letde [ e ] [ ponse d| = b,
0 1/s p/s

Estimating I, we obtain

L < /lp/s Z5n—1</t1/s |dfo(u)| + /1: |dfo(u)]> dt

p/s 0o 00
@) 5 [ wldl s [l s e )
1/s 1/s 1/s
It follows from (17) that

d 4 —
(28) pr (t" o1 (st)) = nt™ i, (st).
Integrating by parts, we obtain
1 [ . 1 n - o0 L[~ ..
Iy=— [ fot)d({t"jas1(st)) = = fo(D)t"Jasa(st)| —— / t" Jat1(st) dfo(t).
n /s n p/s n p/s

Then (19) and (24) yield
ot Jasr1 ()] S [fo(OI" (st)" "2 S|SBt D72 — 0 as t— o0,
and hence
(29) IS / £ (st) "2 |dfo ()] S 570D / tD | dfo (8)].
p/s 1/s
Combining (27) and (29), we finish the proof of the lemma. O

We will also use similar estimates of the Fourier transform in terms of the
following functions:

w0 = [l o) = [l ve = [ )

t t
These functions are continuous for ¢t > 0, and ®*(t) < O(¢).
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Corollary 2. The estimate holds for s > 0

1/s oo
|Fy(s)| < / t"—lcb*(t)dt+s‘(”+1)/2/ t =29 (1) dt
0 1

S

1/s 0o
< / "L (t) dt + s~ /2 / tn =32 (t) dt.
0 1

S

Proof. Similar to (27), we first get

1/s 1/s o0
B[Rl [ e [ )
0 0 1/s

Then the required estimates follows from Lemma 1 and inequalities

(31) 2 [ lan < [t [

(32) 2 [ s [T [ o

valid for any integrable ). 0
Corollary 3. The estimate holds for s > 0

1/s

(33) |Fo(s)| 5/ t=D2(¢) dt.
0

Proof. Indeed, by Lemma 1 and (30),

1/8 00
Fo(s)] < / | dfo ()] + 5D / (2 o (6)] = Iy + Iy,
0

1/s
We have
1/s
I = s~ D/2G(1/5) = W(1/s) / (=172 gy

1/(2s)

1/s 1/s

g/ t=D/2y (1) dtg/ t =23 (1) dt.
1/(2s) 0

Using (31), we get

1/s 2t 1/s 2t
L 5 / ¢! ( / Idfo(S)l) dt = / (=172 ( / 8("_1)/2|dfo(8)|> dt
0 t 0 t

1/s
< / t=D2W (1) dt.
0

The obtained bounds for I; and I, give (33). O

Note that in this section we did not assume the positivity of f; so far. This
will come into play in the next section.
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4. ESTIMATES FROM BELOW FOR THE FOURIER TRANSFORMS

Let us consider a radial function f(x) = fo(|z|) such that fy is admissible and
fo(t) > 0 when t > 0. We assume that f satisfies condition (11). Then, by
Lemma 1, the integral in (23) converges uniformly on any compact set away from
zero and Fy(s) is continuous for s > 0. Suppose also that

1
(34) / |Fo(s)][s™ /2 ds < 0.
0

In particular, this implies that fis integrable in a neighborhood of zero. We will
need the following

Lemma 2. For v >0 and 1 < b < pat1,1, the inequality holds

2/u bu ¢
u(ln)/z/ sV Fy(s)| ds 2 _fo( ) dt.
0 u/b t

Proof. We denote by B" = {z € R": |z| < 1} the unit ball, |B"| = |S""!|/n is
the volume of this ball.
Let us consider the following well-known compactly supported function

k(y) = B[ (x * x) (),
where y is the indicator function of the unit ball B". For n = 1, it is the Fejér

kernel (1 — |y|/2)4.
The kernel k is radial k(y) = ko(]y|) and possesses the following properties:

(35) 0<ko(s) <ko(0)=1, 0<s<2 ko(s) =0, s>2;
and the Fourier transform of k is

k(x) = Ko(|«|) = |B"| "' (R(x))? > 0.
By (28), for t = ||

~ _ b e S nl
) w6 =15 [ s as = E 0 = B!
0
Therefore,
2
(37) Ko(t) = |5"_1|/ ko(s)ja(ts)s" ™" ds = | B"|ja ().
0

Let € be small enough. Denoting

2/u 2
Je = / Fo(s)ko(us)s" 1 ds = u”/ Fo(s/u)ko(s)s" ! ds.

u

We have, by (34) and (35),

2/u 2/u
(38) AR / |Fo(s)]s"tds < u(l_")/2/ s D21y (s)] ds.
0 0
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The uniform convergence of integral (23) implies

ro=a [ (150 [ sttt ) v s
= [0 (15771 [ hantots s )

Using (37), we get

2
57711 [ o(s)galst/u)s™ ! ds = Kalt/a) = M. (0),
where E
A(t) = \S"ll/ ko(5)ja(st/u)s™ tds.
0
Taking into account (22) and (37), we have (t/u)"Ko(t/u) 2 1 for u/b <t < bu.
Therefore,

bu fO(t) / ! —n > n—1
(39) J. > At = JL Jl=u fo()A(t)t" 1 dt.
0

u/b

We are going to prove that J. — 0 as ¢ — 0. Take A > 1. It follows from (35)
and (16) that

(40) ()] < [S™] / S ds < e,
0

and hence
A A

(41) un / fo(t)/\e(t)tnldt‘ﬁs" / oD dt.
0 0

Let ¢ > A. Define

At) = /0 t A ()" dv =[S /0 “ho(s)s ! ( /0 t Ja(s0 /w0 dv) ds.

Making use of (28), we obtain
|Sn—1 |tn
n

(42) A(t) = /OE ko(8)jas1(st/u)s" 1 ds.

For n =1,

sin(st/u)

N

o -
sin s
ds
g S

et/u s 2(1 —
ds‘: 2u/ sins - u (1 — cos(et/u)) ‘
0 s t

It is well-known that < / S 5 ds forv>0,and |A(t)| <1<
0

S

Hn=1)/2.
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Let now n > 2. We have

|Sn71|tn ik © . n—1
A(t) = — + ko(8)Jat1(st/u)s" " ds.
n 0 e/t

e/t
< t”/ s ds < et <1 < t/2
0

As above

‘Sn—lltn
n

e/t
/ ko(5)jas1(st/u)s" " ds
0

Applying (19), we get

qn— L|gn . e . € . .
| | / Ko(s)ar (st/u)s" ™ ds| St / ot (st/u)|s" " ds
e/t e/t
< tn(t/u) (n+1)/2 /E g(m=1/2-1 g < p(n=1)/2-(n—1)/2 < (n=1)/2.
e/t

Therefore, |[A(t)] <t Y/2 for t > A and n > 1.
Integrating by parts yields

/ BOM O dt = / folt) dA-(t) = ()AL — /Aoo/\e(t)dfo(t)-

It follows from (24) and |A.(t)] < t™1/2 that fo(t)A.(t) — 0 as t — oo. Since
(40) and (42) 1mply [A:(A)] < E”A”

(43)

Combining 41) and (43), we get

7] < e ( / (0l dt + Ifo(A)IA”) b [T g

Letting first ¢ — 0 and then A — oo, we obtain the claimed J! — 0. Using this,
(38), and (39), we arrive at the assertion of the lemma. O

5. LP—L? FOURIER INEQUALITIES WITH GENERAL WEIGHTS

For any weights u,v: R” — R, consider their radial parts

U= [ ueod Vo= [ veod
We set 2/ = z/|z|, V(z) = v(2'/|z|).

Theorem 2. Let 1 < p,q < oo and n € N. Let f be radial on R™ such that fy is
a non-negative general monotone function on Ry satisfying (11).
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(A) If p<gq, and V', U satisfy

00 1/q r 1/(1—p) /v
(44)  sup ( / 7 (et) dt) ( / [U(t)t("*““*f’)] dt) < o0;
r>0 r 0

(45)

o 1/p o0 , 1/(1-p) v
sup (/ tA=2) =07 (¢) dt> (/ [U(t)t(l_f)("_l)""p] dt) < 00,
r>0 0 r

then
1/p

IFlzy = ([ 1Flvte) i) "e ([ irorata) = sl

(B) If ¢q<p, and U,V satisfy

r Ve oo - Y
(46)  sup ( / t"1U (2bct) dt) < / [V(t)t‘"“xq*l)] dt) < o0;
r>0 0 r

(47)
r . 1/q oo . 1/(1—q) 1/q
sup (/ t("+1>(2—1)V(t)dt) (/ [V(t)t("“)(?‘l)*q} dt) < 00,
r>0 0 T

then R
£l < Nfllza-

Proof. We will use the (p, q) version of Hardy’s inequalities ([8]) with general

weights u,v > 0: for 1 < a < [ < o0,
0 1/a
<C [/ v(t)(t)® dt}
0

(48) [ /0 ) ( /0 tw(s) ds)ﬁdt]

holds for every v > 0 if and only if

o0 1/B r / 1/a
sup (/ u(t) dt) (/ v(t) dt) < 00,
r>0 r 0

e [ oetral]

1/8

and

(49) [/Ooou(t) (/too b(s) ds)ﬁdt]
if and only if
sup (/Oru(t) dt) " (/Toov(t)l—“’ dt) " < 0.

1/6
Here we consider the usual modification of the integral [ [o(t)? dt] when 6 =oo.
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Remark 1. In particular, (48) holds with u(t) = t+*~! and v(t) = t°~1if and only
if e<0 and ¢ =ca/f+a.

To prove (A), we use the pointwise Fourier transform inequality (33) from
Corollary 3. First, we have to check the accuracy of (11). By Holder’s inequality,

o Lo ) Up, p1 (g TP 1/p
/Ot 1|f0(t)\dt§(/0t Ufo(t)] U(t)dt) (/0 [U(t)t( na >] dt) |

and the right-hand side is finite since f € L? and the last integral in (44) is finite.
Further, it follows from the definition of GM and simple calculations that

[ eRinols [ e el
1 1/c
Therefore,

| el < ( | e tarve dt)l/p

c C

The last integral is finite due to (45).
Now, (32) and fo € GM yield

00 00 2y
W)= [ (s [ [ sy
t t Y

) o B %) ds
s [ [ ) Sy
t y/c S

S [ s gy
t

C

Using this and Corollary 3, we have

(/ V<x//|x’)|ﬂx)‘qd$> s </ooo V(1/8)| ot dt) )

e t [e9) q 1/q
S </0 V(ct) (/0 w72 </u s(”l)/21\f0(s)|ds) du> t”ldt> :

Applying now (48) to the first two integrals on the right, with § = ¢, a = p,
u(t) = ™"V (ct), and v(t) = U(t)t"17P(=1) we obtain

(/Rn"(x’/|x|)|J?(x)|qu)1/q5 (/Ow<lw8(n_l)/2_l|f0(8)|dS)pU(t)tn_l_P(n—1)/2dt)1/p7

provided (44) holds.
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Making then use of (49), with o = 3 = p, u(t) = U(t)t"'=?"=D/2 and
v(t) = U()tn—1=p=D/24P e get

([ v nhifea) s ([ vorinopa) Yl

provided (45) holds.
To prove (B), Lemma 2 is needed. For this we have to check (34). Holder’s
inequality and simple substitution yield

r . 00 _ 1/‘1,
/ |Fo)[t" T dt < || Fllze ( / [V(m(m)(g—mq} 1/(1—q) dt) |
0 v 1/r

The finiteness of the last integral is ensured by (47).
We then note that for any fo € GM there holds

(50) el < [l < [ ;O Ok

e

Secondly, by (32) and Lemma 2, we have

ol)] < / " dh(t)] < / ([

/be t/b S

00 2/t
< / $-m/2-1 ( / z(”_l)/2|F0(z)|dz> dt
z/be 0

2bc/x t
(51) < / fobre( / VP Fy(2) dz)
0

0

Applying now (51), we obtain

00 1/p
[FAITTS (/0 U(t)tnllfo(t)|pdt>

0o oo [e§) p 1/p
< (/ U(s)s" (/ ¢t~ (n=b/2-1 </ 2~ (U2 B (1) 2)| dz) dt) ds) :
0 s 2bct

As above, we then use Hardy’s inequality (49) twice to obtain

~

R 1/q
e S ([ el favan) =1,

Under appropriate choice of the weights, the necessary and sufficient condition
reduces to (46) and (47), respectively. The proof is complete. |
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6. APPLICATIONS. PITT-BOAS TYPE RESULTS WITH POWER WEIGHTS

For v(z) = |z|~? and u(z) = |z[*~"P/a+"P=" Theorem 2 implies the following
result.

Theorem 3. Let 1 < p,q < oo andn € N. Let f be radial on R™ such that fq s
a general monotone function on R, .

(A) If p<q and

n n+1 n
52 - — << -,
(52) . ) .

then

~

try=n/a=le £0(4) € LP(0, 00) implies |z| 77 f(z) € LYR");
(B) Let a non-negative function fy satisfy (11). If ¢ < p and

n n+1
53 -
(53) P

<7

then

1z f(x) € LYR™)  implies TP f(t) € LP(0, 00).
Note that the “if” part of Theorem 1 follows from Theorem 3 by taking p = ¢.

Let us now discuss the sharpness of conditions on . We rewrite part (A) of
Theorem 3 in the following way.

Theorem 3'. Let 1 <p<g<ooandn € N. Let f be radial on R™ such that fy
1s a general monotone function on R,. Then

54 it 7 @), < [7500)
(54 o127 @), 0 S 0O,
if and only if
1 1
(55) ﬁzv%—n—ﬁ—— and n_nt <7<E.
q p q 2 q

To prove Theorem 3’, we can restrict ourselves to the “only if” direction. This
also captures the “only if” part in Theorem 1 when p = q.

Proof. Consider f(x) = x(x), then fo(t) = xp1(t) € GM. Then we have

1 1/p
[ o)l = ([t
0

This integral converges if pn + py — pn/q > 0, or equivalently v > % —n.



16 D. GORBACHEYV, E. LIFLYAND, AND S. TIKHONOV

Let us figure out when ]y\‘”f{( ) € LY(R™). By (36), the Fourier transform of
fis X(y) = |B"|jas1(ly]) = Fo(s). Therefore, we obtain

[oe) q L 1/q
= N F "d
= ([ (IR0 )

oo 1/q
- < / s“-w-1|ja+1<s>|qu) |
0

There holds j,+1(s) < 1 in a neighborhood of zero, hence the integral in (56)
converges if n — ¢y > 0, that is, when v < g. The upper bound is established.

There holds for s large, juii(s) < s~("*V/2 therefore the integral in (56)

.n n+l . oo "
converges if — — 5 < 7. We will now show that if this condition does not

hold, then the integral in (56) diverges. It follows from (20) that for an integer
number ky large enough

w150

(56)

Pot1k Xk, patiktl — Pat1k <1, k> ko,

and there is a small € > 0, independent of k, such that

. — 1)/2
ot ()| 2 sV s € [patak + € pasinir — ), k> ko
Therefore,
Pa+1,k+1—¢€
/ n—qy— 1’] +1 ‘q ds > Z/ s q'yflsfq(nJrl)/Q ds
0 ke ko Pa+t1,ktE
2 3 (st — 2
k=ko
oo
> Z kn—q’y—l—q(n+1)/2
k=kg

1
The last series diverges provided v < n_nt .

q
Let us verify that § and ~ should be related by § = vy +n —n/q— 1/p. Let
u>0and g(z) = fo(|z|/u) = x(z/u). Then for t = |y| with 0 <t < 1/u

9(y) = Gollyl) = u"Fo(uly]) = [B"|u"jas1 (ut) =< u".

We then have
u dt 1/p
HtﬂgO(t)HLp(o,oo) = (/ Pt 7) = /P,
0
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and
u n dt 1/q
el 50 ey 2 ([ G000 )
u 1/q
> / t*’qurn ﬂ = u7+n7n/q.
1
These yield u/+1/P > y7+7=7/4 for any v > 0, that is, 3 =7 +n — n_Z d
q P
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