WEIGHTED NORM INEQUALITIES FOR FOURIER TRANSFORMS OF RADIAL FUNCTIONS

D. GORBACHEV, E. LIFLYAND, AND S. TIKHONOV

Abstract

Weighted $L^{p}\left(\mathbb{R}^{n}\right) \rightarrow L^{q}\left(\mathbb{R}^{n}\right)$ Fourier inequalities are studied. We prove Pitt-Boas type results on integrability with general weights of the Fourier transform of a radial function.

1. Introduction

Weighted norm inequalities for the Fourier transform provide a natural way to describe the balance between the relative sizes of a function and its Fourier transform at infinity. What is more, such inequalities with sharp constants imply the uncertainty principle relations ([1], [2]). The celebrated Pitt inequality illustrates this idea at the spectral level ([1]):

$$
\int_{\mathbb{R}^{n}} \Phi(1 /|y|)|\widehat{f}(y)|^{2} d y \leq C_{\Phi} \int_{\mathbb{R}^{n}} \Phi(|x|)|f(x)|^{2} d x
$$

where Φ is an increasing function and \widehat{f} is the Fourier transform of a function f from the Schwartz class $\mathcal{S}\left(\mathbb{R}^{n}\right)$,

$$
\begin{equation*}
\widehat{f}(y)=\mathcal{F} f(y)=\int_{\mathbb{R}^{n}} f(x) e^{i x y} d x \tag{1}
\end{equation*}
$$

In the (L^{p}, L^{q}) setting such inequalities have been studied extensively (see, for instance, [1]-[5], [9], [10], [11], [17], [22]). In this case Pitt's inequality is written as follows: for $1<p \leq q<\infty, 0 \leq \gamma<n / q, 0 \leq \beta<n / p^{\prime}$ and $n \geq 1$

$$
\begin{equation*}
\left(\int_{\mathbb{R}^{n}}\left(|y|^{-\gamma}|\widehat{f}(y)|\right)^{q} d y\right)^{1 / q} \leq C\left(\int_{\mathbb{R}^{n}}\left(|x|^{\beta}|f(x)|\right)^{p} d x\right)^{1 / p} \tag{2}
\end{equation*}
$$

with the index constraint

$$
\beta-\gamma=n-n\left(\frac{1}{p}+\frac{1}{q}\right)
$$

(primes denote the dual exponents, $1 / p+1 / p^{\prime}=1$).

[^0]The restrictions on γ and β can be written as

$$
\begin{equation*}
\max \left\{0, n\left(\frac{1}{p}+\frac{1}{q}-1\right)\right\} \leq \gamma<\frac{n}{q} . \tag{3}
\end{equation*}
$$

It is worth mentioning that inequality (2) contains classical (non-weighted) versions of the Plancherel theorem, that is, $\|\widehat{f}\|_{2} \asymp\|f\|_{2}$, Hardy-Littlewood's theorem ($1<p=q \leq 2, \beta=0$ or $p=q \geq 2, \gamma=0$), and Hausdorff-Young's theorem ($q=p^{\prime} \geq 2, \beta=\gamma=0$).

For $n=1$, inequality (2) can be found in [3], [15], [16], [20]; for $n \geq 1$ see [2], [3]. In [1], W. Beckner found a sharp constant in (2) for $p=q=2$ and used this result to prove a logarithmic estimate for uncertainty.

In this paper we address the following two problems.
Problem 1: The range (3) is sharp if f is simply assumed to be in $L_{u}^{p}, u(x)=$ $|x|^{p \beta}$. Is it possible to extend this range if additional regularity of f is assumed?
Problem 2: Under which additional assumption on f it is possible to reverse inequality (2) for $p=q$?
Let us first recall several known results in dimension 1. Some progress toward extending the range of γ in (3) was made in [4], [17], and [22], where the authors assumed that the function has vanishing moments up to certain order.

Another approach, which is related to both Problems 1 and 2, is due to Hardy, Littlewood, and, later, Boas. The well-known Hardy-Littlewood theorem (see [23, Ch.IV]) states that if $1<p<\infty$ and f is an even non-increasing function which vanishes at infinity, then

$$
\begin{equation*}
C_{1}\left(\int_{\mathbb{R}}|\widehat{f}(x)|^{p} d x\right)^{1 / p} \leq\left(\int_{\mathbb{R}_{+}}|f(t)|^{p} t^{p-2} d t\right)^{1 / p} \leq C_{2}\left(\int_{\mathbb{R}}|\widehat{f}(x)|^{p} d x\right)^{1 / p} \tag{4}
\end{equation*}
$$

Boas conjectured in [7] that the weighted version of (4) should also be true: under the same conditions on f and p,

$$
\begin{equation*}
|x|^{-\gamma}|\widehat{f}(x)| \in L^{p}(\mathbb{R}) \quad \text { if and only if } \quad t^{1+\gamma-2 / p} f(t) \in L^{p}\left(\mathbb{R}_{+}\right) \tag{5}
\end{equation*}
$$

provided $-1 / p^{\prime}=-1+1 / p<\gamma<1 / p$.
Relation (5) was proved in [18]. Thus, assuming a function to be monotone allows one to extend the range of γ as well as to reverse inequality (2) for $p=q$.

In [12], Boas-type results were obtained for the cosine and sine Fourier transforms, separately. To describe it briefly, we denote

$$
\widehat{f}_{c}(x)=\int_{0}^{\infty} f(t) \cos x t d t \quad \text { and } \quad \widehat{f}_{s}(x)=\int_{0}^{\infty} f(t) \sin x t d t
$$

We call a function admissible if it is locally of bounded variation on $(0, \infty)$ and vanishes at infinity. For any admissible non-negative function f satisfying

$$
\begin{equation*}
\int_{t}^{2 t}|d f(u)| \leq C \int_{t / c}^{c t} u^{-1}|f(u)| d u \tag{6}
\end{equation*}
$$

for some $c>1$, relation (5) holds for f and \widehat{f}_{c} provided $-1 / p^{\prime}<\gamma<1 / p$, while for f and \widehat{f}_{s} provided $-1 / p^{\prime}<\gamma<1 / p+1$ (note the larger range).

In the higher-dimensional setting, the situation is expectedly more complex. For radial functions $f(x)=f_{0}(|x|), x \in \mathbb{R}^{n}$, the Fourier transform is also radial, i.e., $\widehat{f}(x)=F_{0}(|x|)$. One can then apply the one-dimensional results. For example, in \mathbb{R}^{3} the Fourier transform is given by

$$
\widehat{f}(x)=4 \pi|x|^{-1} \int_{0}^{\infty} t f_{0}(t) \sin |x| t d t
$$

So, applying the result for the sine transform \widehat{f}_{s} to the function $t f_{0}(t)$, we obtain

$$
\begin{equation*}
|x|^{-\gamma} \widehat{f}(x) \in L^{p}\left(\mathbb{R}^{3}\right) \quad \text { if and only if } \quad t^{3+\gamma-4 / p} f_{0}(t) \in L^{p}(0, \infty) \tag{7}
\end{equation*}
$$

provided $-2+3 / p<\gamma<3 / p$. Note that it is enough to assume that f_{0} itself satisfies (6), since this implies the same for $t f_{0}(t)$.

For $n \neq 3$, we can also apply (5) using fractional integrals. If f_{0} is such that

$$
\begin{equation*}
\int_{0}^{\infty} t^{n-1}(1+t)^{(1-n) / 2}\left|f_{0}(t)\right| d t<\infty \tag{8}
\end{equation*}
$$

one has the following Leray's formula (see, e.g., Lemma 25.1' in [19]):

$$
\begin{equation*}
\widehat{f}(x)=2 \pi^{(n-1) / 2} \int_{0}^{\infty} I(t) \cos |x| t d t \tag{9}
\end{equation*}
$$

where the fractional integral I is given by

$$
I(t)=\frac{2}{\Gamma\left(\frac{n-1}{2}\right)} \int_{t}^{\infty} s f_{0}(s)\left(s^{2}-t^{2}\right)^{(n-3) / 2} d s
$$

Then, the one-dimensional Boas' relation (5) implies that if $f_{0} \geq 0$ satisfies (8), then

$$
|x|^{-\gamma} \widehat{f}(x) \in L^{p}\left(\mathbb{R}^{n}\right) \quad \text { if and only if } \quad t^{1+\gamma-(n+1) / p} I(t) \in L^{p}(0, \infty)
$$

provided $\quad-1+n / p<\gamma<n / p$. However, the condition on I is difficult to verify and so it is desirable to obtain more direct Boas-type conditions. This is the main goal of the present paper.

Definition. We call an admissible function f_{0} general monotone, written GM, if for any $t>0$

$$
\begin{equation*}
\int_{t}^{\infty}\left|d f_{0}(u)\right| \leq C \int_{t / c}^{\infty}\left|f_{0}(u)\right| \frac{d u}{u} \tag{10}
\end{equation*}
$$

for some $c>1$.
In the context of our results, we always deal with functions satisfying
$\int_{1}^{\infty}\left|f_{0}(u)\right| d u / u<\infty$. It is clear that any such function being monotone, or satisfying (6), is general monotone. However, this class also contains functions with much more complex structure (see, e.g., [13]-[14]).

It is natural in our study that $f_{0} \in G M$ satisfies a less restrictive condition than (8):

$$
\begin{equation*}
\int_{0}^{1} t^{n-1}\left|f_{0}(t)\right| d t+\int_{1}^{\infty} t^{(n-1) / 2}\left|d f_{0}(t)\right|<\infty \tag{11}
\end{equation*}
$$

Let us present the main result of this paper with power weights.
Theorem 1. Let $1 \leq p<\infty$ and $n \geq 1$. Then, for any radial function $f(x)=$ $f_{0}(|x|), x \in \mathbb{R}^{n}$, such that $f_{0} \geq 0, f_{0} \in G M$, and satisfying (11),

$$
\begin{equation*}
\left\||x|^{-\gamma} \widehat{f}(x)\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \asymp\left\|t^{\beta} f_{0}(t)\right\|_{L^{p}(0, \infty)} \tag{12}
\end{equation*}
$$

if and only if

$$
\beta=\gamma+n-\frac{n+1}{p} \quad \text { and } \quad-\frac{n+1}{2}+\frac{n}{p}<\gamma<\frac{n}{p} .
$$

We immediately have the following generalization of Hardy-Littlewood's theorem (4).

Corollary 1. Let $1<p<\infty$ and $n \geq 1$. Then, for any radial function $f(x)=$ $f_{0}(|x|), x \in \mathbb{R}^{n}$, such that $f_{0} \geq 0, f_{0} \in G M$, and satisfying (11),

$$
C_{1}\left(\int_{\mathbb{R}^{n}}|\widehat{f}(x)|^{p} d x\right)^{1 / p} \leq\left(\int_{\mathbb{R}^{n}}|f(t)|^{p} t^{n(p-2)} d t\right)^{1 / p} \leq C_{2}\left(\int_{\mathbb{R}^{n}}|\widehat{f}(x)|^{p} d x\right)^{1 / p}
$$

if and only if

$$
\frac{2 n}{n+1}<p<\infty
$$

and
$C_{1}\left(\int_{\mathbb{R}^{n}}|\widehat{f}(x)|^{p}|x|^{n(p-2)} d x\right)^{1 / p} \leq\left(\int_{\mathbb{R}^{n}}|f(t)|^{p} d t\right)^{1 / p} \leq C_{2}\left(\int_{\mathbb{R}^{n}}|\widehat{f}(x)|^{p}|x|^{n(p-2)} d x\right)^{1 / p}$
if and only if

$$
1<p<\frac{2 n}{n-1}
$$

The paper is organized as follows. Section 2 provides some useful facts about the Fourier transform of a radial function. In Sections 3 and 4, we prove auxiliary upper and lower estimates for the Fourier transform; these estimates are used in the next sections to obtain $\left(L^{p}, L^{q}\right)$ Fourier inequalities with general weights and partial cases for power weights.

Concerning Problem 1, we observe that the upper estimate of \widehat{f} in Theorem 3 is Pitt's inequality, which holds in the case of general monotone functions only when $\frac{n}{q}-\frac{n+1}{2}<\gamma<\frac{n}{p}$. Since in any case

$$
\frac{n}{q}-\frac{n+1}{2}<\max \left\{0, n\left(\frac{1}{p}+\frac{1}{q}-1\right)\right\},
$$

we extend the range of γ given by (3). Theorem 1 exhibits a solution of Problem 2. Note that for $n=1$ and $n=3$ Theorem 1 gives (5) and (7), correspondingly.

The notation " \lesssim " and " \gtrsim " means " $\leq C$ " and " $\geq C$ ", respectively (with C independent of essential quantities), while" \simeq " stands for " \lesssim " and " \gtrsim " to hold simultaneously.

2. The Fourier transform of Radial functions

The facts we are going to make use of can be found in $[6,19,21]$. For $n \geq 1$, $x \in \mathbb{R}^{n}$, let $f(x)=f_{0}(|x|)$ be a radial function. Then

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} f(x) d x=\left|S^{n-1}\right| \int_{0}^{\infty} f_{0}(t) t^{n-1} d t, \tag{13}
\end{equation*}
$$

where $\left|S^{n-1}\right|=2 \pi^{n / 2} / \Gamma(n / 2)$ is the area of the unit sphere $S^{n-1}=\left\{x \in \mathbb{R}^{n}\right.$: $|x|=1\}$.

The Fourier transform (1) of the radial function f is also radial and is given via the Hankel-Fourier transform [21] as

$$
\begin{equation*}
\widehat{f}(y)=F_{0}(|y|)=\left|S^{n-1}\right| \int_{0}^{\infty} f_{0}(t) j_{\alpha}(|y| t) t^{n-1} d t \tag{14}
\end{equation*}
$$

Here $j_{\alpha}(z)$ is the normed Bessel function

$$
\begin{equation*}
j_{\alpha}(z)=\Gamma(\alpha+1)\left(\frac{z}{2}\right)^{-\alpha} J_{\alpha}(z)=\prod_{k=1}^{\infty}\left(1-\frac{z^{2}}{\rho_{\alpha, k}^{2}}\right), \tag{15}
\end{equation*}
$$

where $J_{\alpha}(z)$ is the classical Bessel function of first kind and order α, and $0<\rho_{\alpha, 1}<\rho_{\alpha, 2}<\ldots$ are the positive zeros of $J_{\alpha}(z)$. We denote

$$
\alpha:=\frac{n}{2}-1 \geq-\frac{1}{2} .
$$

Let us give several useful properties of the function $j_{\alpha}(z), \alpha \geq-1 / 2$, which follow from the known properties of $J_{\alpha}(z)$ (see, e.g., $\left.[6, \mathrm{Ch} . \mathrm{VII}]\right): j_{-1 / 2}(z)=\cos z$, $j_{1 / 2}(z)=\frac{\sin z}{z}$;

$$
\begin{gather*}
\left|j_{\alpha}(z)\right| \leq j_{\alpha}(0)=1, \quad z \geq 0 \tag{16}\\
\frac{d}{d z}\left(z^{2 \alpha+2} j_{\alpha+1}(z)\right)=(2 \alpha+2) z^{2 \alpha+1} j_{\alpha}(z) ; \tag{17}
\end{gather*}
$$

$$
\begin{equation*}
j_{\alpha}(z)=\frac{2^{\alpha} \Gamma(\alpha+1)(2 / \pi)^{1 / 2}}{z^{\alpha+1 / 2}} \cos \left(z-\frac{\pi(\alpha+1 / 2)}{2}\right)+O\left(z^{-\alpha-3 / 2}\right), \quad z \rightarrow \infty \tag{18}
\end{equation*}
$$

$$
\begin{gather*}
\left|j_{\alpha}(z)\right| \leq \frac{M_{\alpha}}{z^{\alpha+1 / 2}}, \quad z>0 \tag{19}\\
\rho_{\alpha, k}=\pi k+O(1 / k), \quad k \rightarrow \infty \tag{20}
\end{gather*}
$$

the zeros of the Bessel function are separated:

$$
\begin{equation*}
0<\rho_{\alpha, 1}<\rho_{\alpha+1,1}<\rho_{\alpha, 2}<\rho_{\alpha+1,2}<\rho_{\alpha, 3}<\ldots \tag{21}
\end{equation*}
$$

It follows from (17) and (21) that the function $z^{2 \alpha+2} j_{\alpha+1}(z)$ increases when $z \in\left[0, \rho_{\alpha, 1}\right]$ and decreases when $z \in\left[\rho_{\alpha, 1}, \rho_{\alpha+1,1}\right]$. The function $j_{\alpha+1}(z)$ decreases on the interval $\left[0, \rho_{\alpha+1,1}\right]$. This yields the estimate

$$
\begin{equation*}
z^{2 \alpha+2} j_{\alpha+1}^{2}(z) \geq m_{b}>0, \quad 1 / b \leq z \leq b, \quad 1<b=b_{\alpha}<\rho_{\alpha+1,1} \tag{22}
\end{equation*}
$$

In what follows we understand integral (14) as improper:

$$
\begin{equation*}
F_{0}(s)=\left|S^{n-1}\right| \lim _{\substack{a \rightarrow 0 \\ A \rightarrow \infty}} \int_{a}^{A} f_{0}(t) j_{\alpha}(s t) t^{n-1} d t, \quad s=|y|>0 \tag{23}
\end{equation*}
$$

Note that for admissible f_{0}, (16) implies

$$
\left|\int_{a}^{A} f_{0}(t) j_{\alpha}(s t) t^{n-1} d t\right| \leq \int_{a}^{A}\left|f_{0}(t)\right| t^{n-1} d t<\infty
$$

Further, for a radial function $f(x)=f_{0}(|x|)$, by properties (16) and (19), the integral in (14) converges uniformly for $s>0$ in improper sense to the continuous function $F_{0}(s)$, provided (8) holds (see [19]). In Lemma 1 below, we prove this fact for $F_{0}(s)$ via a pointwise estimate of F_{0}. Note that for $n \geq 2$ condition (11), as well as condition (8), is less restrictive than $f \in L^{1}\left(\mathbb{R}^{n}\right)$.

3. Estimates from above for the Fourier transforms

Let $f(x)=f_{0}(|x|)$ with f_{0} admissible and satisfying (11), that is, $\int_{0}^{1} t^{n-1}\left|f_{0}(t)\right| d t+\int_{1}^{\infty} t^{(n-1) / 2}\left|d f_{0}(t)\right|<\infty$. We observe that (11) implies for $t>1$

$$
t^{(n-1) / 2}\left|f_{0}(t)\right| \leq t^{(n-1) / 2} \int_{t}^{\infty}\left|d f_{0}(s)\right| \leq \int_{t}^{\infty} s^{(n-1) / 2}\left|d f_{0}(s)\right| .
$$

Therefore

$$
\begin{equation*}
t^{(n-1) / 2} f_{0}(t) \rightarrow 0 \quad \text { as } \quad t \rightarrow \infty \tag{24}
\end{equation*}
$$

Lemma 1. Given f_{0} as above, for $s>0$ the Fourier transform $F_{0}(s)$ is continuous, and satisfies

$$
\left|F_{0}(s)\right| \lesssim \int_{0}^{1 / s} t^{n-1}\left|f_{0}(t)\right| d t+s^{-(n+1) / 2} \int_{1 / s}^{\infty} t^{(n-1) / 2}\left|d f_{0}(t)\right|
$$

Proof. Let for $s>0$

$$
\begin{equation*}
I=\int_{0}^{\infty} f_{0}(t) j_{\alpha}(s t) t^{n-1} d t=\frac{F_{0}(s)}{\left|S^{n-1}\right|} \tag{25}
\end{equation*}
$$

Let $\rho>1$ be a zero of the Bessel function $J_{\alpha+1}(\cdot)$. Then, by (16),
$I \leq \int_{0}^{1 / s}\left|f_{0}(t)\right| t^{n-1} d t+\int_{1 / s}^{\rho / s}\left|f_{0}(t)\right| t^{n-1} d t+\left|\int_{\rho / s}^{\infty} f_{0}(t) j_{\alpha}(s t) t^{n-1} d t\right|=I_{1}+I_{2}+I_{3}$.
Estimating I_{2} we obtain

$$
\begin{align*}
I_{2} & \lesssim \int_{1 / s}^{\rho / s} t^{n-1}\left(\int_{t}^{1 / s}\left|d f_{0}(u)\right|+\int_{1 / s}^{\infty}\left|d f_{0}(u)\right|\right) d t \\
& \lesssim \int_{1 / s}^{\rho / s} u^{n}\left|d f_{0}(u)\right|+s^{-n} \int_{1 / s}^{\infty}\left|d f_{0}(u)\right| \lesssim s^{-(n+1) / 2} \int_{1 / s}^{\infty} t^{(n-1) / 2}\left|d f_{0}(t)\right| . \tag{27}
\end{align*}
$$

It follows from (17) that

$$
\begin{equation*}
\frac{d}{d t}\left(t^{n} j_{\alpha+1}(s t)\right)=n t^{n-1} j_{\alpha}(s t) \tag{28}
\end{equation*}
$$

Integrating by parts, we obtain

$$
I_{3}=\frac{1}{n} \int_{\rho / s}^{\infty} f_{0}(t) d\left(t^{n} j_{\alpha+1}(s t)\right)=\left.\frac{1}{n} f_{0}(t) t^{n} j_{\alpha+1}(s t)\right|_{\rho / s} ^{\infty}-\frac{1}{n} \int_{\rho / s}^{\infty} t^{n} j_{\alpha+1}(s t) d f_{0}(t)
$$

Then (19) and (24) yield

$$
\left|f_{0}(t) t^{n} j_{\alpha+1}(s t)\right| \lesssim\left|f_{0}(t)\right| t^{n}(s t)^{-(n+1) / 2} \lesssim\left|f_{0}(t)\right| t^{(n-1) / 2} \rightarrow 0 \quad \text { as } \quad t \rightarrow \infty,
$$

and hence

$$
\begin{equation*}
I_{3} \lesssim \int_{\rho / s}^{\infty} t^{n}(s t)^{-(n+1) / 2}\left|d f_{0}(t)\right| \lesssim s^{-(n+1) / 2} \int_{1 / s}^{\infty} t^{(n-1) / 2}\left|d f_{0}(t)\right| . \tag{29}
\end{equation*}
$$

Combining (27) and (29), we finish the proof of the lemma.
We will also use similar estimates of the Fourier transform in terms of the following functions:

$$
\Phi^{*}(t)=\int_{t}^{2 t}\left|d f_{0}(u)\right|, \quad \Phi(t)=\int_{t}^{\infty}\left|d f_{0}(u)\right|, \quad \Psi(t)=\int_{t}^{\infty} s^{(n-1) / 2}\left|d f_{0}(s)\right| .
$$

These functions are continuous for $t>0$, and $\Phi^{*}(t) \leq \Phi(t)$.

Corollary 2. The estimate holds for $s>0$

$$
\begin{aligned}
\left|F_{0}(s)\right| & \lesssim \int_{0}^{1 / s} t^{n-1} \Phi^{*}(t) d t+s^{-(n+1) / 2} \int_{1 / s}^{\infty} t^{(n-3) / 2} \Phi^{*}(t) d t \\
& \lesssim \int_{0}^{1 / s} t^{n-1} \Phi(t) d t+s^{-(n+1) / 2} \int_{1 / s}^{\infty} t^{(n-3) / 2} \Phi(t) d t
\end{aligned}
$$

Proof. Similar to (27), we first get

$$
\begin{equation*}
\int_{0}^{1 / s} t^{n-1}\left|f_{0}(t)\right| d t \lesssim \int_{0}^{1 / s} t^{n}\left|d f_{0}(t)\right|+s^{-(n+1) / 2} \int_{1 / s}^{\infty} t^{(n-1) / 2}\left|d f_{0}(t)\right| \tag{30}
\end{equation*}
$$

Then the required estimates follows from Lemma 1 and inequalities

$$
\begin{align*}
& \ln 2 \int_{0}^{B}|\psi(u)| d u \leq \int_{0}^{B} t^{-1} \int_{t}^{2 t}|\psi(u)| d u d t \tag{31}\\
& \ln 2 \int_{2 A}^{\infty}|\psi(u)| d u \leq \int_{A}^{\infty} t^{-1} \int_{t}^{2 t}|\psi(u)| d u d t \tag{32}
\end{align*}
$$

valid for any integrable ψ.
Corollary 3. The estimate holds for $s>0$

$$
\begin{equation*}
\left|F_{0}(s)\right| \lesssim \int_{0}^{1 / s} t^{(n-1) / 2} \Psi(t) d t \tag{33}
\end{equation*}
$$

Proof. Indeed, by Lemma 1 and (30),

$$
\left|F_{0}(s)\right| \lesssim \int_{0}^{1 / s} t^{n}\left|d f_{0}(t)\right|+s^{-(n+1) / 2} \int_{1 / s}^{\infty} t^{(n-1) / 2}\left|d f_{0}(t)\right|=I_{1}+I_{2}
$$

We have

$$
\begin{aligned}
I_{2}=s^{-(n+1) / 2} \Psi(1 / s) & \asymp \Psi(1 / s) \int_{1 /(2 s)}^{1 / s} t^{(n-1) / 2} d t \\
& \leq \int_{1 /(2 s)}^{1 / s} t^{(n-1) / 2} \Psi(t) d t \leq \int_{0}^{1 / s} t^{(n-1) / 2} \Psi(t) d t
\end{aligned}
$$

Using (31), we get

$$
\begin{aligned}
I_{1} \lesssim \int_{0}^{1 / s} t^{n-1}\left(\int_{t}^{2 t}\left|d f_{0}(s)\right|\right) d t & \asymp \int_{0}^{1 / s} t^{(n-1) / 2}\left(\int_{t}^{2 t} s^{(n-1) / 2}\left|d f_{0}(s)\right|\right) d t \\
& \leq \int_{0}^{1 / s} t^{(n-1) / 2} \Psi(t) d t
\end{aligned}
$$

The obtained bounds for I_{1} and I_{2} give (33).
Note that in this section we did not assume the positivity of f_{0} so far. This will come into play in the next section.

4. Estimates from below for the Fourier transforms

Let us consider a radial function $f(x)=f_{0}(|x|)$ such that f_{0} is admissible and $f_{0}(t) \geq 0$ when $t>0$. We assume that f_{0} satisfies condition (11). Then, by Lemma 1, the integral in (23) converges uniformly on any compact set away from zero and $F_{0}(s)$ is continuous for $s>0$. Suppose also that

$$
\begin{equation*}
\int_{0}^{1}\left|F_{0}(s)\right| s^{(n-1) / 2} d s<\infty \tag{34}
\end{equation*}
$$

In particular, this implies that \widehat{f} is integrable in a neighborhood of zero. We will need the following
Lemma 2. For $u>0$ and $1<b<\rho_{\alpha+1,1}$, the inequality holds

$$
u^{(1-n) / 2} \int_{0}^{2 / u} s^{(n-1) / 2}\left|F_{0}(s)\right| d s \gtrsim \int_{u / b}^{b u} \frac{f_{0}(t)}{t} d t
$$

Proof. We denote by $B^{n}=\left\{x \in \mathbb{R}^{n}:|x| \leq 1\right\}$ the unit ball, $\left|B^{n}\right|=\left|S^{n-1}\right| / n$ is the volume of this ball.

Let us consider the following well-known compactly supported function

$$
k(y)=\left|B^{n}\right|^{-1}(\chi * \chi)(y),
$$

where χ is the indicator function of the unit ball B^{n}. For $n=1$, it is the Fejér kernel $(1-|y| / 2)_{+}$.

The kernel k is radial $k(y)=k_{0}(|y|)$ and possesses the following properties:

$$
\begin{equation*}
0 \leq k_{0}(s) \leq k_{0}(0)=1, \quad 0 \leq s \leq 2 ; \quad k_{0}(s)=0, \quad s \geq 2 ; \tag{35}
\end{equation*}
$$

and the Fourier transform of k is

$$
\widehat{k}(x)=K_{0}(|x|)=\left|B^{n}\right|^{-1}(\widehat{\chi}(x))^{2} \geq 0 .
$$

By (28), for $t=|x|$

$$
\begin{equation*}
\widehat{\chi}(x)=\left|S^{n-1}\right| \int_{0}^{1} j_{\alpha}(t s) s^{n-1} d s=\frac{\left|S^{n-1}\right|}{n} j_{\alpha+1}(t)=\left|B^{n}\right| j_{\alpha+1}(t) \tag{36}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
K_{0}(t)=\left|S^{n-1}\right| \int_{0}^{2} k_{0}(s) j_{\alpha}(t s) s^{n-1} d s=\left|B^{n}\right| j_{\alpha+1}^{2}(t) \tag{37}
\end{equation*}
$$

Let ε be small enough. Denoting

$$
J_{\varepsilon}:=\int_{\varepsilon / u}^{2 / u} F_{0}(s) k_{0}(u s) s^{n-1} d s=u^{-n} \int_{\varepsilon}^{2} F_{0}(s / u) k_{0}(s) s^{n-1} d s
$$

We have, by (34) and (35),

$$
\begin{equation*}
\left|J_{\varepsilon}\right| \leq \int_{0}^{2 / u}\left|F_{0}(s)\right| s^{n-1} d s \lesssim u^{(1-n) / 2} \int_{0}^{2 / u} s^{(n-1) / 2}\left|F_{0}(s)\right| d s \tag{38}
\end{equation*}
$$

The uniform convergence of integral (23) implies

$$
\begin{aligned}
J_{\varepsilon} & =u^{-n} \int_{\varepsilon}^{2}\left(\left|S^{n-1}\right| \int_{0}^{\infty} f_{0}(t) j_{\alpha}(s t / u) t^{n-1} d t\right) k_{0}(s) s^{n-1} d s \\
& =u^{-n} \int_{0}^{\infty} f_{0}(t)\left(\left|S^{n-1}\right| \int_{\varepsilon}^{2} k_{0}(s) j_{\alpha}(s t / u) s^{n-1} d s\right) t^{n-1} d t
\end{aligned}
$$

Using (37), we get

$$
\left|S^{n-1}\right| \int_{\varepsilon}^{2} k_{0}(s) j_{\alpha}(s t / u) s^{n-1} d s=K_{0}(t / u)-\lambda_{\varepsilon}(t)
$$

where

$$
\lambda_{\varepsilon}(t)=\left|S^{n-1}\right| \int_{0}^{\varepsilon} k_{0}(s) j_{\alpha}(s t / u) s^{n-1} d s
$$

Taking into account (22) and (37), we have $(t / u)^{n} K_{0}(t / u) \gtrsim 1$ for $u / b \leq t \leq b u$. Therefore,

$$
\begin{equation*}
J_{\varepsilon} \gtrsim \int_{u / b}^{b u} \frac{f_{0}(t)}{t} d t-J_{\varepsilon}^{\prime}, \quad J_{\varepsilon}^{\prime}=u^{-n} \int_{0}^{\infty} f_{0}(t) \lambda_{\varepsilon}(t) t^{n-1} d t \tag{39}
\end{equation*}
$$

We are going to prove that $J_{\varepsilon}^{\prime} \rightarrow 0$ as $\varepsilon \rightarrow 0$. Take $A>1$. It follows from (35) and (16) that

$$
\begin{equation*}
\left|\lambda_{\varepsilon}(t)\right| \leq\left|S^{n-1}\right| \int_{0}^{\varepsilon} s^{n-1} d s \lesssim \varepsilon^{n} \tag{40}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\left|u^{-n} \int_{0}^{A} f_{0}(t) \lambda_{\varepsilon}(t) t^{n-1} d t\right| \lesssim \varepsilon^{n} \int_{0}^{A}\left|f_{0}(t)\right| t^{n-1} d t \tag{41}
\end{equation*}
$$

Let $t \geq A$. Define

$$
\Lambda_{\varepsilon}(t)=\int_{0}^{t} \lambda_{\varepsilon}(v) v^{n-1} d v=\left|S^{n-1}\right| \int_{0}^{\varepsilon} k_{0}(s) s^{n-1}\left(\int_{0}^{t} j_{\alpha}(s v / u) v^{n-1} d v\right) d s
$$

Making use of (28), we obtain

$$
\begin{equation*}
\Lambda_{\varepsilon}(t)=\frac{\left|S^{n-1}\right| t^{n}}{n} \int_{0}^{\varepsilon} k_{0}(s) j_{\alpha+1}(s t / u) s^{n-1} d s \tag{42}
\end{equation*}
$$

For $n=1$,

$$
\left|\Lambda_{\varepsilon}(t)\right|=\left|2 t \int_{0}^{\varepsilon}(1-s / 2) \frac{\sin (s t / u)}{s t / u} d s\right|=\left|2 u \int_{0}^{\varepsilon t / u} \frac{\sin s}{s} d s-\frac{u^{2}(1-\cos (\varepsilon t / u))}{t}\right|
$$

It is well-known that $\left|\int_{0}^{v} \frac{\sin s}{s} d s\right| \leq \int_{0}^{\pi} \frac{\sin s}{s} d s \quad$ for $v>0$, and $\left|\Lambda_{\varepsilon}(t)\right| \lesssim 1 \lesssim$ $t^{(n-1) / 2}$.

Let now $n \geq 2$. We have

$$
\Lambda_{\varepsilon}(t)=\frac{\left|S^{n-1}\right| t^{n}}{n}\left(\int_{0}^{\varepsilon / t}+\int_{\varepsilon / t}^{\varepsilon}\right) k_{0}(s) j_{\alpha+1}(s t / u) s^{n-1} d s
$$

As above

$$
\left|\frac{\left|S^{n-1}\right| t^{n}}{n} \int_{0}^{\varepsilon / t} k_{0}(s) j_{\alpha+1}(s t / u) s^{n-1} d s\right| \lesssim t^{n} \int_{0}^{\varepsilon / t} s^{n-1} d s \lesssim \varepsilon^{n} \lesssim 1 \lesssim t^{(n-1) / 2}
$$

Applying (19), we get

$$
\begin{aligned}
&\left|\frac{\left|S^{n-1}\right| t^{n}}{n} \int_{\varepsilon / t}^{\varepsilon} k_{0}(s) j_{\alpha+1}(s t / u) s^{n-1} d s\right| \lesssim t^{n} \int_{\varepsilon / t}^{\varepsilon}\left|j_{\alpha+1}(s t / u)\right| s^{n-1} d s \\
& \quad \lesssim t^{n}(t / u)^{-(n+1) / 2} \int_{\varepsilon / t}^{\varepsilon} s^{(n-1) / 2-1} d s \lesssim t^{(n-1) / 2} \varepsilon^{(n-1) / 2} \lesssim t^{(n-1) / 2}
\end{aligned}
$$

Therefore, $\left|\Lambda_{\varepsilon}(t)\right| \lesssim t^{(n-1) / 2}$ for $t \geq A$ and $n \geq 1$.
Integrating by parts yields

$$
\int_{A}^{\infty} f_{0}(t) \lambda_{\varepsilon}(t) t^{n-1} d t=\int_{A}^{\infty} f_{0}(t) d \Lambda_{\varepsilon}(t)=\left.f_{0}(t) \Lambda_{\varepsilon}(t)\right|_{A} ^{\infty}-\int_{A}^{\infty} \Lambda_{\varepsilon}(t) d f_{0}(t)
$$

It follows from (24) and $\left|\Lambda_{\varepsilon}(t)\right| \lesssim t^{(n-1) / 2}$ that $f_{0}(t) \Lambda_{\varepsilon}(t) \rightarrow 0$ as $t \rightarrow \infty$. Since (40) and (42) imply $\left|\Lambda_{\varepsilon}(A)\right| \lesssim \varepsilon^{n} A^{n}$,

$$
\begin{equation*}
\left|\int_{A}^{\infty} f_{0}(t) \lambda_{\varepsilon}(t) t^{n-1} d t\right| \leq \varepsilon^{n}\left|f_{0}(A)\right| A^{n}+\int_{A}^{\infty} t^{(n-1) / 2}\left|d f_{0}(t)\right| . \tag{43}
\end{equation*}
$$

Combining (41) and (43), we get

$$
\left|J_{\varepsilon}^{\prime}\right| \lesssim \varepsilon^{n}\left(\int_{0}^{A}\left|f_{0}(t)\right| t^{n-1} d t+\left|f_{0}(A)\right| A^{n}\right)+\int_{A}^{\infty} t^{(n-1) / 2}\left|d f_{0}(t)\right|
$$

Letting first $\varepsilon \rightarrow 0$ and then $A \rightarrow \infty$, we obtain the claimed $J_{\varepsilon}^{\prime} \rightarrow 0$. Using this, (38), and (39), we arrive at the assertion of the lemma.

5. $L^{p}-L^{q}$ Fourier inequalities with general weights

For any weights $\mathbf{u}, \mathbf{v}: \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}$, consider their radial parts

$$
U(t)=\int_{S^{n-1}} \mathbf{u}(t \xi) d \xi, \quad V(t)=\int_{S^{n-1}} \mathbf{v}(t \xi) d \xi
$$

We set $x^{\prime}=x /|x|, \overline{\mathbf{v}}(x)=\mathbf{v}\left(x^{\prime} /|x|\right)$.
Theorem 2. Let $1 \leq p, q<\infty$ and $n \in \mathbb{N}$. Let f be radial on \mathbb{R}^{n} such that f_{0} is a non-negative general monotone function on \mathbb{R}_{+}satisfying (11).
(A) If $p \leq q$, and V, U satisfy

$$
\begin{equation*}
\sup _{r>0}\left(\int_{r}^{\infty} t^{-n-1} V(c t) d t\right)^{1 / q}\left(\int_{0}^{r}\left[U(t) t^{(n-1)(1-p)}\right]^{1 /(1-p)} d t\right)^{1 / p^{\prime}}<\infty \tag{44}
\end{equation*}
$$

$$
\begin{equation*}
\sup _{r>0}\left(\int_{0}^{r} t^{\left(1-\frac{p}{2}\right)(n-1)} U(t) d t\right)^{1 / p}\left(\int_{r}^{\infty}\left[U(t) t^{\left(1-\frac{p}{2}\right)(n-1)+p}\right]^{1 /(1-p)} d t\right)^{1 / p^{\prime}}<\infty \tag{45}
\end{equation*}
$$

then

$$
\|\widehat{f}\|_{L_{\bar{v}}^{q}} \equiv\left(\int_{\mathbb{R}^{n}}|\widehat{f}(x)|^{q} \overline{\mathbf{v}}(x) d x\right)^{1 / q} \lesssim\left(\int_{\mathbb{R}^{n}}|f(x)|^{p} \mathbf{u}(x) d x\right)^{1 / p} \equiv\|f\|_{L_{\mathbf{u}}^{p}}
$$

(B) If $q \leq p$, and U, V satisfy

$$
\begin{equation*}
\sup _{r>0}\left(\int_{0}^{r} t^{n-1} U(2 b c t) d t\right)^{1 / p}\left(\int_{r}^{\infty}\left[V(t) t^{(n+1)(q-1)}\right]^{1 /(1-q)} d t\right)^{1 / q^{\prime}}<\infty \tag{46}
\end{equation*}
$$

$$
\begin{equation*}
\sup _{r>0}\left(\int_{0}^{r} t^{(n+1)\left(\frac{q}{2}-1\right)} V(t) d t\right)^{1 / q}\left(\int_{r}^{\infty}\left[V(t) t^{(n+1)\left(\frac{q}{2}-1\right)+q}\right]^{1 /(1-q)} d t\right)^{1 / q^{\prime}}<\infty, \tag{47}
\end{equation*}
$$

then

$$
\|f\|_{L_{\mathbf{u}}^{p}} \lesssim\|\widehat{f}\|_{L_{\underline{\underline{v}}}} .
$$

Proof. We will use the (p, q) version of Hardy's inequalities ([8]) with general weights $u, v \geq 0$: for $1 \leq \alpha \leq \beta<\infty$,

$$
\begin{equation*}
\left[\int_{0}^{\infty} u(t)\left(\int_{0}^{t} \psi(s) d s\right)^{\beta} d t\right]^{1 / \beta} \leq C\left[\int_{0}^{\infty} v(t) \psi(t)^{\alpha} d t\right]^{1 / \alpha} \tag{48}
\end{equation*}
$$

holds for every $\psi \geq 0$ if and only if

$$
\sup _{r>0}\left(\int_{r}^{\infty} u(t) d t\right)^{1 / \beta}\left(\int_{0}^{r} v(t)^{1-\alpha^{\prime}} d t\right)^{1 / \alpha^{\prime}}<\infty
$$

and

$$
\begin{equation*}
\left[\int_{0}^{\infty} u(t)\left(\int_{t}^{\infty} \psi(s) d s\right)^{\beta} d t\right]^{1 / \beta} \leq C\left[\int_{0}^{\infty} v(t) \psi(t)^{\alpha} d t\right]^{1 / \alpha} \tag{49}
\end{equation*}
$$

if and only if

$$
\sup _{r>0}\left(\int_{0}^{r} u(t) d t\right)^{1 / \beta}\left(\int_{r}^{\infty} v(t)^{1-\alpha^{\prime}} d t\right)^{1 / \alpha^{\prime}}<\infty
$$

Here we consider the usual modification of the integral $\left[\int v(t)^{\theta} d t\right]^{1 / \theta}$ when $\theta=\infty$.

Remark 1. In particular, (48) holds with $u(t)=t^{\varepsilon-1}$ and $v(t)=t^{\delta-1}$ if and only if $\varepsilon<0$ and $\delta=\varepsilon \alpha / \beta+\alpha$.

To prove (A), we use the pointwise Fourier transform inequality (33) from Corollary 3. First, we have to check the accuracy of (11). By Hölder's inequality,
$\int_{0}^{1} t^{n-1}\left|f_{0}(t)\right| d t \leq\left(\int_{0}^{1} t^{n-1}\left|f_{0}(t)\right|^{p} U(t) d t\right)^{1 / p}\left(\int_{0}^{1}\left[U(t) t^{(n-1)(1-p)}\right]^{1 /(1-p)} d t\right)^{1 / p^{\prime}}$, and the right-hand side is finite since $f \in L_{\mathbf{u}}^{p}$ and the last integral in (44) is finite. Further, it follows from the definition of $G M$ and simple calculations that

$$
\int_{1}^{\infty} t^{\frac{n-1}{2}}\left|d f_{0}(t)\right| \lesssim \int_{1 / c}^{\infty} t^{\frac{n-3}{2}}\left|f_{0}(t)\right| d t
$$

Therefore,

$$
\begin{aligned}
& \int_{1 / c}^{\infty} t^{\frac{n-3}{2}}\left|f_{0}(t)\right| d t \leq\left(\int_{1 / c}^{\infty} t^{n-1}\left|f_{0}(t)\right|^{p} U(t) d t\right)^{1 / p} \\
&\left(\int_{1 / c}^{\infty} t^{-\frac{n-1}{p} \frac{p}{p-1}} t^{\frac{n-3}{2} \frac{p}{p-1}} U(t)^{1 /(1-p)} d t\right)^{1 / p^{\prime}}
\end{aligned}
$$

The last integral is finite due to (45).
Now, (32) and $f_{0} \in G M$ yield

$$
\begin{aligned}
\Psi(t) & =\int_{t}^{\infty} s^{(n-1) / 2}\left|d f_{0}(s)\right| \lesssim \int_{t}^{\infty} y^{(n-1) / 2-1} \int_{y}^{2 y}\left|d f_{0}(s)\right| d y \\
& \lesssim \int_{t}^{\infty} y^{(n-1) / 2-1} \int_{y / c}^{\infty}\left|f_{0}(s)\right| \frac{d s}{s} d y \\
& \lesssim \int_{t / c}^{\infty} s^{(n-1) / 2-1}\left|f_{0}(s)\right| d s .
\end{aligned}
$$

Using this and Corollary 3, we have

$$
\begin{aligned}
& \left(\int_{\mathbb{R}^{n}} \mathbf{v}\left(x^{\prime} /|x|\right)|\widehat{f}(x)|^{q} d x\right)^{1 / q} \lesssim\left(\int_{0}^{\infty} V(1 / t)\left|F_{0}(t)\right|^{q} t^{n-1} d t\right)^{1 / q} \\
& \quad \lesssim\left(\int_{0}^{\infty} V(c t)\left(\int_{0}^{t} u^{(n-1) / 2}\left(\int_{u}^{\infty} s^{(n-1) / 2-1}\left|f_{0}(s)\right| d s\right) d u\right)^{q} t^{-n-1} d t\right)^{1 / q}
\end{aligned}
$$

Applying now (48) to the first two integrals on the right, with $\beta=q, \alpha=p$, $u(t)=t^{-n-1} V(c t)$, and $v(t)=U(t) t^{n-1-p(n-1)}$, we obtain

$$
\left(\int_{\mathbb{R}^{n}} \mathbf{v}\left(x^{\prime} /|x|\right)|\widehat{f}(x)|^{q} d x\right)^{1 / q} \lesssim\left(\int_{0}^{\infty}\left(\int_{u}^{\infty} s^{(n-1) / 2-1}\left|f_{0}(s)\right| d s\right)^{p} U(t) t^{n-1-p(n-1) / 2} d t\right)^{1 / p}
$$

provided (44) holds.

Making then use of (49), with $\alpha=\beta=p, u(t)=U(t) t^{n-1-p(n-1) / 2}$, and $v(t)=U(t) t^{n-1-p(n-1) / 2+p}$, we get

$$
\left(\int_{\mathbb{R}^{n}} \mathbf{v}\left(x^{\prime} /|x|\right)|\widehat{f}(x)|^{q} d x\right)^{1 / q} \lesssim\left(\int_{0}^{\infty} U(t) t^{n-1}\left|f_{0}(t)\right|^{p} d t\right)^{1 / p} \lesssim\|f\|_{L_{\mathbf{u}}^{p}}
$$

provided (45) holds.
To prove (B), Lemma 2 is needed. For this we have to check (34). Hölder's inequality and simple substitution yield

$$
\int_{0}^{r}\left|F_{0}(t)\right| t^{\frac{n-1}{2}} d t \lesssim\|\widehat{f}\|_{L_{\bar{v}}^{q}}\left(\int_{1 / r}^{\infty}\left[V(t) t^{(n+1)\left(\frac{q}{2}-1\right)+q}\right]^{1 /(1-q)} d t\right)^{1 / q^{\prime}}
$$

The finiteness of the last integral is ensured by (47).
We then note that for any $f_{0} \in G M$ there holds

$$
\begin{equation*}
\left|f_{0}(x)\right| \leq \int_{x}^{\infty}\left|d f_{0}(t)\right| \lesssim \int_{x / c}^{\infty}\left|f_{0}(t)\right| \frac{d t}{t} . \tag{50}
\end{equation*}
$$

Secondly, by (32) and Lemma 2, we have

$$
\begin{align*}
\left|f_{0}(x)\right| & \leq \int_{x}^{\infty}\left|d f_{0}(t)\right| \lesssim \int_{x / b c}^{\infty} t^{-1}\left(\int_{t / b}^{b t} \frac{f_{0}(s)}{s} d s\right) d t \\
& \lesssim \int_{x / b c}^{\infty} t^{(1-n) / 2-1}\left(\int_{0}^{2 / t} z^{(n-1) / 2}\left|F_{0}(z)\right| d z\right) d t \\
& \lesssim \int_{0}^{2 b c / x} t^{(n-1) / 2-1}\left(\int_{0}^{t} z^{(n-1) / 2}\left|F_{0}(z)\right| d z\right) d t \tag{51}
\end{align*}
$$

Applying now (51), we obtain

$$
\begin{aligned}
& \|f\|_{L_{\mathbf{u}}^{p}} \lesssim\left(\int_{0}^{\infty} U(t) t^{n-1}\left|f_{0}(t)\right|^{p} d t\right)^{1 / p} \\
& \lesssim\left(\int_{0}^{\infty} U(s) s^{n-1}\left(\int_{s}^{\infty} t^{-(n-1) / 2-1}\left(\int_{2 b c t}^{\infty} z^{-(n-1) / 2-2}\left|F_{0}(1 / z)\right| d z\right) d t\right)^{p} d s\right)^{1 / p}
\end{aligned}
$$

As above, we then use Hardy's inequality (49) twice to obtain

$$
\|f\|_{L_{\mathbf{u}}^{p}} \lesssim\left(\int_{\mathbb{R}^{n}} \mathbf{v}\left(x^{\prime} /|x|\right)|\widehat{f}(x)|^{q} d x\right)^{1 / q}=\|\widehat{f}\|_{L_{\mathbf{v}}^{q}} .
$$

Under appropriate choice of the weights, the necessary and sufficient condition reduces to (46) and (47), respectively. The proof is complete.

6. Applications. Pitt-Boas type results with power weights

For $\mathbf{v}(x)=|x|^{-q \gamma}$ and $\mathbf{u}(x)=|x|^{\gamma p-n p / q+n p-n}$, Theorem 2 implies the following result.

Theorem 3. Let $1 \leq p, q<\infty$ and $n \in \mathbb{N}$. Let f be radial on \mathbb{R}^{n} such that f_{0} is a general monotone function on \mathbb{R}_{+}.
(A) If $p \leq q$ and

$$
\begin{equation*}
\frac{n}{q}-\frac{n+1}{2}<\gamma<\frac{n}{q} \tag{52}
\end{equation*}
$$

then

$$
t^{n+\gamma-n / q-1 / p} f_{0}(t) \in L^{p}(0, \infty) \quad \text { implies } \quad|x|^{-\gamma} \widehat{f}(x) \in L^{q}\left(\mathbb{R}^{n}\right)
$$

(B) Let a non-negative function f_{0} satisfy (11). If $q \leq p$ and

$$
\begin{equation*}
\frac{n}{q}-\frac{n+1}{2}<\gamma \tag{53}
\end{equation*}
$$

then

$$
|x|^{-\gamma} \widehat{f}(x) \in L^{q}\left(\mathbb{R}^{n}\right) \quad \text { implies } \quad t^{n+\gamma-n / q-1 / p} f_{0}(t) \in L^{p}(0, \infty)
$$

Note that the "if" part of Theorem 1 follows from Theorem 3 by taking $p=q$.
Let us now discuss the sharpness of conditions on γ. We rewrite part (A) of Theorem 3 in the following way.

Theorem 3'. Let $1 \leq p \leq q<\infty$ and $n \in \mathbb{N}$. Let f be radial on \mathbb{R}^{n} such that f_{0} is a general monotone function on \mathbb{R}_{+}. Then

$$
\begin{equation*}
\left\||x|^{-\gamma} \widehat{f}(x)\right\|_{L^{q}\left(\mathbb{R}^{n}\right)} \lesssim\left\|t^{\beta} f_{0}(t)\right\|_{L^{p}(0, \infty)} \tag{54}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\beta=\gamma+n-\frac{n}{q}-\frac{1}{p} \quad \text { and } \quad \frac{n}{q}-\frac{n+1}{2}<\gamma<\frac{n}{q} . \tag{55}
\end{equation*}
$$

To prove Theorem 3', we can restrict ourselves to the "only if" direction. This also captures the "only if" part in Theorem 1 when $p=q$.

Proof. Consider $f(x)=\chi(x)$, then $f_{0}(t)=\chi_{[0,1]}(t) \in G M$. Then we have

$$
\left\|t^{n+\gamma-n / q-1 / p} f_{0}(t)\right\|_{L^{p}(0, \infty)}=\left(\int_{0}^{1} t^{p n+p \gamma-p n / q-1} d t\right)^{1 / p}
$$

This integral converges if $p n+p \gamma-p n / q>0$, or equivalently $\gamma>\frac{n}{q}-n$.

Let us figure out when $|y|^{-\gamma} \widehat{\chi}(y) \in L^{q}\left(\mathbb{R}^{n}\right)$. By (36), the Fourier transform of f is $\widehat{\chi}(y)=\left|B^{n}\right| j_{\alpha+1}(|y|)=F_{0}(s)$. Therefore, we obtain

$$
\begin{align*}
\left\||y|^{-\gamma} \widehat{\chi}(y)\right\|_{L^{q}\left(\mathbb{R}^{n}\right)} & \asymp\left(\int_{0}^{\infty}\left(s^{-\gamma}\left|F_{0}(s)\right|\right)^{q} s^{n-1} d s\right)^{1 / q} \tag{56}\\
& \asymp\left(\int_{0}^{\infty} s^{n-q \gamma-1}\left|j_{\alpha+1}(s)\right|^{q} d s\right)^{1 / q} .
\end{align*}
$$

There holds $j_{\alpha+1}(s) \asymp 1$ in a neighborhood of zero, hence the integral in (56) converges if $n-q \gamma>0$, that is, when $\gamma<\frac{n}{q}$. The upper bound is established.

There holds for s large, $j_{\alpha+1}(s) \lesssim s^{-(n+1) / 2}$, therefore the integral in (56) converges if $\frac{n}{q}-\frac{n+1}{2}<\gamma$. We will now show that if this condition does not hold, then the integral in (56) diverges. It follows from (20) that for an integer number k_{0} large enough

$$
\rho_{\alpha+1, k} \asymp k, \quad \rho_{\alpha+1, k+1}-\rho_{\alpha+1, k} \asymp 1, \quad k \geq k_{0},
$$

and there is a small $\varepsilon>0$, independent of k, such that

$$
\left|j_{\alpha+1}(s)\right| \gtrsim s^{-(n+1) / 2}, \quad s \in\left[\rho_{\alpha+1, k}+\varepsilon, \rho_{\alpha+1, k+1}-\varepsilon\right], \quad k \geq k_{0} .
$$

Therefore,

$$
\begin{aligned}
\int_{0}^{\infty} s^{n-q \gamma-1}\left|j_{\alpha+1}(s)\right|^{q} d s & \gtrsim \sum_{k=k_{0}}^{\infty} \int_{\rho_{\alpha+1, k}+\varepsilon}^{\rho_{\alpha+1, k+1}-\varepsilon} s^{n-q \gamma-1} s^{-q(n+1) / 2} d s \\
& \gtrsim \sum_{k=k_{0}}^{\infty}\left(\rho_{\alpha+1, k+1}-\varepsilon\right)^{n-q \gamma-1-q(n+1) / 2} \\
& \gtrsim \sum_{k=k_{0}}^{\infty} k^{n-q \gamma-1-q(n+1) / 2} .
\end{aligned}
$$

The last series diverges provided $\gamma \leq \frac{n}{q}-\frac{n+1}{2}$.
Let us verify that β and γ should be related by $\beta=\gamma+n-n / q-1 / p$. Let $u>0$ and $g(x)=f_{0}(|x| / u)=\chi(x / u)$. Then for $t=|y|$ with $0<t<1 / u$

$$
\widehat{g}(y)=G_{0}(|y|)=u^{n} F_{0}(u|y|)=\left|B^{n}\right| u^{n} j_{\alpha+1}(u t) \asymp u^{n} .
$$

We then have

$$
\left\|t^{\beta} g_{0}(t)\right\|_{L^{p}(0, \infty)} \asymp\left(\int_{0}^{u} t^{\beta p+1} \frac{d t}{t}\right)^{1 / p} \asymp u^{\beta+1 / p}
$$

and

$$
\begin{aligned}
\left\||x|^{-\gamma} \widehat{g}(x)\right\|_{L^{q}\left(\mathbb{R}^{n}\right)} & \gtrsim\left(\int_{0}^{u} t^{-\gamma q+n}\left|G_{0}(t)\right|^{q} \frac{d t}{t}\right)^{1 / q} \\
& \gtrsim u^{n}\left(\int_{0}^{u} t^{-\gamma q+n} \frac{d t}{t}\right)^{1 / q} \asymp u^{\gamma+n-n / q} .
\end{aligned}
$$

These yield $u^{\beta+1 / p} \gtrsim u^{\gamma+n-n / q}$ for any $u>0$, that is, $\beta=\gamma+n-\frac{n}{q}-\frac{1}{p}$.
Acknowledgements. The authors gratefully acknowledge the support of the Centre de Recerca Matemàtica in Barcelona and the Mathematisches Forschungsinstitut Oberwolfach. This research was partially supported by the RFFI 09-01-00175, NSH-3252.2010.1, MTM 2008-05561-C02-02, and 2009 SGR 1303.

References

[1] W. Beckner, Pitt's inequality and the uncertainty principle, Proc. Amer. Math. Soc. 123 (1995), 1897—1905.
[2] W. Beckner, Pitt's inequality with sharp convolution estimates, Proc. Amer. Math. Soc. 136(5) (2008), 1871-1885.
[3] J. J. Benedetto, H. P. Heinig, Weighted Fourier Inequalities: New Proofs and Generalizations, J. Fourier Anal. Appl. 9 (2003), 1-37.
[4] J. J. Benedetto, H. P. Heinig, Fourier transform inequalities with measure weights, Adv. Math. 96(2) (1992), 194-225.
[5] J. J. Benedetto, J. D. Lakey, The definition of the Fourier transform for weighted inequalities, J. Funct. Anal. 120(2) (1994), 403-439.
[6] G. Bateman, A. Erdélyi, Higher Transcendental Functions, Vol. II, McGraw Hill Book Company, New York, 1953.
[7] R. P. Boas, The integrability class of the sine transform of a monotonic function, Studia Math. XLIV (1972), 365-369.
[8] J. S. Bradley, Hardy inequalities with mixed norms, Canad. Math. Bull. 21 (1978), 405-408.
[9] C. Carton-Lebrun, H. P. Heinig, Weighted Fourier transform inequalities for radially decreasing functions, SIAM J. Math. Anal. 23(3) (1992), 785-798.
[10] L. De Carli, On the $L^{p}-L^{q}$ norm of the Hankel transform and related operators, J. Math. Anal. Appl. 348(1) (2008), 366-382.
[11] W.B. Jurkat, G. Sampson, On rearrangement and weight inequalities for the Fourier transform, Indiana Univ. Math. J. 33 (1984), 257-270.
[12] E. Liflyand, S. Tikhonov, Extended solution of Boas' conjecture on Fourier transforms, C.R. Math., Vol. 346, Is. 21-22 (2008), 1137-1142.
[13] E. Liflyand, S. Tikhonov, The Fourier transforms of general monotone functions, Analysis and Mathematical Physics. Trends in Mathematics, Birkhäuser Verlag (2009), 377-396.
[14] E. Liflyand, S. Tikhonov, A concept of general monotonicity and applications, To appear in Math. Nachr.
[15] H. R. Pitt, Theorems on Fourier series and power series, Duke Math. J. 3 (1937), 747-755.
[16] P. G. Rooney, Generalized H_{p} spaces and Laplace transforms, Abstract Spaces and Approximation (Proc. Conf., Oberwolfach, 1968), pp. 258-269. Birkhäuser, 1969.
[17] C. Sadosky, R. L. Wheeden, Some weighted norm inequalities for the Fourier transform of functions with vanishing moments, Trans. Amer. Math. Soc. 300 (1987), 521-533.
[18] Y. Sagher, Integrability conditions for the Fourier transform, J. Math. Anal. Appl. 54 (1976), 151-156.
[19] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: theory and applications, New York, NY: Gordon and Breach, 1993.
[20] E.M. Stein, Interpolation of linear operators, Trans. Amer. Math. Soc. 83 (1956), 482-492.
[21] E.M. Stein, G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton, N. J., 1971.
[22] J.-O. Strömberg, R.L. Wheeden, Weighted norm estimates for the Fourier transform with a pair of weights, Trans. Amer. Math. Soc. 318 (1990), 355-372.
[23] E. C. Titchmarsh, Introduction to the theory of Fourier integrals, Oxford, 1937.
D. Gorbachev

Tula State University
Department of Mechanics and Mathematics
300600 Tula, Russia
E-mail address: dvgmail@mail.ru
E. Liflyand

Department of Mathematics
Bar-Ilan University
52900 Ramat-Gan, Israel
E-mail address: liflyand@math.biu.ac.il
S. Tikhonov

ICREA and Centre de Recerca Matemàtica
Apartat 5008193 (Bellaterra) Barcelona
E-mail address: stikhonov@crm.cat

[^0]: 2000 Mathematics Subject Classification. Primary 42B10, 42A38; Secondary 42B35, 46E30.
 Key words and phrases. Fourier transforms, Weighted inequalities, General monotone functions, Radial functions.

