
WEIGHTED NORM INEQUALITIES FOR FOURIER
TRANSFORMS OF RADIAL FUNCTIONS

D. GORBACHEV, E. LIFLYAND, AND S. TIKHONOV

Abstract. Weighted Lp(Rn)→ Lq(Rn) Fourier inequalities are studied. We
prove Pitt–Boas type results on integrability with general weights of the Fourier
transform of a radial function.

1. Introduction

Weighted norm inequalities for the Fourier transform provide a natural way
to describe the balance between the relative sizes of a function and its Fourier
transform at infinity. What is more, such inequalities with sharp constants im-
ply the uncertainty principle relations ([1], [2]). The celebrated Pitt inequality
illustrates this idea at the spectral level ([1]):∫

Rn
Φ(1/|y|)|f̂(y)|2dy ≤ CΦ

∫
Rn

Φ(|x|)|f(x)|2dx,

where Φ is an increasing function and f̂ is the Fourier transform of a function f
from the Schwartz class S(Rn),

(1) f̂(y) = Ff(y) =

∫
Rn
f(x)eixydx.

In the (Lp, Lq) setting such inequalities have been studied extensively (see, for
instance, [1]–[5], [9], [10], [11], [17], [22]). In this case Pitt’s inequality is written
as follows: for 1 < p ≤ q <∞, 0 ≤ γ < n/q, 0 ≤ β < n/p′ and n ≥ 1(∫

Rn

(
|y|−γ|f̂(y)|

)q
dy

)1/q

≤ C

(∫
Rn

(
|x|β|f(x)|

)p
dx

)1/p

(2)

with the index constraint

β − γ = n− n
(

1

p
+

1

q

)
(primes denote the dual exponents, 1/p+ 1/p′ = 1).
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The restrictions on γ and β can be written as

max

{
0, n

(1

p
+

1

q
− 1
)}
≤ γ <

n

q
.(3)

It is worth mentioning that inequality (2) contains classical (non-weighted)

versions of the Plancherel theorem, that is, ‖f̂‖2 � ‖f‖2, Hardy–Littlewood’s
theorem (1 < p = q ≤ 2, β = 0 or p = q ≥ 2, γ = 0), and Hausdorff–Young’s
theorem (q = p′ ≥ 2, β = γ = 0).

For n = 1, inequality (2) can be found in [3], [15], [16], [20]; for n ≥ 1 see [2],
[3]. In [1], W. Beckner found a sharp constant in (2) for p = q = 2 and used this
result to prove a logarithmic estimate for uncertainty.

In this paper we address the following two problems.

Problem 1: The range (3) is sharp if f is simply assumed to be in Lpu, u(x) =
|x|pβ. Is it possible to extend this range if additional regularity of f is
assumed?

Problem 2: Under which additional assumption on f it is possible to reverse
inequality (2) for p = q?

Let us first recall several known results in dimension 1. Some progress toward
extending the range of γ in (3) was made in [4], [17], and [22], where the authors
assumed that the function has vanishing moments up to certain order.

Another approach, which is related to both Problems 1 and 2, is due to Hardy,
Littlewood, and, later, Boas. The well-known Hardy–Littlewood theorem (see
[23, Ch.IV]) states that if 1 < p < ∞ and f is an even non-increasing function
which vanishes at infinity, then

C1

(∫
R
|f̂(x)|p dx

)1/p

≤
(∫

R+

|f(t)|p tp−2 dt

)1/p

≤ C2

(∫
R
|f̂(x)|p dx

)1/p

.(4)

Boas conjectured in [7] that the weighted version of (4) should also be true:
under the same conditions on f and p,

|x|−γ|f̂(x)| ∈ Lp(R) if and only if t1+γ−2/pf(t) ∈ Lp(R+),(5)

provided −1/p′ = −1 + 1/p < γ < 1/p.
Relation (5) was proved in [18]. Thus, assuming a function to be monotone

allows one to extend the range of γ as well as to reverse inequality (2) for p = q.
In [12], Boas-type results were obtained for the cosine and sine Fourier trans-

forms, separately. To describe it briefly, we denote

f̂c(x) =

∫ ∞
0

f(t) cosxt dt and f̂s(x) =

∫ ∞
0

f(t) sinxt dt.

We call a function admissible if it is locally of bounded variation on (0,∞) and
vanishes at infinity. For any admissible non-negative function f satisfying
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∫ 2t

t

|df(u)| ≤ C

∫ ct

t/c

u−1|f(u)| du(6)

for some c > 1, relation (5) holds for f and f̂c provided −1/p′ < γ < 1/p, while

for f and f̂s provided −1/p′ < γ < 1/p+ 1 (note the larger range).
In the higher-dimensional setting, the situation is expectedly more complex.

For radial functions f(x) = f0(|x|), x ∈ Rn, the Fourier transform is also ra-

dial, i.e., f̂(x) = F0(|x|). One can then apply the one-dimensional results. For
example, in R3 the Fourier transform is given by

f̂(x) = 4π|x|−1

∫ ∞
0

tf0(t) sin |x|t dt.

So, applying the result for the sine transform f̂s to the function tf0(t), we obtain

|x|−γ f̂(x) ∈ Lp(R3) if and only if t3+γ−4/pf0(t) ∈ Lp(0,∞),(7)

provided −2 + 3/p < γ < 3/p. Note that it is enough to assume that f0 itself
satisfies (6), since this implies the same for tf0(t).

For n 6= 3, we can also apply (5) using fractional integrals. If f0 is such that∫ ∞
0

tn−1(1 + t)(1−n)/2|f0(t)| dt <∞,(8)

one has the following Leray’s formula (see, e.g., Lemma 25.1′ in [19]):

f̂(x) = 2π(n−1)/2

∫ ∞
0

I(t) cos |x|t dt,(9)

where the fractional integral I is given by

I(t) =
2

Γ
(
n−1

2

) ∫ ∞
t

sf0(s)(s2 − t2)(n−3)/2ds.

Then, the one-dimensional Boas’ relation (5) implies that if f0 ≥ 0 satisfies (8),
then

|x|−γ f̂(x) ∈ Lp(Rn) if and only if t1+γ−(n+1)/pI(t) ∈ Lp(0,∞),

provided −1+n/p < γ < n/p. However, the condition on I is difficult to verify
and so it is desirable to obtain more direct Boas-type conditions. This is the
main goal of the present paper.

Definition. We call an admissible function f0 general monotone, written GM,
if for any t > 0 ∫ ∞

t

|df0(u)| ≤ C

∫ ∞
t/c

|f0(u)| du
u

(10)

for some c > 1.
In the context of our results, we always deal with functions satisfying
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1
|f0(u)| du/u < ∞. It is clear that any such function being monotone, or

satisfying (6), is general monotone. However, this class also contains functions
with much more complex structure (see, e.g., [13]-[14]).

It is natural in our study that f0 ∈ GM satisfies a less restrictive condition
than (8):

(11)

∫ 1

0

tn−1|f0(t)| dt+

∫ ∞
1

t(n−1)/2 |df0(t)| <∞.

Let us present the main result of this paper with power weights.

Theorem 1. Let 1 ≤ p < ∞ and n ≥ 1. Then, for any radial function f(x) =
f0(|x|), x ∈ Rn, such that f0 ≥ 0, f0 ∈ GM , and satisfying (11),∥∥∥|x|−γ f̂(x)

∥∥∥
Lp(Rn)

�
∥∥∥tβf0(t)

∥∥∥
Lp(0,∞)

(12)

if and only if

β = γ + n− n+ 1

p
and − n+ 1

2
+
n

p
< γ <

n

p
.

We immediately have the following generalization of Hardy–Littlewood’s the-
orem (4).

Corollary 1. Let 1 < p < ∞ and n ≥ 1. Then, for any radial function f(x) =
f0(|x|), x ∈ Rn, such that f0 ≥ 0, f0 ∈ GM , and satisfying (11),

C1

(∫
Rn
|f̂(x)|p dx

)1/p

≤
(∫

Rn
|f(t)|p tn(p−2) dt

)1/p

≤ C2

(∫
Rn
|f̂(x)|p dx

)1/p

.

if and only if
2n

n+ 1
< p <∞;

and

C1

(∫
Rn
|f̂(x)|p |x|n(p−2) dx

)1/p

≤
(∫

Rn
|f(t)|p dt

)1/p

≤C2

(∫
Rn
|f̂(x)|p |x|n(p−2) dx

)1/p
if and only if

1 < p <
2n

n− 1
.

The paper is organized as follows. Section 2 provides some useful facts about
the Fourier transform of a radial function. In Sections 3 and 4, we prove auxiliary
upper and lower estimates for the Fourier transform; these estimates are used in
the next sections to obtain (Lp, Lq) Fourier inequalities with general weights and
partial cases for power weights.
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Concerning Problem 1, we observe that the upper estimate of f̂ in Theorem 3
is Pitt’s inequality, which holds in the case of general monotone functions only

when
n

q
− n+ 1

2
< γ <

n

p
. Since in any case

n

q
− n+ 1

2
< max

{
0, n

(1

p
+

1

q
− 1
)}

,

we extend the range of γ given by (3). Theorem 1 exhibits a solution of Problem 2.
Note that for n = 1 and n = 3 Theorem 1 gives (5) and (7), correspondingly.

The notation “. ” and “& ” means “≤ C ” and “≥ C ”, respectively (with
C independent of essential quantities), while “� ” stands for “. ” and “& ” to
hold simultaneously.

2. The Fourier transform of radial functions

The facts we are going to make use of can be found in [6, 19, 21]. For n ≥ 1,
x ∈ Rn, let f(x) = f0(|x|) be a radial function. Then

(13)

∫
Rn
f(x) dx = |Sn−1|

∫ ∞
0

f0(t)tn−1 dt,

where |Sn−1| = 2πn/2/Γ(n/2) is the area of the unit sphere Sn−1 = {x ∈ Rn :
|x| = 1}.

The Fourier transform (1) of the radial function f is also radial and is given
via the Hankel–Fourier transform [21] as

(14) f̂(y) = F0(|y|) = |Sn−1|
∫ ∞

0

f0(t)jα(|y|t)tn−1 dt.

Here jα(z) is the normed Bessel function

(15) jα(z) = Γ(α + 1)
(z

2

)−α
Jα(z) =

∞∏
k=1

(
1− z2

ρ2
α,k

)
,

where Jα(z) is the classical Bessel function of first kind and order α, and
0 < ρα,1 < ρα,2 < . . . are the positive zeros of Jα(z). We denote

α :=
n

2
− 1 ≥ −1

2
.

Let us give several useful properties of the function jα(z), α ≥ −1/2, which
follow from the known properties of Jα(z) (see, e.g., [6, Ch.VII]): j−1/2(z) = cos z,
j1/2(z) = sin z

z
;

(16) |jα(z)| ≤ jα(0) = 1, z ≥ 0;

(17)
d

dz

(
z2α+2jα+1(z)

)
= (2α + 2)z2α+1jα(z);
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(18)

jα(z) =
2αΓ(α + 1)(2/π)1/2

zα+1/2
cos

(
z − π(α + 1/2)

2

)
+O(z−α−3/2), z →∞;

(19) |jα(z)| ≤ Mα

zα+1/2
, z > 0;

(20) ρα,k = πk +O(1/k), k →∞;

the zeros of the Bessel function are separated:

(21) 0 < ρα,1 < ρα+1,1 < ρα,2 < ρα+1,2 < ρα,3 < . . . .

It follows from (17) and (21) that the function z2α+2jα+1(z) increases when
z ∈ [0, ρα,1] and decreases when z ∈ [ρα,1, ρα+1,1]. The function jα+1(z) decreases
on the interval [0, ρα+1,1]. This yields the estimate

(22) z2α+2j2
α+1(z) ≥ mb > 0, 1/b ≤ z ≤ b, 1 < b = bα < ρα+1,1.

In what follows we understand integral (14) as improper:

(23) F0(s) = |Sn−1| lim
a→0
A→∞

∫ A

a

f0(t)jα(st)tn−1 dt, s = |y| > 0.

Note that for admissible f0, (16) implies∣∣∣∣∫ A

a

f0(t)jα(st)tn−1 dt

∣∣∣∣ ≤ ∫ A

a

|f0(t)|tn−1 dt <∞.

Further, for a radial function f(x) = f0(|x|), by properties (16) and (19), the
integral in (14) converges uniformly for s > 0 in improper sense to the continuous
function F0(s), provided (8) holds (see [19]). In Lemma 1 below, we prove this
fact for F0(s) via a pointwise estimate of F0. Note that for n ≥ 2 condition (11),
as well as condition (8), is less restrictive than f ∈ L1(Rn).

3. Estimates from above for the Fourier transforms

Let f(x) = f0(|x|) with f0 admissible and satisfying (11), that is,∫ 1

0
tn−1|f0(t)| dt+

∫∞
1
t(n−1)/2 |df0(t)| <∞. We observe that (11) implies for t > 1

t(n−1)/2|f0(t)| ≤ t(n−1)/2

∫ ∞
t

|df0(s)| ≤
∫ ∞
t

s(n−1)/2|df0(s)|.

Therefore

(24) t(n−1)/2f0(t)→ 0 as t→∞.
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Lemma 1. Given f0 as above, for s > 0 the Fourier transform F0(s) is continu-
ous, and satisfies

|F0(s)| .
∫ 1/s

0

tn−1|f0(t)| dt+ s−(n+1)/2

∫ ∞
1/s

t(n−1)/2 |df0(t)|.

Proof. Let for s > 0

(25) I =

∫ ∞
0

f0(t)jα(st)tn−1 dt =
F0(s)

|Sn−1|
.

Let ρ > 1 be a zero of the Bessel function Jα+1(·). Then, by (16),
(26)

I ≤
∫ 1/s

0

|f0(t)| tn−1 dt+

∫ ρ/s

1/s

|f0(t)| tn−1 dt+
∣∣∣ ∫ ∞

ρ/s

f0(t)jα(st)tn−1 dt
∣∣∣ = I1+I2+I3.

Estimating I2 we obtain

I2 .
∫ ρ/s

1/s

tn−1
(∫ 1/s

t

|df0(u)|+
∫ ∞

1/s

|df0(u)|
)
dt

.
∫ ρ/s

1/s

un|df0(u)|+ s−n
∫ ∞

1/s

|df0(u)| . s−(n+1)/2

∫ ∞
1/s

t(n−1)/2 |df0(t)|.(27)

It follows from (17) that

(28)
d

dt
(tnjα+1(st)) = ntn−1jα(st).

Integrating by parts, we obtain

I3 =
1

n

∫ ∞
ρ/s

f0(t) d(tnjα+1(st)) =
1

n
f0(t)tnjα+1(st)

∣∣∣∞
ρ/s
− 1

n

∫ ∞
ρ/s

tnjα+1(st) df0(t).

Then (19) and (24) yield

|f0(t)tnjα+1(st)| . |f0(t)|tn(st)−(n+1)/2 . |f0(t)|t(n−1)/2 → 0 as t→∞,

and hence

(29) I3 .
∫ ∞
ρ/s

tn(st)−(n+1)/2 |df0(t)| . s−(n+1)/2

∫ ∞
1/s

t(n−1)/2 |df0(t)|.

Combining (27) and (29), we finish the proof of the lemma. �

We will also use similar estimates of the Fourier transform in terms of the
following functions:

Φ∗(t) =

∫ 2t

t

|df0(u)|, Φ(t) =

∫ ∞
t

|df0(u)|, Ψ(t) =

∫ ∞
t

s(n−1)/2|df0(s)|.

These functions are continuous for t > 0, and Φ∗(t) ≤ Φ(t).
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Corollary 2. The estimate holds for s > 0

|F0(s)| .
∫ 1/s

0

tn−1Φ∗(t) dt+ s−(n+1)/2

∫ ∞
1/s

t(n−3)/2Φ∗(t) dt

.
∫ 1/s

0

tn−1Φ(t) dt+ s−(n+1)/2

∫ ∞
1/s

t(n−3)/2Φ(t) dt.

Proof. Similar to (27), we first get

(30)

∫ 1/s

0

tn−1|f0(t)| dt .
∫ 1/s

0

tn |df0(t)|+ s−(n+1)/2

∫ ∞
1/s

t(n−1)/2 |df0(t)|.

Then the required estimates follows from Lemma 1 and inequalities

(31) ln 2

∫ B

0

|ψ(u)| du ≤
∫ B

0

t−1

∫ 2t

t

|ψ(u)| du dt,

(32) ln 2

∫ ∞
2A

|ψ(u)| du ≤
∫ ∞
A

t−1

∫ 2t

t

|ψ(u)| du dt,

valid for any integrable ψ. �

Corollary 3. The estimate holds for s > 0

(33) |F0(s)| .
∫ 1/s

0

t(n−1)/2Ψ(t) dt.

Proof. Indeed, by Lemma 1 and (30),

|F0(s)| .
∫ 1/s

0

tn |df0(t)|+ s−(n+1)/2

∫ ∞
1/s

t(n−1)/2 |df0(t)| = I1 + I2.

We have

I2 = s−(n+1)/2Ψ(1/s) � Ψ(1/s)

∫ 1/s

1/(2s)

t(n−1)/2 dt

≤
∫ 1/s

1/(2s)

t(n−1)/2Ψ(t) dt ≤
∫ 1/s

0

t(n−1)/2Ψ(t) dt.

Using (31), we get

I1 .
∫ 1/s

0

tn−1

(∫ 2t

t

|df0(s)|
)
dt �

∫ 1/s

0

t(n−1)/2

(∫ 2t

t

s(n−1)/2 |df0(s)|
)
dt

≤
∫ 1/s

0

t(n−1)/2Ψ(t) dt.

The obtained bounds for I1 and I2 give (33). �

Note that in this section we did not assume the positivity of f0 so far. This
will come into play in the next section.
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4. Estimates from below for the Fourier transforms

Let us consider a radial function f(x) = f0(|x|) such that f0 is admissible and
f0(t) ≥ 0 when t > 0. We assume that f0 satisfies condition (11). Then, by
Lemma 1, the integral in (23) converges uniformly on any compact set away from
zero and F0(s) is continuous for s > 0. Suppose also that

(34)

∫ 1

0

|F0(s)|s(n−1)/2 ds <∞.

In particular, this implies that f̂ is integrable in a neighborhood of zero. We will
need the following

Lemma 2. For u > 0 and 1 < b < ρα+1,1, the inequality holds

u(1−n)/2

∫ 2/u

0

s(n−1)/2|F0(s)| ds &
∫ bu

u/b

f0(t)

t
dt.

Proof. We denote by Bn = {x ∈ Rn : |x| ≤ 1} the unit ball, |Bn| = |Sn−1|/n is
the volume of this ball.

Let us consider the following well-known compactly supported function

k(y) = |Bn|−1(χ ∗ χ)(y),

where χ is the indicator function of the unit ball Bn. For n = 1, it is the Fejér
kernel (1− |y|/2)+.

The kernel k is radial k(y) = k0(|y|) and possesses the following properties:

(35) 0 ≤ k0(s) ≤ k0(0) = 1, 0 ≤ s ≤ 2; k0(s) = 0, s ≥ 2;

and the Fourier transform of k is

k̂(x) = K0(|x|) = |Bn|−1(χ̂(x))2 ≥ 0.

By (28), for t = |x|

(36) χ̂(x) = |Sn−1|
∫ 1

0

jα(ts)sn−1 ds =
|Sn−1|
n

jα+1(t) = |Bn|jα+1(t).

Therefore,

(37) K0(t) = |Sn−1|
∫ 2

0

k0(s)jα(ts)sn−1 ds = |Bn|j2
α+1(t).

Let ε be small enough. Denoting

Jε :=

∫ 2/u

ε/u

F0(s)k0(us)sn−1 ds = u−n
∫ 2

ε

F0(s/u)k0(s)sn−1 ds.

We have, by (34) and (35),

(38) |Jε| ≤
∫ 2/u

0

|F0(s)|sn−1 ds . u(1−n)/2

∫ 2/u

0

s(n−1)/2|F0(s)| ds.
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The uniform convergence of integral (23) implies

Jε = u−n
∫ 2

ε

(
|Sn−1|

∫ ∞
0

f0(t)jα(st/u)tn−1 dt

)
k0(s)sn−1 ds

= u−n
∫ ∞

0

f0(t)

(
|Sn−1|

∫ 2

ε

k0(s)jα(st/u)sn−1 ds

)
tn−1 dt.

Using (37), we get

|Sn−1|
∫ 2

ε

k0(s)jα(st/u)sn−1 ds = K0(t/u)− λε(t),

where

λε(t) = |Sn−1|
∫ ε

0

k0(s)jα(st/u)sn−1 ds.

Taking into account (22) and (37), we have (t/u)nK0(t/u) & 1 for u/b ≤ t ≤ bu.
Therefore,

(39) Jε &
∫ bu

u/b

f0(t)

t
dt− J ′ε, J ′ε = u−n

∫ ∞
0

f0(t)λε(t)t
n−1 dt.

We are going to prove that J ′ε → 0 as ε→ 0. Take A > 1. It follows from (35)
and (16) that

(40) |λε(t)| ≤ |Sn−1|
∫ ε

0

sn−1 ds . εn,

and hence

(41)

∣∣∣∣u−n ∫ A

0

f0(t)λε(t)t
n−1 dt

∣∣∣∣ . εn
∫ A

0

|f0(t)|tn−1 dt.

Let t ≥ A. Define

Λε(t) =

∫ t

0

λε(v)vn−1 dv = |Sn−1|
∫ ε

0

k0(s)sn−1

(∫ t

0

jα(sv/u)vn−1 dv

)
ds.

Making use of (28), we obtain

(42) Λε(t) =
|Sn−1|tn

n

∫ ε

0

k0(s)jα+1(st/u)sn−1 ds.

For n = 1,

|Λε(t)|=
∣∣∣∣2t∫ ε

0

(1− s/2)
sin(st/u)

st/u
ds

∣∣∣∣=
∣∣∣∣∣2u
∫ εt/u

0

sin s

s
ds− u2(1− cos(εt/u))

t

∣∣∣∣∣ .
It is well-known that

∣∣∣∣∫ v

0

sin s

s
ds

∣∣∣∣ ≤ ∫ π

0

sin s

s
ds for v > 0, and |Λε(t)| . 1 .

t(n−1)/2.
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Let now n ≥ 2. We have

Λε(t) =
|Sn−1|tn

n

(∫ ε/t

0

+

∫ ε

ε/t

)
k0(s)jα+1(st/u)sn−1 ds.

As above∣∣∣∣∣ |Sn−1|tn

n

∫ ε/t

0

k0(s)jα+1(st/u)sn−1 ds

∣∣∣∣∣ . tn
∫ ε/t

0

sn−1 ds . εn . 1 . t(n−1)/2.

Applying (19), we get∣∣∣∣ |Sn−1|tn

n

∫ ε

ε/t

k0(s)jα+1(st/u)sn−1 ds

∣∣∣∣ . tn
∫ ε

ε/t

|jα+1(st/u)|sn−1 ds

. tn(t/u)−(n+1)/2

∫ ε

ε/t

s(n−1)/2−1 ds . t(n−1)/2ε(n−1)/2 . t(n−1)/2.

Therefore, |Λε(t)| . t(n−1)/2 for t ≥ A and n ≥ 1.
Integrating by parts yields∫ ∞

A

f0(t)λε(t)t
n−1 dt =

∫ ∞
A

f0(t) dΛε(t) = f0(t)Λε(t)
∣∣∞
A
−
∫ ∞
A

Λε(t) df0(t).

It follows from (24) and |Λε(t)| . t(n−1)/2 that f0(t)Λε(t) → 0 as t → ∞. Since
(40) and (42) imply |Λε(A)| . εnAn,

(43)

∣∣∣∣∫ ∞
A

f0(t)λε(t)t
n−1 dt

∣∣∣∣ ≤ εn|f0(A)|An +

∫ ∞
A

t(n−1)/2 |df0(t)|.

Combining (41) and (43), we get

|J ′ε| . εn
(∫ A

0

|f0(t)|tn−1 dt+ |f0(A)|An
)

+

∫ ∞
A

t(n−1)/2 |df0(t)|.

Letting first ε→ 0 and then A→∞, we obtain the claimed J ′ε → 0. Using this,
(38), and (39), we arrive at the assertion of the lemma. �

5. Lp–Lq Fourier inequalities with general weights

For any weights u,v : Rn → R+, consider their radial parts

U(t) =

∫
Sn−1

u(tξ) dξ, V (t) =

∫
Sn−1

v(tξ) dξ.

We set x′ = x/|x|, v(x) = v(x′/|x|).

Theorem 2. Let 1 ≤ p, q <∞ and n ∈ N. Let f be radial on Rn such that f0 is
a non-negative general monotone function on R+ satisfying (11).
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A
)

If p ≤ q, and V , U satisfy

sup
r>0

(∫ ∞
r

t−n−1V (ct) dt

)1/q (∫ r

0

[
U(t)t(n−1)(1−p)

]1/(1−p)
dt

)1/p′

<∞;(44)

sup
r>0

(∫ r

0

t(1−
p
2

)(n−1)U(t) dt

)1/p(∫ ∞
r

[
U(t)t(1−

p
2

)(n−1)+p
]1/(1−p)

dt

)1/p′

<∞,

(45)

then

‖f̂‖Lqv ≡
(∫

Rn
|f̂(x)|qv(x) dx

)1/q

.

(∫
Rn
|f(x)|pu(x) dx

)1/p

≡ ‖f‖Lpu .(
B
)

If q ≤ p, and U , V satisfy

sup
r>0

(∫ r

0

tn−1U(2bct) dt

)1/p(∫ ∞
r

[
V (t)t(n+1)(q−1)

]1/(1−q)
dt

)1/q′

<∞;(46)

sup
r>0

(∫ r

0

t(n+1)( q
2
−1)V (t) dt

)1/q (∫ ∞
r

[
V (t)t(n+1)( q

2
−1)+q

]1/(1−q)
dt

)1/q′

<∞,

(47)

then
‖f‖Lpu . ‖f̂‖Lqv .

Proof. We will use the (p, q) version of Hardy’s inequalities ([8]) with general
weights u, v ≥ 0: for 1 ≤ α ≤ β <∞,[∫ ∞

0

u(t)

(∫ t

0

ψ(s) ds

)β
dt

]1/β

≤ C

[∫ ∞
0

v(t)ψ(t)α dt

]1/α

(48)

holds for every ψ ≥ 0 if and only if

sup
r>0

(∫ ∞
r

u(t) dt

)1/β (∫ r

0

v(t)1−α′ dt

)1/α′

<∞,

and [∫ ∞
0

u(t)

(∫ ∞
t

ψ(s) ds

)β
dt

]1/β

≤ C

[∫ ∞
0

v(t)ψ(t)α dt

]1/α

(49)

if and only if

sup
r>0

(∫ r

0

u(t) dt

)1/β (∫ ∞
r

v(t)1−α′ dt

)1/α′

<∞.

Here we consider the usual modification of the integral
[ ∫

v(t)θ dt
]1/θ

when θ=∞.
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Remark 1. In particular, (48) holds with u(t) = tε−1 and v(t) = tδ−1 if and only
if ε < 0 and δ = εα/β + α.

To prove (A), we use the pointwise Fourier transform inequality (33) from
Corollary 3. First, we have to check the accuracy of (11). By Hölder’s inequality,∫ 1

0

tn−1|f0(t)| dt ≤
(∫ 1

0

tn−1|f0(t)|pU(t)dt

)1/p(∫ 1

0

[
U(t)t(n−1)(1−p)

]1/(1−p)
dt

)1/p′

,

and the right-hand side is finite since f ∈ Lpu and the last integral in (44) is finite.
Further, it follows from the definition of GM and simple calculations that∫ ∞

1

t
n−1

2 |df0(t)| .
∫ ∞

1/c

t
n−3

2 |f0(t)| dt.

Therefore,∫ ∞
1/c

t
n−3

2 |f0(t)| dt ≤
(∫ ∞

1/c

tn−1|f0(t)|pU(t) dt

)1/p

(∫ ∞
1/c

t−
n−1
p

p
p−1 t

n−3
2

p
p−1U(t)1/(1−p) dt

)1/p′

.

The last integral is finite due to (45).
Now, (32) and f0 ∈ GM yield

Ψ(t) =

∫ ∞
t

s(n−1)/2|df0(s)| .
∫ ∞
t

y(n−1)/2−1

∫ 2y

y

|df0(s)|dy

.
∫ ∞
t

y(n−1)/2−1

∫ ∞
y/c

|f0(s)|ds
s
dy

.
∫ ∞
t/c

s(n−1)/2−1|f0(s)|ds.

Using this and Corollary 3, we have(∫
Rn

v(x′/|x|)|f̂(x)|qdx
)1/q

.

(∫ ∞
0

V (1/t)|F0(t)|qtn−1 dt

)1/q

.

(∫ ∞
0

V (ct)

(∫ t

0

u(n−1)/2

(∫ ∞
u

s(n−1)/2−1|f0(s)| ds
)
du

)q
t−n−1dt

)1/q

.

Applying now (48) to the first two integrals on the right, with β = q, α = p,
u(t) = t−n−1V (ct), and v(t) = U(t)tn−1−p(n−1), we obtain(∫

Rn
v(x′/|x|)|f̂(x)|qdx

)1/q

.

(∫ ∞
0

(∫ ∞
u

s(n−1)/2−1|f0(s)| ds
)p
U(t)tn−1−p(n−1)/2dt

)1/p

,

provided (44) holds.
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Making then use of (49), with α = β = p, u(t) = U(t)tn−1−p(n−1)/2, and
v(t) = U(t)tn−1−p(n−1)/2+p, we get(∫

Rn
v(x′/|x|)|f̂(x)|qdx

)1/q

.

(∫ ∞
0

U(t)tn−1|f0(t)|pdt
)1/p

. ‖f‖Lpu ,

provided (45) holds.
To prove (B), Lemma 2 is needed. For this we have to check (34). Hölder’s

inequality and simple substitution yield∫ r

0

|F0(t)|t
n−1

2 dt . ‖f̂‖Lqv

(∫ ∞
1/r

[
V (t)t(n+1)( q

2
−1)+q

]1/(1−q)
dt

)1/q′

.

The finiteness of the last integral is ensured by (47).
We then note that for any f0 ∈ GM there holds

|f0(x)| ≤
∫ ∞
x

|df0(t)| .
∫ ∞
x/c

|f0(t)| dt
t
.(50)

Secondly, by (32) and Lemma 2, we have

|f0(x)| ≤
∫ ∞
x

|df0(t)| .
∫ ∞
x/bc

t−1
(∫ bt

t/b

f0(s)

s
ds
)
dt

.
∫ ∞
x/bc

t(1−n)/2−1
(∫ 2/t

0

z(n−1)/2|F0(z)|dz
)
dt

.
∫ 2bc/x

0

t(n−1)/2−1
(∫ t

0

z(n−1)/2|F0(z)|dz
)
dt.(51)

Applying now (51), we obtain

‖f‖Lpu .
(∫ ∞

0

U(t)tn−1|f0(t)|pdt
)1/p

.

(∫ ∞
0

U(s)sn−1

(∫ ∞
s

t−(n−1)/2−1

(∫ ∞
2bct

z−(n−1)/2−2|F0(1/z)| dz
)
dt

)p
ds

)1/p

.

As above, we then use Hardy’s inequality (49) twice to obtain

‖f‖Lpu .
(∫

Rn
v(x′/|x|)|f̂(x)|qdx

)1/q

= ‖f̂‖Lqv .

Under appropriate choice of the weights, the necessary and sufficient condition
reduces to (46) and (47), respectively. The proof is complete. �
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6. Applications. Pitt-Boas type results with power weights

For v(x) = |x|−qγ and u(x) = |x|γp−np/q+np−n, Theorem 2 implies the following
result.

Theorem 3. Let 1 ≤ p, q <∞ and n ∈ N. Let f be radial on Rn such that f0 is
a general monotone function on R+.(

A
)

If p ≤ q and

(52)
n

q
− n+ 1

2
< γ <

n

q
,

then

tn+γ−n/q−1/pf0(t) ∈ Lp(0,∞) implies |x|−γ f̂(x) ∈ Lq(Rn);(
B
)

Let a non-negative function f0 satisfy (11). If q ≤ p and

(53)
n

q
− n+ 1

2
< γ,

then

|x|−γ f̂(x) ∈ Lq(Rn) implies tn+γ−n/q−1/pf0(t) ∈ Lp(0,∞).

Note that the “if” part of Theorem 1 follows from Theorem 3 by taking p = q.
Let us now discuss the sharpness of conditions on γ. We rewrite part (A) of

Theorem 3 in the following way.

Theorem 3′. Let 1 ≤ p ≤ q <∞ and n ∈ N. Let f be radial on Rn such that f0

is a general monotone function on R+. Then∥∥∥|x|−γ f̂(x)
∥∥∥
Lq(Rn)

.
∥∥∥tβf0(t)

∥∥∥
Lp(0,∞)

(54)

if and only if

(55) β = γ + n− n

q
− 1

p
and

n

q
− n+ 1

2
< γ <

n

q
.

To prove Theorem 3′, we can restrict ourselves to the “only if” direction. This
also captures the “only if” part in Theorem 1 when p = q.

Proof. Consider f(x) = χ(x), then f0(t) = χ[0,1](t) ∈ GM . Then we have

‖tn+γ−n/q−1/pf0(t)‖Lp(0,∞) =

(∫ 1

0

tpn+pγ−pn/q−1 dt

)1/p

.

This integral converges if pn+ pγ − pn/q > 0, or equivalently γ > n
q
− n.
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Let us figure out when |y|−γχ̂(y) ∈ Lq(Rn). By (36), the Fourier transform of
f is χ̂(y) = |Bn|jα+1(|y|) = F0(s). Therefore, we obtain∥∥∥|y|−γχ̂(y)

∥∥∥
Lq(Rn)

�
(∫ ∞

0

(
s−γ|F0(s)|

)q
sn−1 ds

)1/q

�
(∫ ∞

0

sn−qγ−1|jα+1(s)|q ds
)1/q

.

(56)

There holds jα+1(s) � 1 in a neighborhood of zero, hence the integral in (56)
converges if n− qγ > 0, that is, when γ < n

q
. The upper bound is established.

There holds for s large, jα+1(s) . s−(n+1)/2, therefore the integral in (56)

converges if
n

q
− n+ 1

2
< γ. We will now show that if this condition does not

hold, then the integral in (56) diverges. It follows from (20) that for an integer
number k0 large enough

ρα+1,k � k, ρα+1,k+1 − ρα+1,k � 1, k ≥ k0,

and there is a small ε > 0, independent of k, such that

|jα+1(s)| & s−(n+1)/2, s ∈ [ρα+1,k + ε, ρα+1,k+1 − ε], k ≥ k0.

Therefore,∫ ∞
0

sn−qγ−1|jα+1(s)|q ds &
∞∑

k=k0

∫ ρα+1,k+1−ε

ρα+1,k+ε

sn−qγ−1s−q(n+1)/2 ds

&
∞∑

k=k0

(ρα+1,k+1 − ε)n−qγ−1−q(n+1)/2

&
∞∑

k=k0

kn−qγ−1−q(n+1)/2.

The last series diverges provided γ ≤ n

q
− n+ 1

2
.

Let us verify that β and γ should be related by β = γ + n − n/q − 1/p. Let
u > 0 and g(x) = f0(|x|/u) = χ(x/u). Then for t = |y| with 0 < t < 1/u

ĝ(y) = G0(|y|) = unF0(u|y|) = |Bn|unjα+1(ut) � un.

We then have

‖tβg0(t)‖Lp(0,∞) �
(∫ u

0

tβp+1 dt

t

)1/p

� uβ+1/p,
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and ∥∥|x|−γ ĝ(x)
∥∥
Lq(Rn)

&

(∫ u

0

t−γq+n|G0(t)|q dt
t

)1/q

& un
(∫ u

0

t−γq+n
dt

t

)1/q

� uγ+n−n/q.

These yield uβ+1/p & uγ+n−n/q for any u > 0, that is, β = γ + n− n

q
− 1

p
. �

Acknowledgements. The authors gratefully acknowledge the support of
the Centre de Recerca Matemàtica in Barcelona and the Mathematisches
Forschungsinstitut Oberwolfach. This research was partially supported by the
RFFI 09-01-00175, NSH-3252.2010.1, MTM 2008-05561-C02-02, and 2009 SGR
1303.

References

[1] W. Beckner, Pitt’s inequality and the uncertainty principle, Proc. Amer. Math. Soc. 123
(1995), 1897––1905.

[2] W. Beckner, Pitt’s inequality with sharp convolution estimates, Proc. Amer. Math. Soc.
136(5) (2008), 1871–1885.

[3] J. J. Benedetto, H. P. Heinig, Weighted Fourier Inequalities: New Proofs and Generaliza-
tions, J. Fourier Anal. Appl. 9 (2003), 1–37.

[4] J. J. Benedetto, H. P. Heinig, Fourier transform inequalities with measure weights, Adv.
Math. 96(2) (1992), 194–225.

[5] J. J. Benedetto, J. D. Lakey, The definition of the Fourier transform for weighted inequal-
ities, J. Funct. Anal. 120(2) (1994), 403–439.
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[22] J.-O. Strömberg, R.L. Wheeden, Weighted norm estimates for the Fourier transform with

a pair of weights, Trans. Amer. Math. Soc. 318 (1990), 355–372.
[23] E. C. Titchmarsh, Introduction to the theory of Fourier integrals, Oxford, 1937.

D. Gorbachev
Tula State University
Department of Mechanics and Mathematics
300600 Tula, Russia

E-mail address: dvgmail@mail.ru

E. Liflyand
Department of Mathematics
Bar-Ilan University
52900 Ramat-Gan, Israel

E-mail address: liflyand@math.biu.ac.il

S. Tikhonov
ICREA and Centre de Recerca Matemàtica
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