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Abstract. The main goal of this article is to give an explicit rigid analytic
uniformization of the maximal toric quotient of the Jacobian of a Shimura
curve over Q at a prime dividing exactly the level. This result can be viewed
as complementary to the classical theorem of Čerednik and Drinfeld which
provides rigid analytic uniformizations at primes dividing the discriminant. As
a corollary, we offer a proof of a conjecture formulated by M. Greenberg in his
paper on Stark–Heegner points and quaternionic Shimura curves, thus making
Greenberg’s construction of local points on elliptic curves over Q unconditional.

1. Introduction

In an attempt to investigate analogues in the real setting of the theory of com-
plex multiplication, Darmon introduced in his fundamental paper [8] the notion
of Stark–Heegner points on elliptic curves over Q. These points are expected to
be defined over abelian extensions of real quadratic fields K (see [4] for partial
results in this direction) and to satisfy analogous properties to those enjoyed by
classical Heegner points rational over abelian extensions of imaginary quadratic
fields.

Darmon’s Stark–Heegner points were later lifted from elliptic curves to certain
modular Jacobians by Dasgupta in [10]. More precisely, let M be a positive
integer and let p be a prime number not dividing M . By working with modular
symbols for the congruence subgroup Γ0(pM), Dasgupta defines a certain torus
T over Qp and a lattice L ⊂ T , and he proves that the quotient T/L is isogenous
to the maximal toric quotient J0(pM)p-new of the Jacobian of the modular curve
X0(pM). This statement, which can be phrased as an equality of L-invariants,
turns out to be a strong form of the conjecture of Mazur–Tate–Teitelbaum [19],
now a theorem of Greenberg and Stevens [14]. The very construction of T/L
allows Dasgupta to introduce Stark–Heegner points on it, and these points map
to Darmon’s ones under modular parametrizations. As a by-product, an efficient
method for calculating the p-adic periods of J0(pM)p-new is also obtained (in
contrast with the less explicit approach of de Shalit in [11]).
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It is important to observe that both Darmon’s and Dasgupta’s strategies, mak-
ing extensive use of the theory of modular symbols, depend crucially on the
presence of cusps on classical modular curves, and this prevents their arguments
from extending in a straightforward way to the situation where modular curves
are replaced by more general Shimura curves. In more explicit terms, the above
methods apply only under the following Stark–Heegner hypothesis :

(1) p is inert in K and all the primes dividing M split in K.

When E is an elliptic curve over Q of conductor N = pM , condition (1) implies
that the sign σ(E/K) of the functional equation of the L-function attached to E
over K is −1; the existence of Darmon’s Stark–Heegner points is thus predicted
by the conjecture of Birch and Swinnerton-Dyer for E/K .

The starting point of our investigation is the recent article [12] of M. Greenberg,
in which the author proposes a program to generalize Darmon’s constructions to
totally real number fields and situations in which σ(E/K) = −1 but condition
(1) is not satisfied. To give an idea of Greenberg’s approach in the special case
where the base field is Q, assume that K is a real quadratic field such that the
conductor N of the elliptic curve E/Q admits a factorization N = pDM into
relatively prime integers, where D is the square-free product of an even number
of primes, the prime divisors of pD are inert in K and the prime divisors of M
split in K. Then σ(E/K) = −1 and Greenberg describes a p-adic construction
of Stark–Heegner points on E which are conjectured to be rational over ring
class fields of K and to satisfy a suitable Shimura reciprocity law, as in the
original work of Darmon. The key idea in [12] is to reinterpret Darmon’s theory
of modular symbols in terms of the cohomology of Shimura curves attached to
the quaternion algebra of discriminant D and, ultimately, of group cohomology.
Greenberg’s construction of Stark–Heegner points on E depends on the validity of
an unproved statement [12, Conjecture 2] which is the counterpart of Dasgupta’s
version [10, Theorem 3.3] of the theorem by Greenberg and Stevens; as a corollary
to the main theorems in this paper, we give a proof of [12, Conjecture 2] over Q,
thus making Greenberg’s results unconditional.

More generally, the chief goal of our article is to give an explicit rigid ana-
lytic uniformization of the maximal toric quotient of the Jacobian of a Shimura
curve associated with a non-split quaternion algebra at a prime dividing exactly
the level, in the spirit of [10]. This result can be viewed as complementary to
the classical theorem of Čerednik and Drinfeld (for a detailed exposition of which
we refer to [6]) that provides rigid analytic uniformizations at primes dividing
the discriminant of the quaternion algebra. As will be made clear in the rest
of the paper, our strategy is inspired by ideas in [10] and [12], to which we are
indebted, and introduces several new ingredients for attacking the uniformization
result; most remarkably, the explicit construction of a cocycle with values in a
space of measures on P1(Qp) and an analysis of the delicate properties of a lift of
it to a suitable bundle over P1(Qp), which are crucial for the proof of our main



UNIFORMIZATIONS OF JACOBIANS OF SHIMURA CURVES 3

theorem. Beyond its theoretical interest, the construction of this cocycle is sig-
nificant for a second reason: it is amenable to computations and – with notation
to be explained below – paves the way to the calculation of the period matrix of
JD0 (pM)p-new, as Dasgupta does in [10, Section 6] for modular Jacobians.

Finally, we would like to highlight one more feature of our work. Although we
devote no effort to this issue here, our results make it possible to define suitable
lifts of Greenberg’s Stark–Heegner points to Jacobians of Shimura curves, much
in the same vein as the constructions in [10] lift Darmon’s points to modular
Jacobians. In fact, one of the long-run motivations of this article is to extend
to broader contexts the results on the arithmetic of Stark–Heegner points, spe-
cial values of L-functions and modular abelian varieties that are described by
Bertolini, Darmon and Dasgupta in [5]. Details in this direction will appear in
future projects (see, e.g., [18]); we hope that the results in the present paper may
represent a first step towards a general and systematic study of special values of
L-functions and congruences between modular forms over real quadratic fields as
envisioned, for instance, in [3, Section 6] and [5].

Now let us describe the results of this paper more in detail; this will also give
us the occasion to introduce some basic objects that will be used throughout
our work. Let D > 1 be a square-free product of an even number of primes
and let M ≥ 1 be an integer coprime with D. Let B be the (unique, up to
isomorphism) indefinite quaternion algebra over Q of discriminant D and choose
an isomorphism of algebras

ι∞ : B ⊗Q R '−→ M2(R).

Let R(M) be a fixed Eichler order of level M in B and write ΓD0 (M) for the
group of norm 1 elements in R(M). Fix a prime p - MD and an Eichler order
R(pM) ⊂ R(M) of level pM in B, and define as above ΓD0 (pM) to be the group
of norm 1 elements in R(pM). Consider the compact Riemann surfaces

(2) XD
0 (M) := ΓD0 (M)\H, XD

0 (pM) := ΓD0 (pM)\H

where H is the complex upper half-plane and the subgroup of elements in B×

with positive norm acts on H by Möbius transformations via the embedding
B ↪→ B⊗Q R and the isomorphism ι∞. The curves in (2) are the Shimura curves
attached to B of level M and pM , respectively.

Let

π1, π2 : XD
0 (pM) −→ XD

0 (M),

ΓD0 (pM)z
π17−→ ΓD0 (M)z,

ΓD0 (pM)z
π27−→ ΓD0 (M)ωpz

be the two natural degeneracy maps; here ωp is an element in R(pM) of reduced
norm p that normalizes ΓD0 (pM). Denote by H the maximal torsion-free quotient
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of the cokernel of the map

π∗ := π∗1 ⊕ π∗2 : H1

(
XD

0 (M),Z
)2 −→ H1

(
XD

0 (pM),Z
)

induced by pull-back on homology. Let JD0 (pM) be the Jacobian variety of
XD

0 (pM) and let JD0 (pM)p-new be its p-new quotient, whose dimension will be
denoted by g; the abelian group H is free of rank 2g. Now consider the torus

T := Gm ⊗Z H

where Gm denotes the multiplicative group (viewed as a functor on commutative
Q-algebras). Following the strategy of Dasgupta in [10], we define a (full) lattice
L in T and study the quotient T/L. In order to do this, fix an isomorphism of
algebras

(3) ιp : B ⊗Q Qp
'−→ M2(Qp)

such that ιp
(
R(M)⊗Zp

)
is equal to M2(Zp) and ιp

(
R(pM)⊗Zp

)
is equal to the

subgroup of M2(Zp) consisting of upper triangular matrices modulo p. As done
in [8] when D = 1, we introduce the group

Γ :=
(
R(M)⊗ Z[1/p]

)×
1

ιp
↪−→ GL2(Qp),

which acts on Drinfeld’s p-adic half-plane Hp := Cp −Qp with dense orbits. We
will regard H and T as Γ-modules with trivial action.

In Sections 2 and 3 we review some well-known facts on Hecke algebras,
Shimura curves and L-invariants. In Sections 4, 5 and 6 we introduce an
explicit element in the cohomology group H1

(
Γ,Meas

(
P1(Qp), H

))
which de-

fines by cup product an integration map on the homology group H1(Γ,Div0Hp)
with values in T (Cp). We then consider the boundary homomorphism
H2(Γ,Z)→ H1(Γ,Div0Hp) induced by the degree map; the composition of these
two maps produces a further map H2(Γ,Z)→ T (Cp) whose image we denote by
L. As we will see, it turns out that L is a lattice of rank 2g in T (Qp) which is
preserved by the action of a suitable Hecke algebra. Finally, let Kp denote the
unramified quadratic extension of Qp.

The following is a precise formulation of the main result of this article, which
is proved in Section 7.

Theorem 1.1. The quotient T/L admits a Hecke-equivariant isogeny over Kp to
the rigid analytic space associated with the product of two copies of JD0 (pM)p-new.

We conclude this introduction by remarking that a proof of the conjecture
proposed by M. Greenberg in [12, Conjecture 2] and alluded to above is given in
§7.7.

Notation and conventions. If M and N are two abelian groups we write M ⊗N
for M ⊗Z N .
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If R is a ring and M is a left R-module we endow M with a structure of right
R-module by the formula m|r := r−1 ·m, where (r,m) 7→ r ·m is the structure
map of M as a left R-module.

If G is a group we denote by (F•, ∂•) the standard resolution of Z by left
Z[G]-modules and, in non-homogeneous notations, we write [g] = [g1| . . . |gr] for
the elements of a Z[G]-basis of Fr as described in [7, p. 18].

For any right Z[G]-module M we write, as usual, Br(G,M) ⊂ Zr(G,M) ⊂
Cr(G,M) for the modules of r-coboundaries, r-cocycles and r-cochains, respec-
tively, and Hr(G,M) := Zr(G,M)/Br(G,M) for the rth cohomology group of
G with values in M . We use a similar notation, with lower indices this time, for
homology.

We represent an element ofHr(G,M) by an r-cycle c=
∑

gmg⊗[g] in Zr(G,M).

Likewise, we represent an element of Hr(G,M) by a function f : Gr → M in
Zr(G,M) and denote sometimes the value f(g1, . . . , gr) by fg1,...,gr . Finally, we
adopt the description of boundary and coboundary maps given in [7, p. 59].

Acknowledgements. The second and third authors would like to thank the Centre
de Recerca Matemàtica (Bellaterra, Spain) for its warm hospitality in Autumn
2009, when part of this research was carried out.

2. Hecke operators on homology and cohomology

2.1. Review of the general theory. In this subsection we essentially follow
[1, §1.1]. Let G be a group; a Hecke pair (for G) consists of a subgroup G of G
and a subsemigroup S of G such that

• G ⊂ S;
• G and s−1Gs are commensurable for every s ∈ S.

Let now (G,S) be a Hecke pair and let M be a left Z[S]-module. Fix a double
coset GsG with s ∈ S and form the finite disjoint decomposition GsG =

∐
i siG.

Define the function ti : G → G by the equation g−1si = sj(i)t
−1
i (g). The Hecke

operator T (s) on the chain c =
∑

gmg⊗ [g] in Cr(G,M) is defined by the formula

T (s) · c :=
∑
i

s−1
i (mg)⊗

[
ti(g1)| . . . |ti(gr)

]
,

where g = [g1| . . . |gr] in non-homogeneous notation. Likewise, we define the
Hecke operator T (s) on the cochain f ∈ Cr(G,M) by the formula

T (s) · f(g1, . . . , gr) :=
∑
i

sif
(
ti(g1), . . . , ti(gr)

)
.

These operators induce operators, denoted in the same way, on Hr(G,M) and
Hr(G,M).

If M and N are left Z[G]-modules we may consider the cup product

[ , ] : H1(G,M)×H1(G,N) −→ H0(G,M ⊗N),
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which is defined as follows. Choose representatives c =
∑

gmg ⊗ [g] of c ∈
H1(G,M) and f of f ∈ H1(G,M); then [c,f ] is represented by

[c, f ] :=
∑
g

mg ⊗ f(g).

It is easy to check that

(4) [T (s) · c, f ] = [c, T (s) · f ],

for all s ∈ S, from which one gets the equality[
T (s) · c,f

]
=
[
c, T (s) · f

]
.

2.2. Hecke algebras attached to Eichler orders over Z. We apply the pre-
vious formal considerations to our arithmetic setting. Let B be the quaternion
algebra over Q of discriminant D ≥ 1; the requirement that D > 1 will be made
only from §4.2 on. Fix an integer N ≥ 1 prime to D and let R ⊂ B be an Eichler
order of level N ; set ΓR := R×. For every integer n ≥ 1 and every prime ` define

Γloc
0 (`n) :=

{(
a b
c d

)
∈ M2(Z`) | c ≡ 0 (mod `n)

}
.

If ` - N define SR,` to be the set of elements in R ⊗ Z` with non-zero norm. If
there exists an integer n` ≥ 1 such that `n`|N and `n`+1 - N fix an isomorphism
of algebras

ι` : B ⊗Q Q`
'−→ M2(Q`)

such that ι`(R ⊗ Z`) = Γloc
0 (`n`), and define SR,` to be the inverse image of the

semigroup consisting of matrices
(
a b
c d

)
∈ M2(Z`) with c ≡ 0 (mod `n`), a ∈ Z×`

and ad− bc 6= 0. Finally, set

SR := B× ∩
∏
`

SR,`,

where the product is taken over all prime numbers `. Then (ΓR, SR) is a Hecke
pair. Write nr : B → Q for the reduced norm; for every integer n ≥ 1 define

Tn :=
∑
α∈SR

nr(α)=n

T (α),

and for every integers n ≥ 1 prime to ND define

Tn,n := T (n).

If ` is a prime then we have T` = T (g0) for a certain g0 = g0(`) ∈ R; moreover,

ΓRg0ΓR =
∐
i

giΓR

for some gi = gi(`) ∈ R of reduced norm ` and i ∈ {0, . . . , `} if ` - N (respectively,
i ∈ {0, . . . , `− 1} if `|N). As customary, if `|N is a prime we will also denote T`
by U` to emphasize that we are considering an operator at a prime dividing the
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level. The Hecke algebra H(ΓR, SR) of the pair (ΓR, SR), defined in [1, p. 194], is
commutative and can be explicitly described as

H(ΓR, SR) = Z
[
T` for all primes `, T`,` for primes ` - ND

]
.

See [21, §5.3] for details and proofs. As before, let ωp ∈ R(pM) be a fixed
element of reduced norm p which normalizes ΓD0 (pM); as a piece of notation, for

R = R(M), R = R(pM) and R = R̂(pM) := ωpR(pM)ω−1
p we denote H(ΓR, SR)

by H(M), H(pM) and Ĥ(pM), respectively.
We will be particularly interested in the Hecke operator Up ∈ H(pM). In

this case, Up = T (g0) for a fixed choice of g0 ∈ R(pM) of reduced norm p such
that ιp(g0) =

(
1 0
0 p

)
u0 for some u0 ∈ Γloc

0 (p); the element g0 gives rise to a coset
decomposition

ΓD0 (pM)g0ΓD0 (pM) =

p−1∐
i=0

giΓ
D
0 (pM)

with the gi such that ιp(gi) =
(

1 0
pi p

)
ui for some ui ∈ Γloc

0 (p) and every i ∈
{0, . . . , p− 1}.

Fix once and for all an element ω∞ ∈ R(pM) of reduced norm −1 which
normalizes ΓD0 (pM). In addition to the operators described above, the involu-
tions Wp = T (ωp) and W∞ = T (ω∞) in H(pM) will also play a key role in our
discussion. More precisely, ωp can be taken such that

ιp(ωp) ∈
(

0 −1
p 0

)
· Γloc

0 (p).

A direct computation then shows that the αi := ω−1
p gi lie in ΓD0 (M) and that,

actually, {α∞ = 1, α0, . . . , αp−1} is a set of representatives of ΓD0 (M)/ΓD0 (pM);
from this one deduces the well-known fact that Up = −Wp on H.

2.3. A Hecke algebra attached to R(M) ⊗ Z[1
p
]. The formalism described

in §2.1 can also be applied to the Hecke pair (Γ, S(p,M)) where Γ is as in the
introduction and

S(p,M) := B× ∩
∏
` 6=p

SR(M),`,

the product being taken over all prime numbers different from p. Throughout we
shall write H(p,M) as a shorthand for the Hecke algebra corresponding to the
pair (Γ, S(p,M)), which is again commutative.

Similarly as before, in this algebra one defines Hecke operators T` for primes
` 6= p and involutions Wp and W∞. These operators correspond to double coset
decompositions Γg0(`)Γ =

∐
i gi(`)Γ, ΓωpΓ = ωpΓ and Γω∞Γ = ω∞Γ, respec-

tively, with exactly the same choices of the gi(`), of ωp and of ω∞ in R(pM) as
made before. Finally, in complete analogy with what has just been done, one
can also introduce the Hecke operator Up. However, since ΓgΓ = ωpΓ for any
g ∈ S(p,M) of reduced norm p, now we have Up = Wp.
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3. L-invariants

3.1. Singular homology groups. Recall the isomorphism ιp : B⊗QQp'M2(Qp)
of (3) and the Eichler order R = R(M) of B of level M chosen in the introduc-

tion. For every integer r ≥ 1 let Cr ⊂ R̂× denote the subgroup of elements whose
p-component is mapped by ιp to a matrix

(
a b
c d

)
such that a ≡ 1 (mod pr) and

c ≡ 0 (mod pr). Moreover, let ΓDr be the subgroup of norm 1 elements in Cr∩B×;
we shall write ΓDr (M) whenever the level of R is not fixed from the outset.

Note that Γ1
r = Γ0(M) ∩ Γ1(pr) as a congruence subgroup of SL2(Z). Finally,

in order to have uniform notations, set XD
0 := XD

0 (pM) and ΓD0 := ΓD0 (pM).
For every r ≥ 1 define the compact Riemann surfaces

XD
r := Γr\H if D > 1, X1

r := Γr\H ∪ {cusps},
where X1

r is the compactification of the open modular curve Y 1
r := Γr\H obtained

by adding a finite number of cusps.
Let S2(ΓDr ,C) be the C-vector space of holomorphic 1-forms on XD

r , which is
isomorphic to H1(XD

r ,R) as an R-vector space (see, e.g., [25, Theorem 8.4]). In
particular, if gDr is the genus of XD

r then the dimension of H1(XD
r ,R) over R is

2gDr . Since XD
r is compact, Poincaré duality gives an isomorphism

H1
(
XD
r ,R

)
' H1

(
XD
r ,R

)
of R-vector spaces. As a consequence, the universal coefficient theorem for ho-
mology yields canonical isomorphisms of R-vector spaces

(5) S2

(
ΓDr ,C

)
' H1

(
XD
r ,R

)
' H1

(
XD
r ,Z

)
⊗Z R ' H1

(
XD
r ,Z

)
T
⊗Z R

where for any ring A and any A-module M the symbol MT denotes the maximal
torsion-free quotient of M . In particular, the abelian group H1(XD

r ,Z)T is free
of rank 2gDr .

Fix an embedding Q̄p ↪→ C. The above discussion and the universal coeffi-
cient theorem for homology show that H1(XD

r ,Zp)T is also free of rank 2gDr as a
Zp-module.

There are canonical projection maps

π1,r : XD
r −→ XD

0 (M), XD
r −→ XD

s

for r ≥ s ≥ 0. For every integer r ≥ 0 let Wp denote the Atkin–Lehner involution
on XD

r defined as in [2, §1.5] via the adelic description of XD
r as the double coset

space

XD
r = B×

∖(
B̂× ×H

)/
Cr.

Explicitly, Wp is the map [(g, z)] 7→
[((

0 −1
p 0

)
· g, z

)]
. Define

π2,r := π1,r ◦Wp : XD
r −→ XD

0 (M).

This gives rise to a map

πr := π1,r ⊕ π2,r : XD
r −→ XD

0 (M)⊕XD
0 (M)



UNIFORMIZATIONS OF JACOBIANS OF SHIMURA CURVES 9

and thus, by pull-back, to a map

π∗r : H1

(
XD

0 (M),Zp

)
⊕H1

(
XD

0 (M),Zp

)
−→ H1

(
XD
r ,Zp

)
on homology groups. (Note that for r = 0 these maps coincide with the maps π1,
π2, π, π∗1, π∗2, π∗ appearing in the introduction.) For r ≥ 0 define the Zp-module

HD
r :=

[
H1

(
XD
r ,Zp

)
/Im(π∗r)

]
T

and let TD
r denote the image in EndZp(H

D
r ) of the Hecke algebra H(pM) ⊗ Zp;

as above, we shall rather write TD
r (M) if needed. Thanks to isomorphisms (5), it

follows that TD
r is canonically identified with the p-new quotient of the classical

Hecke algebra acting on S2

(
ΓDr ,C

)
as defined, for example, in [17, §2].

3.2. Jacquet–Langlands correspondence. Denote by T1,D-new
r (DM) the quo-

tient of the Hecke algebra T1
r(DM) acting faithfully on the C-vector space of

weight 2 cusp forms on Γ1
r(DM) which are new at D. For every r ≥ 0 the

Jacquet–Langlands correspondence provides a canonical isomorphism

(6) JLr : T1,D-new
r (DM)

'−→ TD
r (M)

making the natural diagram

T1,D-new
r (DM)

JLr //

��

TD
r (M)

��
T1,D-new
s (DM)

JLs // TD
s (M)

commutative.

3.3. Quaternionic Hida theory. Being finitely generated as a Zp-module, the
algebra TD

r (M) is isomorphic to the product of the localizations at its (finitely
many) maximal ideals; write TD,ord

r = TD,ord
r (M) for the product of those local

components in which the image of Up is a unit. Following Hida, define the ordinary
Hecke algebra as

TD,ord
∞ := lim←−

r

Tord
r (r ≥ 1)

and put Tord
∞ := T1,ord

∞ . Furthermore, if we set

T1,D-new
∞ (DM) := lim←−

r

T1,D-new
r (DM)

then isomorphism (6) shows that there is a canonical isomorphism

T1,D-new,ord
∞ (DM) ' TD,ord

∞ (M).

Denote by
Λ := Zp[[1 + pZp]], Λ̃ := Zp[[Z×p ]]

the Iwasawa algebras of 1 + pZp and Z×p , respectively, so that Λ̃ has a natural

Λ-algebra structure. There is a structure of Λ̃-module on TD,ord
∞ (M) defined on
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group-like elements d ∈ Z×p by d 7→ 〈d〉. Since, as a consequence of the Jacquet–

Langlands isomorphism, TD
r (M) is a quotient of T1

r(DM) and the projection map
takes Up to Up, there is a canonical surjective map of Λ̃-algebras

T1,ord
∞ (DM) −� TD,ord

∞ (M).

Thanks to [16, Theorem 3.1], T1,ord
∞ (DM) is a Λ-algebra which is free of finite

rank as a Λ-module. In particular, it immediately follows that TD,ord
∞ (M) is

finitely generated as a Λ-module. Thanks to [16, Corollary 3.2] (see also [10,
Theorem 5.6] for the result in this form), if IΛ̃ is the augmentation ideal of Λ̃
then the canonical projection

T1,ord
∞ (DM) −� T1,ord

0 (DM)

induces an isomorphism of Zp-algebras

(7) ρ : T1,ord
∞ (DM)

/
IΛ̃T1,ord

∞ (DM)
'−→ T1,ord

0 (DM).

The next result is the counterpart of isomorphism (7) in our general quaternionic
setting.

Proposition 3.1. For every D≥1 the canonical projection TD,ord
∞ (M)�TD,ord

0 (M)
induces an isomorphism of Zp-algebras

ρD : TD,ord
∞ (M)

/
IΛ̃TD,ord

∞ (M)
'−→ TD,ord

0 (M)

which sits in the commutative diagram

T1,ord
∞ (DM)

/
IΛ̃T1,ord

∞ (DM)
ρ1 //

����

T1,ord
0 (DM)

����

TD,ord
∞ (M)

/
IΛ̃TD,ord

∞ (M)
ρD // TD,ord

0 (M)

where the vertical arrows are the canonical surjections.

Proof. For D = 1 this is simply (7). In general, we only have to show that the
kernel of the canonical projection

(8) TD,ord
∞ (M) −� TD,ord

0 (M)

is IΛ̃TD,ord
∞ (M). It is straightforward to check that IΛ̃TD,ord

∞ (M) is indeed con-
tained in the kernel of the homomorphism in (8), hence there is a surjection

ρD : TD,ord
∞ (M)

/
IΛ̃TD,ord

∞ (M) −� TD,ord
0 (M)

of Zp-algebras. For every integer r ≥ 0 let us denote by T1,D-old,ord
r (DM) the ker-

nel of the projection T1,ord
r (DM) � TD,ord

r (M) induced by the Jacquet–Langlands
correspondence recalled in §3.2, so that we have a canonical short exact sequence

(9) 0 −→ T1,D-old,ord
r (DM) −→ T1,ord

r (DM) −→ TD,ord
r (M) −→ 0.
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After setting T1,D-old,ord
∞ (DM) := lim←−T1,D-old,ord

r (DM) and tensoring by Λ̃/IΛ̃ over

Λ̃, from sequence (9) we obtain the diagram

T1,D-old,ord
∞ (DM)

/
IΛ̃

//

����

T1,ord
∞ (DM)

/
IΛ̃

//

ρ'
��

TD,ord
∞ (M)

/
IΛ̃

//

ρD

����

0

0 // T1,D-old,ord
0 (DM) // T1,ord

0 (DM) // TD,ord
0 (M) // 0

with exact rows and surjective left vertical arrow. The snake lemma then implies
that the kernel of ρD is trivial, which shows that ρD is an isomorphism. �

3.4. Definition of the L-invariant. The map [d − 1] 7→ d yields a canonical
identification

IΛ̃/I
2
Λ̃

'−→ Z×p .
Composing with the branch logp : Z×p → Zp of the p-adic logarithm satisfying
logp(p) = 0 we then obtain a map

logp : IΛ̃/I
2
Λ̃
−→ Zp

which, by a notational abuse, will be denoted by the same symbol. The compo-
sition of the isomorphism

IΛ̃TD,ord
∞ (M)

/
I2

Λ̃
TD,ord
∞ (M) ' TD,ord

∞ (M)⊗Λ̃

(
IΛ̃

/
I2

Λ̃

)
with the map

id⊗ logp : TD,ord
∞ (M)⊗Λ̃

(
IΛ̃/I

2
Λ̃

)
−→ TD,ord

∞ (M)⊗Λ̃ Zp

produces a map

(10) IΛ̃TD,ord
∞ (M)

/
I2

Λ̃
TD,ord
∞ (M) −→ TD,ord

∞ (M)⊗Λ̃ Zp.

Now note that

TD,ord
∞ (M)⊗Λ̃ Zp ' TD,ord

∞ (M)⊗Λ̃

(
Λ̃/IΛ̃

)
' TD,ord

∞ (M)
/
IΛ̃TD,ord

∞ (M) ' TD,ord
0 (M),

the last isomorphism following from Proposition 3.1. Composing this chain of
isomorphisms with (10) yields a map

IΛ̃TD,ord
∞ (M)

/
I2

Λ̃
TD,ord
∞ (M) −→ TD,ord

0 (M).

Finally, composing with the canonical projection

IΛ̃TD,ord
∞ (M) � IΛ̃TD,ord

∞ (M)
/
I2

Λ̃
TD,ord
∞ (M)

we obtain a map

(11) IΛ̃TD,ord
∞ (M) −→ TD,ord

0 (M)

which is denoted by t 7→ t′.
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As discussed in §2.2, Up + Wp = 0 on HD
0 ; hence, since W 2

p = 1, we conclude

that the image of 1− U2
p in TD,ord

0 (M) is trivial. It follows that

1− U2
p ∈ IΛ̃TD,ord

∞ (M).

Definition 3.2. The L-invariant

LDp = LDp (M) :=
(
1− U2

p

)′ ∈ TD,ord
0 (M)

is the image of 1− U2
p under the map (11).

Observe that L1
p is equal to the L-invariant defined by Dasgupta in [10, Defi-

nition 5.2].

Proposition 3.3. The L-invariant LDp (M) is the image of L1
p(DM) under the

canonical surjection T1,ord
0 (DM) � TD,ord

0 (M).

Proof. This follows immediately from the definition of the L-invariants and the
commutativity of the diagram in Proposition 3.1. �

3.5. Singular points and L-invariants. The arguments in this subsection are
essentially a formal variation on those in [14] and [10, §5.4], so we will be rather
sketchy.

Let X := Div0(S) denote the group of degree zero divisors on the set S of
supersingular points of XD

0 (M) in characteristic p, and write X∗ := HomZ(X,Z)
for its Z-dual. As explained, e.g., in [15, §1.7], the group X has a natural Hecke
action; moreover, the Hecke algebra of X canonically identifies with that of HD

0 .
There is a non-degenerate, symmetric pairing

Q : X ×X −→ Q×p
for which the Hecke operators are self-adjoint. The map Q defines an injection

j : X ↪−→ X∗ ⊗Q×p
by setting j(x)(y) := Q(x, y). For simplicity, put Gp := Gal (Q̄p/Qp) for the local
Galois group at p; there is a short exact sequence

(12) 0 −→ X
j−→ X∗ ⊗ Q̄×p −→ JD0 (pM)p-new(Q̄p) −→ 0

of left TD
0 (M)[Gp]-modules. Composing the pairing Q with the p-adic valuation

ordp gives rise to the non-degenerate monodromy pairing

ordp ◦Q : X ×X → Z
at p. Now set ordX(x)(y) := ordp

(
Q(x, y)

)
, thus obtaining an injection

ordX : X ↪−→ X∗.

Analogously, if logp is the branch of the p-adic logarithm such that logp(p) = 0
then we obtain a map

logX : X −→ X∗ ⊗Z Zp

defined by logX(x)(y) := logp
(
Q(x, y)

)
.

Recall that LDp := LDp (M); the next result seems to be well known to experts.
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Proposition 3.4. There is an equality LDp · ordX = logX of maps from X to
X∗ ⊗ Zp.

There are at least two ways of proving the above statement but, for the sake
of brevity, we will not provide any details, as the methods are very similar to the
standard ones in the classical modular setting, already present in the literature
[10], [14]. One way of showing it is to proceed as in the proof of [10, Proposi-
tion 5.20], upon noticing that the arguments of [20, §8] can be adapted to our
quaternionic setting. Besides, more indirectly, one can also prove Proposition 3.4
by exploiting the commutativity of the diagram of Proposition 3.1 combined with
[10, Proposition 5.20].

4. Measure-valued 1-cocycles

4.1. Bruhat–Tits tree, harmonic cocycles and measures on P1(Qp). Let
T be the Bruhat–Tits tree of M2(Qp), whose set V = V(T ) of vertices consists
of the maximal orders of M2(Qp). We denote by v∗ the vertex M2(Zp) and by v̂∗
the vertex

{(
a p−1b
pc d

)
| a, b, c, d ∈ Zp

}
.

The set E = E(T ) of oriented edges of T is the set of ordered pairs (v1, v2) with
v1, v2 ∈ V such that v1 ∩ v2 is an Eichler order of level p. We call v1 = s(e) and
v2 = t(e) the source and the target of e, respectively, and write ē for the reversed
edge (v2, v1). Set e∗ := (v∗, v̂∗).

Given v, v′ ∈ V , the distance between v and v′ is the length of a path without
backtracking from v to v′, i.e., the smallest number of edges needed to connect v
with v′.

The group GL2(Qp) acts transitively and isometrically on V by the rule v 7→
gvg−1 for v ∈ V and g ∈ GL2(Qp). Hence, it also gives rise to a natural action of
GL2(Qp) on E , which is again transitive. As a piece of notation, write v̂ := ωp(v)
and ê := ωp(e) for any v ∈ V and any e ∈ E , respectively. Similarly, for any γ ∈
GL2(Qp) and any subgroup G of GL2(Qp) write γ̂ := ωpγω

−1
p and Ĝ := ωpGω

−1
p .

Observe that ê∗ = ē∗ for all e ∈ E .
We say that a vertex of T is even (respectively, odd) if its distance from v∗

is even (respectively, odd). We write V+ (respectively, V−) for the subset of V
consisting of even (respectively, odd) vertices, and we write E+ (respectively, E−)
for the subset of E made up of those oriented edges, called even (respectively,

odd), whose source is even (respectively, odd). Notice that V− = V̂+ and E− =

Ē+ = Ê+.
Let GL+

2 (Qp) be the subgroup of GL2(Qp) whose elements are the matrices γ
such that ordp(det(γ)) is even, and recall from the introduction the subgroup

Γ :=
(
R(M)⊗Z Z[1/p]

)×
1

ιp
↪−→ GL+

2 (Qp).

It follows from [24, Ch. II, Theorem 2] that the segment connecting v∗ and v̂∗ is
a fundamental domain for the action of Γ on T , by which we mean a subgraph T ′
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of T such that every vertex (respectively, edge) of T is Γ-equivalent to a vertex

(respectively, edge) in T ′. The stabilizers of v∗, v̂∗ and e∗ in Γ are ΓD0 (M), Γ̂D0 (M)
and ΓD0 (pM), respectively. Furthermore, by [24, Ch. II, Theorem 3], we know
that

(13) Γ = ΓD0 (M) ∗ΓD0 (pM) Γ̂D0 (M),

that is, Γ is the amalgamated product of the stabilizers of v∗ and v̂∗ over the
stabilizer of e∗.

The free abelian group Z[E+] over E+ can be canonically identified, via projec-
tion, with the quotient CE of Z[E ] by the relations e+ ē = 0 for all e ∈ E . Setting
CV := Z[V ], we obtain a short exact sequence

(14) 0 −→ CE
ϕ−→ CV

deg−−→ Z −→ 0

where ϕ(e) := t(e)− s(e) and deg is the degree map.
If X and A are sets write F(X,A) for the set of functions from X to A. Now

suppose that A is an abelian group; there are two degeneracy maps

ϕs, ϕt : F(E , A) −→ F(V , A)

ν 7−→
(
ϕs(ν) : v 7→

∑
s(e)=v ν(e)

)
ν 7−→

(
ϕt(ν) : v 7→

∑
t(e)=v ν(e)

)
.

Put
F0(E , A) :=

{
ν ∈ F(E , A) | ν(ē) = −ν(e) for all e ∈ E

}
.

An A-valued harmonic cocycle is a function ν ∈ F0(E , A) such that ϕs(ν) = 0;
we write Fhar(A) for the abelian group of A-valued harmonic cocycles.

Finally, assume further that A is a left G-module for some subgroup G of
PGL2(Qp). Then F(E , A) and its submodules F0(E , A) and Fhar(A) are endowed
with a structure of left G-modules by the rule gν(e) := g · ν(g−1e). The next
result is proved in [12, §8].

Lemma 4.1 (Greenberg). The sequence of Γ-modules

0 −→ Fhar(A) −→ F0(E , A)
ϕs−→ F(V , A) −→ 0

is exact.

By applying Shapiro’s lemma, the short exact sequence of Lemma 4.1 induces
a long exact sequence

0 −→ Fhar(A)Γ −→ AΓD0 (pM) −→ (A× A)Γ0(M)

−→ H1
(
Γ,Fhar(A)

) %−→ H1
(
Γ,F0(E , A)

)
,

(15)

where

Im(%) ' H1
(
Γ0(pM), A

)
p-new

:= ker
(
H1
(
Γ0(pM), A

)
→ H1

(
Γ0(M), A

)2
)
.
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The group GL2(Qp) acts on the left on P1(Qp) by fractional linear transformations
and this action, as before, factors through PGL2(Qp).

Set Ue∗ := Zp. Since GL2(Qp) acts transitively on E and the stabilizer of e∗ in
GL2(Qp) is GL2(Zp), we may define a map from E to the family of compact open
subsets of P1(Qp) by

e 7−→ Ue := γ(Ue∗),

where γ ∈ GL2(Qp) is any element such that e = γ(e∗). Notice that Uē =
P1(Qp) − Ue. The sets {Ue}e∈E form a basis of compact open subsets for the
p-adic topology of P1(Qp).

Let A be a free module of finite rank over either Z or Zp, equipped with a
left action of a subgroup G of PGL2(Qp). LetM(A) := Meas

(
P1(Qp), A

)
denote

the space of A-valued measures on P1(Qp) and write M0(A) ⊂ M(A) for the
submodule of measures of total mass zero. Define a left action of Γ onM(A) by
imposing that

(γ · ν)(U) := ν
(
γ−1(U)

)
for all compact open subsets U of P1(Qp). Thanks to the above observation (see
also, e.g., [10, §2.3] and [12, Lemma 27]), there is a canonical isomorphism of
G-modules

(16) Fhar(A)
'−→M0(A), c 7−→ νc

given by the rule νc(Ue) := c(e).

4.2. Construction of the measure-valued 1-cocycle. From here until the
end of the paper we assume that D > 1. As in the introduction, let

H = HD
0 := H1

(
ΓD0 (pM),Z

)/
Im(π∗).

In this subsection we define a measure-valued class µ ∈ H1
(
Γ,M0(H)

)
which

will be a crucial ingredient for our purposes. The construction of µ will be done
in stages.

For any discontinuous cocompact subgroup G of PSL2(R) there are canonical
isomorphisms

H1(G\H,Z) ' H1(G,Z) ' Gab.

In the sequel we shall freely identify these three groups, and for every g ∈ G
we shall denote by [g] ∈ Gab the class of g in any of them. If G0 is a subgroup
of G then the natural map π : G0\H → G\H of Riemann surfaces induces by
pull-back and push-forward homomorphisms

π∗ : H1(G,Z) −→ H1(G0,Z), π∗ : H1(G0,Z) −→ H1(G,Z)

which respectively translate, under the above identifications, to restriction and
corestriction in homology of groups.

Choose a system Y of representatives for the cosets ΓD0 (pM)\Γ. Since Γ acts
transitively on E+ and ΓD0 (pM) is the stabilizer of e∗, we have Y = {γe}e∈E+ with
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γe ∈ Γ such that γe(e) = e∗. Any other system of representatives is of the form
Y ′ = {γ′e}e∈E+ with

(17) γ′e = f(e)γe

for a suitable f(e) ∈ ΓD0 (pM).

Definition 4.2. The universal 1-cochain associated with Y is the 1-cochain

µYuniv : Γ −→ F0

(
E , H1

(
ΓD0 (pM),Z

))
' F0

(
E ,ΓD0 (pM)ab

)
determined for all γ ∈ Γ by the following rules:

• for all e ∈ E+ let gγ,e ∈ ΓD0 (pM) be defined by the equation γeγ =
gγ,eγγ−1(e), then set

µYuniv(γ)(e) :=
[
gγ,e
]
;

• for all e ∈ E− set

µYuniv(γ)(e) := −µYuniv(γ)(ē).

Fix a non-zero torsion-free quotient H of H and let

πH : H1

(
ΓD0 (pM),Z

)
' ΓD0 (pM)ab −→ H

be the quotient map. In subsequent sections we will specialize to H = H, which
represents the most relevant case for this article. However, in connection with
[12, Conjecture 2], other interesting instances arise for H = H1(A,Z)T where A/Q
is a modular abelian variety (e.g., an elliptic curve) that is a p-new quotient of
JD0 (pM).

Let µYH ∈ C1
(
Γ,F0(E ,H)

)
be the 1-cochain defined, in terms of the universal

1-cochain of Definition 4.2, by

(18) µYH(γ)(e) := πH
(
µYuniv(γ)(e)

)
for all γ ∈ Γ and all e ∈ E . The following properties of µYH, whose verification is
easy but somewhat tedious, will be used repeatedly.

Proposition 4.3. (i) The cochain µYH lies in Z1
(
Γ,F0(E ,H)

)
, i.e., it is a

1-cocycle.
(ii) The class of µYH in H1

(
Γ,F0(E ,H)

)
is independent of the choice of Y.

(iii) If ν ∈ Z1
(
Γ,F0(E ,H)

)
is cohomologous to µYH then there exists a system

of representatives Y ′ for ΓD0 (pM)\Γ such that ν = µY
′

H .

We will denote the class of µYH in H1
(
Γ,F0(E ,H)

)
by µYH; although, by part

(ii) of the proposition above, this class is independent of the choice of a system of
representatives, we keep the superscript Y in the notation because we reserve the
unadorned symbol for a slightly different cohomology class (cf. Definition 4.10).
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Proof. Part (i) follows straightly by unwinding the definition of µYH. As for (ii),
a direct computation reveals that if Y ′ is another system of representatives for
ΓD0 (pM)\Γ then

µYH − µ
Y ′
H = δ([f ]),

the coboundary associated with the function [f ] : E → H such that [f ](e) :=
πH
(
[f(e)]

)
for e ∈ E+ and [f ](e) := −πH

(
[f(ē)]

)
for e ∈ E−; here f(e) is as in

(17). Finally, to prove claim (iii) let g be a function in F(E+,H) = F0(E ,H)
whose image under the cobounday map is µYH − ν, and let

f ′ : E+ −→ ΓD0 (pM)

be an arbitrary lift of g; then it can be checked that ν = µY
′

H for Y ′ :={
f ′(e)γe

}
e∈E+ . �

Now recall the map

% : H1
(
Γ,Fhar(H)

)
−→ H1

(
Γ,F0(E ,H)

)
from (15), with A = H.

Lemma 4.4. The class µYH lies in Im(%).

Proof. By (15) and Shapiro’s lemma, there are exact sequences fitting in the
commutative diagram

. . . // H1
(
Γ,Fhar(H)

) % //

'
��

H1
(
Γ,F0(E , H)

)
//

'
��

H1
(
Γ,F(V, H)

)
//

'
��

. . .

. . . // H1
(
ΓD0 (pM), H

)
p-new

// H1
(
ΓD0 (pM), H

)
// H1

(
ΓD0 (M), H

)
×H1

(
Γ̂D0 (M), H

) // . . .

Let Y be any system of representatives for the cosets in ΓD0 (pM)\Γ. The class
in H1

(
ΓD0 (pM),H

)
corresponding to µYH under the above isomorphism can be

represented by the cochain

g ∈ ΓD0 (pM) 7−→ µYH(g)(e∗) ∈ H
which, according to Definition 4.2, is equal to πH

(
[g]
)
. If G belongs to

{
ΓD0 (M),

ΓD0 (pM), Γ̂0(M)
}

then G acts trivially on H, so there is a canonical isomorphism

H1(G,H) ' Hom
(
H1(G,Z),H

)
.

Under these identifications, the map in the lower right corner of the above diagram
is

H1
(
ΓD0 (pM),H

)
−→ H1

(
ΓD0 (M),H

)
×H1

(
Γ̂D0 (M),H

)
f 7−→ f ◦

(
cor

ΓD0 (M)

ΓD0 (pM)
, cor

Γ̂D0 (M)

ΓD0 (pM)

)
with cor indicating corestriction. Now observe that for H = H there is an equality
of maps (

cor
ΓD0 (M)

ΓD0 (pM)
, cor

Γ̂D0 (M)

ΓD0 (pM)

)
= (π∗1, π

∗
2)
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where the π∗i for i = 1, 2 are the pull-backs defined in the introduction. Since H
is a quotient of

H := H1

(
ΓD0 (pM),Z

)/
Im(π∗1) + Im(π∗2),

we deduce that the image of µYH in H1
(
ΓD0 (M),H

)
× H1

(
Γ̂D0 (M),H

)
is trivial,

and the lemma is proved. �

Remark 4.5. Some words of caution are in order here: Lemma 4.4 does not prove
that the cocycle µYH lies in Z1

(
Γ,Fhar(H)

)
. Rather, it only shows that some

cocycle cohomologous to it takes values in Fhar(H). However, by part (iii) of
Proposition 4.3 this implies that there do exist choices of Y such that µYH belongs
to Z1

(
Γ,Fhar(H)

)
.

The last observation in Remark 4.5 motivates the following

Definition 4.6. A system of representatives Y for ΓD0 (pM)\Γ is said to be har-
monic if µYH belongs to Z1

(
Γ,Fhar(H)

)
.

Let us introduce a class of systems of representatives for the cosets ΓD0 (pM)\Γ
which can be explicitly constructed and shown to be harmonic. This construction
will be useful in §5.2 but may be also of independent interest, as it is amenable
to explicit calculations: building on the computational tools developed in [13],
our recipe can be implemented in order to compute the lattice of p-adic periods
that we introduce in Section 6.

Definition 4.7. A system of representatives Y = {γe}e∈E+ for ΓD0 (pM)\Γ is
called radial if the two conditions

(1) {γe}s(e)=v = {γiγv}pi=0 for all v ∈ V+,
(2) {γe}t(e)=v = {γ̃iγv}pi=0 for all v ∈ V−

hold for suitable choices of sets of representatives {γi}pi=0, {γ̃i}pi=0, {γv}v∈V+

and {γv}v∈V− for the cosets ΓD0 (pM)\ΓD0 (M), ΓD0 (pM)\Γ̂D0 (M), ΓD0 (M)\Γ and

Γ̂D0 (M)\Γ, respectively, such that γ0 = γ̃0 = γv∗ = γv̂∗ = 1.

The next result justifies the formal introduction of the notion of radial systems.

Proposition 4.8. Radial systems of representatives exist and are harmonic.

Proof. The existence of radial systems follows from the fact that T is a tree.
More precisely, for any choice of sets of representatives {γi}pi=0 and {γ̃i}pi=0 of

ΓD0 (pM)\ΓD0 (M) and ΓD0 (pM)\Γ̂D0 (M), respectively, with γ0 = γ̃0 = 1 conditions
(1) and (2) in Definition 4.7 uniquely determine sets {γv}v∈V+ and {γv}v∈V−
satisfying them.

Let us now prove that radial systems are harmonic. According to Lemma
4.1, we need to show that, with slightly abusive but self-explaining notation,
ν := ϕs

(
µYH
)
∈ Z1

(
Γ,F(V ,H)

)
is identically zero. Firstly, notice that

(19) νγ(v∗) = 0 for all γ ∈ ΓD0 (M), νγ̂(v̂∗) = 0 for all γ̂ ∈ Γ̂D0 (M).
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Indeed, once again with a slight abuse of notation, for γ ∈ ΓD0 (M) one has

νγ(v∗) =
∑

s(e)=v∗

[
gγ,e
]

=
[
cor

ΓD0 (pM)

ΓD0 (M)
([γ])

]
= π∗1([γ]) ∈ π∗1

(
H1

(
XD

0 (M),Z
))
,

hence the image of νγ(v∗) in H vanishes. Similar considerations apply to elements

γ̂ in Γ̂D0 (M).
Secondly, one has

(20) νγv(v∗) = 0 for all v ∈ V+, νγv(v̂∗) = 0 for all v ∈ V−.
In fact, with notation as in Definition 4.7, for v ∈ V+ there are equalities

νγv(v∗) =

p∑
i=0

µYH,γv(γ
−1
i e∗) =

∑
i

γiµYH,γv(e∗) =
∑
i

(
µYH,γiγv − µ

Y
H,γi

)
(e∗),

and this vanishes in H because the γi and the γiγv belong to Y by definition
of µYH.

Similarly, if v ∈ V− then

νγv(v̂∗) =

p∑
i=0

µYH,γv(γ̃
−1
i ē∗) =

∑
i

γ̃iµYH,γv(ē∗) =
∑
i

(
µYH,γ̃iγv − µ

Y
H,γ̃i

)
(ē∗),

which is again trivial because the γ̃i and the γ̃iγv are in Y .
This is enough to prove the lemma, as one can check that ν is uniquely deter-

mined by conditions (19) and (20). �

Let Y be an arbitrary harmonic system. Before proceeding with our arguments,
we make an observation which will prove useful later.

Remark 4.9. The analogue of part (ii) of Proposition 4.3 for µYH does not hold
true in H1

(
Γ,Fhar(H)

)
. Indeed, there exist several choices of harmonic systems

Y ′ such that the classes of µYH and µY
′

H in H1
(
Γ,Fhar(H)

)
are different; this is

due to the fact that ker(%) is not trivial. More precisely, it is immediate to check
from (15) that

ker(%) = (H×H)/H0

where H0 is the image of H in H×H under the embedding

a 7−→
(
(p+ 1)a,−(p+ 1)a

)
.

Fix once and for all, for the rest of this article, a prime r - pDM and set

tr := Tr − r − 1,

which we regard as an operator in either H(M), H(pM) or H(p,M) according
to the context.

Definition 4.10. The class µH is the image of tr · µYH in H1
(
Γ,Fhar(H)

)
.

Dropping Y from the notation is justified by the following
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Lemma 4.11. The class µH is independent of the choice of Y.

Proof. It suffices to show that tr vanishes on the kernel of %, i.e., that ker(%)
is an Eisenstein submodule of H1

(
Γ,Fhar(H)

)
. If this is true then tr also acts

on Im(%) ↪→ H1
(
Γ,F0(E ,H)

)
, and the lemma follows from part (ii) of Proposi-

tion 4.3.
As pointed out in Remark 4.9, ker(%) is equal to the image of H × H =

H0
(
Γ,F(V ,H)

)
in H1

(
Γ,Fhar(H)

)
. Since Hecke operators commute with the

connecting maps of the long exact sequence (15) by [1, Lemma 1.1.1], it is enough
to show that H0

(
Γ,F(V ,H)

)
is Eisenstein.

Let f ∈ H0
(
Γ,F(V ,H)

)
. According to Section 2, Tr(f) =

∑r+1
i=0 si · f where

the si ∈ R(pM) are elements of norm r. Since the elements in R(pM) fix both
v∗ and v̂∗, it follows that

Tr(f)(v∗) = (r + 1)f(v∗), Tr(f)(v̂∗) = (r + 1)f(v̂∗).

Since Tr(f) is again Γ-invariant, it is completely determined by these two values.
Hence Tr(f) = (r + 1)f , and we are done. �

In light of isomorphism (16), we shall denote by µH also the measure-valued
cohomology class in H1

(
Γ,M0(H)

)
associated with µH. In the special case where

H = H, we denote µH simply by µ.

5. Multiplicative integration pairings

5.1. An integration pairing for Shimura curves. As in §4.2, let H be a non-
zero torsion-free quotient of H, which now we further assume to be stable for the
action of H(pM). This holds for all the cases we are interested in, like H = H or
H = H1(A,Z)T where A/Q is a modular abelian variety that is a p-new quotient
of JD0 (pM).

The aim of this section is to introduce a suitable analogue of the integration
pairing defined by Dasgupta in [10, §3.2]. Notice though that when D > 1 there is
no natural action of Γ on Div P1(Q) and consequently Dasgupta’s pairing makes
no sense. Instead, following ideas of Greenberg [12] , we shall construct a pairing

〈 , 〉 : H1(Γ,D)×H1
(
Γ,M0(H)

)
−→ C×p ⊗H

where, for notational convenience, from here on we set

D := Div0Hp.

Notice that if H = H then C×p ⊗ H = T (Cp). Let C
(
P1(Qp),Cp

)
denote the

Cp-algebra of Cp-valued continuous functions on P1(Qp); since it is naturally a
submodule of F

(
P1(Qp),Cp

)
, it inherits a left action of GL2(Qp). The multiplica-

tive group C
(
P1(Qp),Cp

)×
of invertible elements of C

(
P1(Qp),Cp

)
consists of the

C×p -valued functions in C
(
P1(Qp),Cp

)
. As in [10, Definition 2.2], given a func-

tion f ∈ C
(
P1(Qp),Cp

)×
and a measure ν ∈ M0(H) we define the multiplicative
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integral of f against ν as a limit of Riemann products

×
∫

P1(Qp)

fdν := lim
‖U‖→0

∏
U∈U

f(tU)⊗ ν(U) ∈ C×p ⊗H.

In the above formula the limit is taken over finer and finer covers U of P1(Qp) by
compact open disjoint subsets, and tU is an arbitrary point of U for every U ∈ U .
The limit converges in C×p ⊗H because ν is a measure. This produces a pairing

(21) ( , ) : C
(
P1(Qp),Cp

)× ×M0(H) −→ C×p ⊗H.
One can easily verify that the pairing (21) satisfies

(γ · f, γ · ν) = (f, ν)

for all γ ∈ GL2(Qp), f ∈ C
(
P1(Qp),Cp

)×
and ν ∈ M0(H). Since the multiplica-

tive integral of a non-zero constant against a measure ν ∈M0(H) is 1, the above
pairing induces another pairing

(22) ( , ) : C
(
P1(Qp),Cp

)×/C×p ×M0(H) −→ C×p ⊗H.

For any d ∈ D let fd denote a rational function on P1(Cp) such that div(fd) = d.
The function fd is not unique; more precisely, it is well defined only modulo
multiplication by constant non-zero functions. Since the divisor d is not supported

on P1(Qp), the function fd restricts to a function in C
(
P1(Qp),Cp

)×
, which will be

denoted in the same way fashion by an abuse of notation. Thus the map d 7→ fd
defines an embedding

D ↪−→ C
(
P1(Qp),Cp

)×/C×p
which is invariant under the natural left actions of GL2(Qp). Hence, composing
this injection with (22) yields a GL2(Qp)-invariant pairing (denoted, by a slight
abuse of notation, by the same symbol)

(23) ( , ) : D ×M0(H) −→ C×p ⊗H, (d, µ) := ×
∫

P1(Qp)

fd dµ

which, by construction, factors naturally through (D⊗M0(H))Γ. By cap product,
we finally obtain the desired pairing

(24) 〈 , 〉 : H1(Γ,D)×H1
(
Γ,M0(H)

)
−→ C×p ⊗H.

5.2. Hecke-equivariance of the integration map. Recall from above that
D := Div0Hp and let also µH be as in §4.2. Fixing µH in the second variable of
the pairing 〈 , 〉 of (24) yields a homomorphism

(25)

∫
: H1(Γ,D) −→ C×p ⊗H.

The group H1(Γ,D) is an H(p,M)-module, while C×p ⊗H is naturally an H(pM)-
module, because of our assumptions on H. Our present aim is to prove the
following
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Proposition 5.1. The integration map
∫

is equivariant for the actions of the
Atkin–Lehner involutions Wp and W∞ and of the Hecke operators T` with
` - pDM .

We devote the rest of this subsection to the proof of this proposition. Let

T ∈
{
T` | ` - pDM

}
∪ {Wp,W∞}

and let Y be a harmonic system of representatives for ΓD0 (pM)\Γ; we want to
show that 〈

T · c, tr · µYH
〉

= T ·
〈
c, tr · µYH

〉
for all c ∈ H1(Γ,D). Thanks to (4) and the commutativity of the Hecke algebras,
this is equivalent to showing that

(26)
〈
T · c, µYH

〉
= T ·

〈
c, µYH

〉
for all c ∈ tr ·H1(Γ,D). Note that, by Lemma 4.11 and (4) again, it follows that
both

〈
T · c, µYH

〉
and

〈
c, µYH

〉
are independent of the chosen harmonic system Y .

Let W ∈ {Wp,W∞} denote any of the two involutions. We shall prove (26)
by computing the two sides of the equality by means of two different choices of
harmonic systems Y .

In both Hecke algebras H(p,M) and H(pM) one has that W = T (ω) for
an element ω ∈ R(pM) satisfying Γω = ωΓ and ΓD0 (pM)ω = ωΓD0 (pM). On
H1(Γ,D) the involution W acts as

c =
∑
k

dk[γk] 7−→
∑
k

(ω−1dk)[ω
−1γkω], dk ∈ D for all k,

hence 〈
W · c, µYH

〉
= ×
∫
fω−1dk(t)dµ

Y
H,ω−1γkω

(t)

= lim
U

∏
k

∏
U∈U

fdk(tU)⊗ µYH,ω−1γkω
(ω−1U).

(27)

On the other hand, W acts on H simply by conjugation by ω, so that

(28) W ·
〈
c, µYH

〉
= lim

U

∏
k

∏
U∈U

fdk(tU)⊗ ω−1µYH,γk(U)ω.

Given a radial (hence harmonic, by Lemma 4.8) system Y = {γe}e∈E+ , let us
introduce the system

ωY :=
{
ωγω−1(e)ω

−1
}
e∈E+ .

Notice that ωY is again radial, because conjugation by ω∞ (respectively, ωp) leaves

each of ΓD0 (pM), ΓD0 (M), Γ̂0(M) and Γ invariant (respectively, leaves ΓD0 (pM)

and Γ invariant and interchanges ΓD0 (M) and Γ̂0(M)). Again by Lemma 4.8 we
obtain that ωY is harmonic, and thus the above observations apply.
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If one computes (27) with respect to Y and computes (28) with respect to ωY
it follows that (27) is equal to (28), as we wished to show.

Now let ` - pDM be a prime number and fix a radial system Y .

Lemma 5.2. Let µ
(`)
H ∈ Z1

(
Γ,F0(E ,H)

)
be the cocycle determined by the rule

µ
(`)
H,γ(e) :=

∑
i

πH
([
ti(gγ,e)

])
for every γ ∈ Γ and every even edge e ∈ E+. Then

(i) µ
(`)
H is a cocycle which takes values in Fhar(H);

(ii) T`
(
µYH
)

= µ
(`)
H + b for some b ∈ ker(%) ⊂ Z1

(
Γ,Fhar(H)

)
.

Proof. For simplicity, write ν := µYH ∈ Z1
(
Γ,Fhar(H)

)
and ν(`) := µ

(`)
H . Set

I(`) := {0, . . . , `}. An easy computation shows that

T`(ν)γ = −
∑
i

γgj · νt−1
i (γ)

for all γ ∈ Γ, where j = j(i) is the permutation of I(`) such that ti(γ) = g−1
i γgj.

For every edge e ∈ E+ one has(
γgj · νt−1

i (γ)

)
(e) = πH

([
gt−1
i (γ),g−1

j γ−1e

])
with gt−1

i (γ),g−1
j γ−1e ∈ ΓD0 (pM) satisfying the equation

(29) γg−1
j γ−1et

−1
i (γ) = gt−1

i (γ),g−1
j γ−1eγtig−1

j γ−1(e) = gt−1
i (γ),g−1

j γ−1eγg−1
i (e).

For every g∈GL2(Qp) and every γ∈Γ with g−1γg∈Γ there exists hg,e ∈ ΓD0 (pM)
such that γg−1(e) = hg,eg

−1γeg. Using the equality γγ−1(e)γ
−1 = gγ−1,γ−1(e)γe, one

shows that

γg−1
j γ−1et

−1
i (γ) = hgj ,γ−1(e)

(
g−1
j gγ−1,γ−1(e)gi

)
h−1
gi,e
γg−1

i (e).

Comparing with formula (29), we deduce that

gt−1
i (γ),g−1

j γ−1e = hgj ,γ−1(e)

(
g−1
j gγ−1,γ−1(e)gi

)
h−1
gi,e
.

Since gt−1
i (γ),g−1

j γ−1e, hgj ,γ−1(e) and h−1
gi,e

are in ΓD0 (pM), we conclude that

g−1
j gγ−1,γ−1(e)gi belongs to ΓD0 (pM) as well. Accordingly, in H we have[

gt−1
i (γ),g−1

j γ−1e

]
=
[
g−1
j gγ−1,γ−1(e)gi

]
+
[
hgj ,γ−1(e)

]
− [hgi,e].

An easy calculation now yields that g−1
γ,e = gγ−1(e),γ−1 . Hence

T`(ν)γ(e) =
∑
i

πH
(
[ti(gγ,e)]

)
−
∑
i

πH
([
hgi,γ−1(e)

])
+
∑
i

πH
(
[hgi,e]

)
.

Let us introduce the function

ϕ : E+ −→ H, e 7−→
∑
i

πH
(
[hgi,e]

)
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and extend it to an element of F0(E ,H) by the obvious recipe. Since

(γϕ)(e) = ϕ
(
γ−1(e)

)
=
∑
i

πH
([
hgi,γ−1(e)

])
,

it follows that ν(`) represents the same class as T`(ν) in Z1
(
Γ,F0(E ,H)

)
. In other

words, the class of b := T`(ν)− ν(`) in H1
(
Γ,F0(E ,H)

)
is trivial.

Let us now prove that ν(`) ∈ Z1
(
Γ,Fhar(H)

)
. In order to show this, write

i 7→ σ(i) for the permutation of I(`) such that ti(gγ,e) = gigγ,egσ(i). Note that∑
i

[ti(gγ,e)] =
∑
i

[
g−1
i gγ,egσ(i)

]
=
∑
s∈S

[
g−1
s gmsγ,egs

]
=
∑
s∈S

ms

[
g−1
s gγ,egs

]
where S is a suitable subset of I(`) and ms ∈ Z for all s ∈ S. Therefore it suffices
to show that the cocycle defined on Γ by the rule

γ 7−→
(
e 7→ πH

([
g−1
s gγ,egs

]))
for e ∈ E+ is harmonic. Keep the notation of Definition 4.7 for the radial system
Y . For every s ∈ S define

Hs := g−1
s ΓD0 (pM)gs, Γs := g−1

s Γgs

as subgroups of GL2(Qp). Then a system of representatives for the cosets Hs\Γs
is given by the set {

γ′e := g−1
s γiγvgs

}
.

Arguing as in Lemma 4.8, one immediately shows that the 1-cocycle in
Z1
(
g−1
s Γgs,F0(E ,H)

)
defined on e ∈ E+ by the rule

g−1
s γgs 7−→

(
e 7→ πH

([
g′γ,e
]))

,

where γ′eg
−1
s γgs = g′γ,eγ

′
e′ , is harmonic. Since g′γ,e = g−1

s gγ,egs, this is enough

to conclude that ν(`) takes values in Fhar(H) as well. Hence b actually lies in
Z1
(
Γ,Fhar(H)

)
. By the above observation, if b is the class of b in H1

(
Γ,Fhar(H)

)
then %(b) = 0, as we wanted. �

Now the equivariance of the integration map under T` follows easily. In fact,
keeping the notation introduced before, Lemma 5.2 implies that

〈T`(c), ν〉 = 〈c, T`(ν)〉 = 〈c, ν(`)〉 = T`
(
〈c, ν〉

)
,

which concludes the proof of Proposition 5.1.
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5.3. The p-adic valuation of the integration map. Unless otherwise stated,
for the rest of the article set H := H. Let

red: Hp −→ T
be the GL2(Qp)-equivariant reduction map which is described, e.g., in [6, I.2] and
choose a base point τ ∈ Kp −Qp such that red(τ) = v∗.

Let γ1, γ2 be two arbitrary elements of Γ. Let {e1, . . . , en} be the even geodesic
joining v∗ with red

(
γ1(τ)

)
= γ1(v∗) ∈ V+. By this we mean that ei ∈ E+ are even

edges such that

• s(e1) = v∗, s(en) = γ1(v∗) =: vn;
• t(ei) = t(ei+1) =: vi for odd indices in {1, . . . , n− 1};
• s(ei) = s(ei+1) =: vi for even indices in {2, . . . , n− 2}.

Notice that, above, the integer n is always even. It is our aim here to prove the
following result, which will be used in the next section.

Proposition 5.3. Keep notation as above. If the gi for i = 1, . . . , n are elements
of ΓD0 (pM) such that γeiγ2 = giγe′i with e′i ∈ E+ then

ordp

(
×
∫

P1(Qp)

t− γ1(τ)

t− τ
dµYH,γ2

(t)

)
=

n∑
i=1

(−1)i[gi] ∈ H.

In order to prove the formula in the proposition, let τ0 := τ , τn := γ1(τ) and
for every i = 1, . . . , n− 1 choose τi ∈ Kp −Qp such that red(τi) = vi. Since

t− γ1(τ)

t− τ
=

t− τn
t− τn−1

· t− τn−1

t− τn−2

· · · · · t− τ1

t− τ0

,

it is easy to check that

ordp

(
×
∫
t− γ1(τ)

t− τ
dµYH,γ2

(t)

)
=

n−1∑
i=0

×
∫

ordp

(
t− τi+1

t− τi

)
dµYH,γ2

(t).

Proposition 5.3 now follows recursively from the next computation.

Lemma 5.4. Let v1, v2 ∈ V be consecutive vertices and let τ1, τ2 ∈ Kp − Qp be
such that red(τi) = vi for i = 1, 2. Set e := (v1, v2) if v1 ∈ V+ and e := (v2, v1)
otherwise. If γ ∈ Γ then

×
∫

ordp

(
t− τ2

t− τ1

)
dµYH,γ(t) =

{
−[g] if v1 ∈ V+

[g] if v1 ∈ V−

where g ∈ ΓD0 (pM) is such that γeγ = gγe′ for some e′ ∈ E+.

Proof. Let us give the details only for v1 ∈ V+, the other case being analogous.
Consider the points τv̂∗ := γe(τ2) and τv∗ := γe(τ1), so that

red(τv∗) = v∗, red(τv̂∗) = v̂∗.
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Thanks to the Γ-equivariance of (21), we have

×
∫

ordp

(
t− τ2

t− τ1

)
dµYH,γ(t) = ×

∫
ordp

(
t− τv̂∗
t− τv∗

)
· d(γeµYH,γ)(t).

Now, by [6, I.2] (see also [10, p. 444]), there is an equality

ordp

(
t− τv̂∗
t− τv∗

)
=

{
−1 if t ∈ Zp

0 if t 6∈ Zp ,

hence

×
∫

ordp

(
t− τ2

t− τ1

)
dµYH,γ(t) = −µYH,γ(γ−1

e Zp).

By definition, we have

µYH,γ
(
γ−1
e · Zp

)
= µYH,γ

(
γ−1
e (e∗)

)
= [g]

where γeγ = gγγ−1(e). Thus we find that

×
∫

ordp

(
t− τ2

t− τ1

)
dµYH,γ(t) = −[g],

which is the searched-for equality. �

6. The lattice of p-adic periods

From the long exact sequence in Γ-homology associated with the short exact
sequence

0 −→ D −→ DivHp
deg−−→ Z −→ 0

we extract the boundary homomorphism

∂ : H2(Γ,Z) −→ H1

(
Γ,D

)
.

Set

Φ :=

∫
◦ ∂ : H2(Γ,Z) −→ T (Cp)

and let L be the image of Φ in T (Cp).

Proposition 6.1. The module L is contained in T (Qp) and is preserved by the
action of the Hecke algebra.

Proof. Let F be a non-trivial finite extension of Qp. Any point τ ∈ F − Qp can
be used as base point in order to compute the map ∂ on Z2(Γ,Z); explicitly, one
has

∂

(∑
i

ai[γi,1|γi,2]

)
=
∑
i

(
γ−1
i,1 (τ)− τ

)
⊗ ai[γi,2]

on a generic 2-cycle in Z2(Γ,Z). This shows that

∂
(
H2(Γ,Z)

)
⊂ H1

(
Γ,Div0Hp(F )

)
,
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and from the very definition of the integration pairing it then follows that L ⊂
T (F ). Since this holds for all finite extensions F of Qp, we deduce that L is
contained in T (Qp).

Finally, the submodule L is invariant under the action of the Hecke operators
because the map Φ is Hecke equivariant. In fact, the boundary map ∂ is Hecke
equivariant by, e.g., [9, Lemma 5.1.3] (one just needs to formally replace Das-
gupta’s ∆Q = PGL2(Q) with Γ), and the integration map

∫
is Hecke equivariant

as well by Proposition 5.1. �

Set

π∗ := (π1)∗ ⊕ (π2)∗ : H1

(
XD

0 (pM),Z
)
−→ H1

(
XD

0 (M),Z
)2
,

where (πi)∗ is the push-forward of the map πi for i = 1, 2.

Lemma 6.2. There is a canonical injection λ : ker(π∗) ↪→ H which has finite
cokernel and is equivariant for the action of W∞.

Proof. As endomorphisms of H1

(
ΓD0 (M),Z

)2
, there is an equality

π∗ ◦ π∗ =

(
p+ 1 Tp
Tp p+ 1

)
.

But the eigenvalues of Tp are bounded by 2
√
p, so the above endomorphism is

injective and has finite cokernel. A formal argument concludes the proof. �

There is yet another way to interpret ker(π∗). Namely, applying Shapiro’s
lemma to the long exact sequence in homology attached to (14) gives an exact
sequence of abelian groups

(30) H2

(
ΓD0 (M),Z

)2 −→ H2(Γ,Z)
θ−→ H1

(
ΓD0 (pM),Z

) π∗−→ H1

(
ΓD0 (M),Z

)2
,

with θ being the connecting homomorphism; it follows that

(31) ker(π∗) = Im(θ).

Below, fix τ ∈ Kp − Qp such that red(τ) = v∗ and use it to compute the map ∂
on Z2(Γ,Z) as in the proof of Proposition 6.1.

Proposition 6.3. The diagram

H2(Γ,Z)
θ //

∂

��

Φ

&&LLLLLLLLLLLL
ker(π∗)

λ // H

−tr

��
H1(Γ,D)

R
// T (Kp)

ordp // H

is commutative.

Proof. Thanks to relation (4) and the obvious commutativity

(32) ordp ◦ tr = tr ◦ ordp : T (Qp) = Q×p ⊗H −→ H,
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it suffices to show that the diagram

H2(Γ,Z)
θ //

∂

��

ker(π∗)
λ // H

−id

��
H1(Γ,D)

R
// T (Kp)

ordp // H

is commutative. To compute the integration map
∫

, fix a harmonic (e.g., radial)
system of representatives Y for ΓD0 (pM)\Γ.

Let a =
∑

i ai
[
γi,1|γi,2

]
, with ai ∈ Z, be an element of Z2(Γ,Z); it follows from

Proposition 5.3 and the definitions of ∂ and of pairing (24) that

ordp

(∫
∂(a)

)
= ordp

(
〈∂(a),µ〉

)
=
∑
i

aiordp

(
×
∫
t− γ−1

i,1 (τ)

t− τ
dµYH,γi,2(t)

)

=
∑
i

ni∑
j=1

(−1)jai[gi,j]

(33)

where the gi,j ∈ ΓD0 (pM) are defined as follows:

• consider an even geodesic {e(i)
1 , . . . , e

(i)
ni } from v∗ to γ−1

i,1 (v∗);

• define gi,j ∈ ΓD0 (pM) via the equation γ
e
(i)
j
· γi,2 = gi,j · γe′i, j for some

e′i, j ∈ E+.

This accounts for half of the above diagram. As for the other half, the map λ is
just the restriction to ker(π∗) of the projection H1

(
ΓD0 (pM),Z

)
→ H, whereas the

explicit description of θ is somewhat more involved, since θ is the composition of
the connecting homomorphism H2(Γ,Z)→ H1(Γ, CE) in the long exact sequence
attached to (14) with the isomorphism H1(Γ, CE) ' H1

(
ΓD0 (pM),Z

)
provided by

Shapiro’s lemma. By unwinding definitions and writing down explicit expressions
of these two maps at the level of chains, one obtains that

(34) λ
(
θ(a)

)
=
∑
i

∑
e∈E+

αe,i · ai ⊗ [ge,i]

where

• Ei =
∑

e∈E+ αe,i · e ∈ CE , with αe,i ∈ Z, is such that ϕ(Ei) = γ−1
i,1 (v∗)− v∗;

• γe · γi,2 = ge,i · γe′i for e′i ∈ E+ and ge,i ∈ ΓD0 (M).

Here recall from (14) that ϕ(e) := t(e)−s(e). In our case, for all i we may choose

Ei :=
n∑
j=1

(−1)j−1e
(i)
j ∈ Z[E+].

The claim of the proposition follows immediately by comparing (33) and (34). �

We can now prove the main result of this section.
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Theorem 6.4. The submodule L of T (Qp) is a lattice of rank 2g.

Proof. According to [23, §4.2], it suffices to show that the image of L under the
map

ordp : T (Qp) −→ H ⊂ H ⊗ R
is a lattice of rank 2g in the R-vector space H ⊗ R. Since H2(Γ,Z) is a finitely
generated abelian group, the same is true of ordp(L). Moreover, by construction,
H is a free discrete submodule ofH⊗R, hence ordp(L) is a free discrete submodule
of H⊗R as well. Now, extending our previous notation by linearity, observe that

rankZ
(
ordp(L)

)
= dimQp

(
ordp ◦

∫
◦ ∂
(
H2(Γ,Qp)

))
.

By Proposition 6.3, we know that

ordp ◦
∫
◦ ∂ = −(tr ◦ λ ◦ θ)⊗Z Qp.

The map λ ⊗ Qp is surjective by Lemma 6.2, while so is tr ⊗ Qp because the
absolute values of the Hecke operator Tr acting on H are bounded from above
by 2
√
r. Combining this with (31), we obtain that the image of ord ◦

∫
◦ ∂ is

H ⊗Qp, whose dimension over Qp is 2g. �

7. The p-adic uniformization

7.1. The main theorem. The ultimate goal of this section is to prove Theorem
1.1, which represents the main contribution of this article. We start by observing
that, in analogy with [10], Theorem 1.1 is a consequence of the following result.

Theorem 7.1. The equality of maps LDp · ordp = logp holds on the lattice L.

For the convenience of the reader, let us explain why Theorem 7.1 implies
Theorem 1.1; we follow [10, pp. 449–450] closely. For any Z[W∞]-module M and
sign ε ∈ {±1} we set Mε := M/(W∞− ε). This applies in particular to the Hecke
module H; define

Tε := Gm ⊗Z Hε.

Since, as shown in the proof of Proposition 6.1, the map Φ is equivariant for the
action of W∞ and the cokernel of the canonical map H → H+⊕H− is supported
at 2, it follows that there exists an isogeny of 2-power degree

T/L −→ T+/L+ ⊕ T−/L−
of rigid analytic tori over Qp.

Fix a sign ε; we prove Theorem 1.1 by showing that Tε/Lε admits a Hecke-
equivariant isogeny over Kp to the rigid analytic space associated with
JD0 (pM)p-new.

Notice that it follows from Lemma 6.2 that ker(π∗)⊗Q is canonically isomorphic
to H ⊗Q and that there is a canonical injection λε : ker(π∗)ε ↪→ Hε. Write

T := TD
0 (M) ⊂ End(H ⊗Q)

for the image in End(H ⊗Q) of the Hecke algebra H(pM).
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Now we freely use the notation of §3.5; in particular, X is the group of degree
zero divisors on the set of supersingular points of XD

0 (M) in characteristic p and
X∗ is its Z-dual. Since X⊗Q, X∗⊗Q, Hε⊗Q and ker(π∗)ε⊗Q are free T-algebras
of rank one (see [15, Ch. 1]), we can choose Hecke-equivariant maps ξε and ηε
making the diagram

(35) ker(π∗)

ηε

��

λε // Hε
−tr // Hε

ξε

��
X

ordX // X∗

commute.
The map Φ, being W∞-equivariant, restricts to a map Φε : H2(Γ,Z)ε → Tε(Kp).

Consider the diagram

(36) H2(Γ,Z)ε
Φε //

θε

��

Tε(Kp)
ξε // X∗ ⊗K×p

ker(π∗)ε
ηε // X

j

OO

with the map θ having already made its appearance in the exact sequence (30).
In the statement below, let

ordp, logp : X∗ ⊗K×p −→ X∗ ⊗ Zp

denote the usual valuation and logarithm maps.

Proposition 7.2. Diagram (36) commutes up to elements in ker(logp)∩ker(ordp).

Proof. To begin with, the map ordp ◦ Φε is equal to −tr ◦ λε ◦ θε by Proposition
6.3. Thus

ordp ◦ ξε ◦ Φε = −ξε ◦ tr ◦ λε ◦ θε = ordX ◦ ηε ◦ θε = ordp ◦ j ◦ ηε ◦ θε,

where the first equality follows from the commutativity of ordp and ξε, the second
is a consequence of the commutativity of diagram (35) and the third follows
from the definition of ordX . Hence diagram (36) commutes up to elements in
ker(ordp). Since the maps in diagram (36) are Hecke equivariant, Theorem 7.1
and Proposition 3.4 imply that diagram (36) is commutative also up to elements
in ker(logp), from which the result follows. �

Notice that ker(logp) ∩ ker(ordp) is a finite subgroup of X∗ ⊗K×p whose order
is supported at the prime divisors of p− 1 if p > 2 (at 2 if p = 2). We are ready
to prove Theorem 1.1, which we reformulate below in terms of the ε-components.

Theorem 7.3. There is a Hecke-equivariant isogeny over Kp between the quotient
Tε/πε(L) and the rigid analytic space associated with JD0 (pM)p-new whose degree
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is divisible only by 2 and the primes dividing the order of ker(logp) ∩ ker(ordp)
and coker(ηε ⊗ id) for ε = ±.

Proof. Recall exact sequence (12), which gives a rigid-analytic uniformization of
JD0 (M)p-new in terms of X and the map j. Since ker(logp) ∩ ker(ordp) is finite,
Proposition 7.2 shows that the map ξε induces an isogeny

Tε/πε(L) −→ JD0 (M)p-new

which is defined over Kp. The Hecke-equivariance is immediate and the statement
on the degree of the isogeny follows from the bounds given above. �

As already mentioned, Theorem 7.3 immediately implies Theorem 1.1 in the
introduction. Furthermore, thanks to the Hecke-equivariance of the isogeny in
the theorem above, a proof of Greenberg’s conjecture [12, Conjecture 2] is also a
consequence of Theorem 7.3: see §7.7 for details.

The rest of the article will be devoted to proving Theorem 7.1.

7.2. A lifting theorem for measure-valued cohomology classes. As a piece
of notation, in the sequel writeM :=M(H⊗Zp) for the Zp-module of measures
on P1(Qp) (of arbitrary total mass) with values in H ⊗ Zp.

Define Y := Z2
p; we view the elements of Y as column vectors

(
x
y

)
– sometimes

written as rows only for notational convenience – and let the semigroup M2(Zp)
act on Y by left multiplication, so that

γ · ξ := (ax+ by, cx+ dy)

for every γ =
(
a b
c d

)
∈ M2(Zp) and every ξ =

(
x
y

)
∈ Y.

Similarly as before, writeMY for the Zp-module of measures on Y with values
in H⊗Zp. The above action can be used to define a left action of M2(Zp) onMY,
like the one introduced in §4.1. If ν ∈MY we let Supp(ν) denote the support of ν,
and we say that ν is supported on a compact open subset U of Y if Supp(ν) ⊂ U.
For any compact open subset U of Y we denote byMU the Zp-submodule ofMY
consisting of those measures supported on U. It is immediate to check that if
γ ∈M2(Zp) and ν ∈MU then γ · ν ∈MγU.

Let X := (Z2
p)
′ denote the set of primitive vectors in Y, that is, the set of

elements (a, b) ∈ Y such that a and b are not both divisible by p. Again, write
MX for the Zp-module of H ⊗ Zp-valued measures on X. We omit the proof of
the following

Lemma 7.4. The kernel of the canonical projection q : MY →MX is preserved
by the action of M2(Zp).

As a consequence of Lemma 7.4, one can define a left action of M2(Zp) onMX
by the formula

γ · ν := q
(
γ · i(ν)

)
= q(γ · ν̃)

for every ν̃ such that q(ν̃) = ν.



32 MATTEO LONGO, VICTOR ROTGER AND STEFANO VIGNI

Now consider the map

π : X −→ P1(Qp), (a, b) 7−→ [(a, b)],

whose fibers are principal homogeneous spaces for Z×p . The action of M2(Zp)
on Y restricts to an action of GL2(Zp) on X and π is a homomorphism of left
GL2(Zp)-modules, where the left action of GL2(Zp) on P1(Qp) is by fractional
linear transformations. The fibration π induces by push-forward a map

π∗ : H
1
(
ΓD0 (M),MX

)
−→ H1

(
ΓD0 (M),M

)
where π∗(ν)γ(U) := νγ

(
π−1(U)

)
for every ν ∈ H1(Γ,MX), every γ ∈ Γ and every

compact open subset U of P1(Qp).
Recall the class µ ∈ H1(Γ,M0(H)) defined in §4.2, which we can naturally

regard now as an element of H1(Γ,M).

Theorem 7.5. There exists µ̃ ∈ H1
(
ΓD0 (M),MX

)
such that π∗(µ̃) is the restric-

tion of µ to ΓD0 (M).

In order to prove Theorem 7.5, for every integer r ≥ 1 let Xr be the set of
primitive vectors in (Zp/p

rZp)
2, again endowed with the natural left action of

GL2(Zp). One immediately verifies that X ' lim←−Xr with respect to the canonical
projection maps.

For r ≥ 1 let Γr := ΓD1 (pr) ∩ ΓD0 (M), which is a congruence subgroup of
ΓD0 (prM).

Proposition 7.6. For every r ≥ 1 set

Ũr :=
{

(x, y) ∈ X | x ∈ 1 + prZp, y ∈ prZp

}
⊂ X

and
Ur :=

{
[x : y] ∈ P1(Qp) | x ∈ 1 + prZp, y ∈ prZp

}
⊂ P1(Qp).

The maps

(i) H1
(
ΓD0 (M),MX

) '−→ lim←−
r

H1(Γr, H ⊗ Zp),

µ̃ 7−→ {µ̃r}r≥1, µ̃r(γ) := µ̃γ(Ũr),

(ii) H1
(
ΓD0 (M),M

) '−→ lim←−
r

H1
(
ΓD0 (prM), H ⊗ Zp

)
,

µ 7−→ {µr}r≥1, µr(γ) := µγ(Ur)

are isomorphisms.

Proof. We provide details for (i) only, as (ii) is completely analogous. For all
r ≥ 1 the action of GL2(Zp) on Xr is transitive and the stabilizer of (1, 0) is the
subgroup Σ(pr) consisting of the matrices

(
a b
c d

)
with a ≡ 1 (mod pr) and c ≡ 0

(mod pr). Thus the map
(
a b
c d

)
7→ (a, c) describes a bijection between the set of

classes GL2(Zp)/Σ(pr) and Xr.
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LetMXr be the Zp-module of H⊗Zp-valued measures on Xr. Since Xr is a finite
set, the moduleMXr identifies canonically with the Zp-module of H ⊗Zp-valued
functions on Xr. Then we have a canonical isomorphism of GL2(Zp)-modules

(37) MX ' lim←−
r

MXr , µ 7−→
[
v 7→ µ

(
v + prZ2

p

)]
where the inverse limit is computed with respect to the norm maps νr :
MXr → MXr−1 which, for r ≥ 2, are defined by µ 7→ [x 7→

∑
πr(y)=x µ(y)].

Here πr : Xr → Xr−1 stands for the canonical projection.
Note that ΓD0 (M) injects into GL2(Zp) via ιp, and in this way it acts on Xr.

Since ΓD0 (M) is dense in GL2(Zp) with respect to the p-adic topology, it follows
that the action of ΓD0 (M) on Xr induced by ιp is transitive. Hence, since Γr =
Σ(pr)∩ΓD0 (M), for all r ≥ 1 there exists, as above, a bijection between ΓD0 (M)/Γr
and Xr.

The set of functions MXr is then identified with the set of functions from
the cosets ΓD0 (M)/Γr to H ⊗ Zp, which is in bijection with the set of func-
tions φ : ΓD0 (M) → H ⊗ Zp such that φ(γ · δ) = φ(γ) for all γ ∈ ΓD0 (M) and

all δ ∈ Γr, namely, the coinduced ΓD0 (M)-module Coind
ΓD0 (M)
Γr

(H ⊗ Zp). Thus
Shapiro’s lemma shows that

(38) H1
(
ΓD0 (M),MXr

)
' H1

(
ΓD0 (M),Coind

ΓD0 (M)
Γr

(H⊗Zp)
)
' H1(Γr, H⊗Zp).

Finally, we obtain

H1
(
ΓD0 (M),MX

)
' H1

(
ΓD0 (M), lim←−

r

MXr
)

' lim←−
r

H1
(
ΓD0 (M),MXr

)
' lim←−

r

H1(Γr, H ⊗ Zp)

where the first isomorphism follows from (37), the second from [22,
Corollary 2.3.5] and the fact that ΓD0 (M) is finitely generated, and the third
from (38). �

Now we prove a result which obviously implies Theorem 7.5.

Proposition 7.7. The map

π∗ : H
1
(
ΓD0 (M),MX

)
−→ H1

(
ΓD0 (M),M

)
is surjective.

Proof. A simple computation shows that there is a commutative square

H1
(
ΓD0 (M),MX

) π∗ //

'

��

H1
(
ΓD0 (M),M

)
'

��
lim←−
r

H1(Γr, H ⊗ Zp)
lim←− corr

// lim←−
r

H1
(
ΓD0 (prM), H ⊗ Zp

)
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in which

corr := cor
ΓD0 (prM)
Γr

: H1(Γr, H ⊗ Zp) −→ H1
(
ΓD0 (prM), H ⊗ Zp

)
is the corestriction (or transfer) map as defined, e.g., in [7, Ch. III, §9] and the
vertical isomorphisms are those in Proposition 7.6. By Poincaré duality, and
because H is a free abelian group endowed with the trivial action of Γ, one has

H1(Γr, H ⊗ Zp) ' H1(Γr,Zp)⊗H ' Tap(Jr)⊗H.

Here Jr stands for the Jacobian variety of Xr = Γr\H and Tap(Jr) is the p-adic
Tate module of Jr. The restriction maps

H1(Γr, H ⊗ Zp) −→ H1(Γr−1, H ⊗ Zp)

turn out to be induced by the canonical maps between Tate modules

Tap(Jr) −→ Tap(Jr−1)

arising from the universal property of Albanese varieties. Let us introduce the
projective limit

Tap(J∞) := lim←−
r

Tap(Jr).

The diamond operators act on Tap(Jr) and induce an action of 1+pZp on Tap(J∞).
In this way the limit Tap(J∞) becomes a module over the Iwasawa algebra Λ :=
Zp[[1 + pZp]].

Similarly, for all r ≥ 1 there is an isomorphism

H1
(
ΓD0 (prM), H ⊗ Zp

)
' Tap

(
JD0 (prM)

)
⊗H,

and we can again form the projective limit

Tap
(
JD0 (p∞M)

)
:= lim←−Tap

(
JD0 (prM)

)
.

If IΛ is the augmentation ideal of Λ then the map

lim←−
r

H1(Γr, H ⊗ Zp)
lim←− corr
−−−−→ lim←−

r

H1
(
ΓD0 (prM), H ⊗ Zp

)
corresponds, via the above isomorphisms, to the map

(39) Tap(J∞)⊗H −→
(
Tap(J∞)/IΛ · Tap(J∞)

)
⊗H ' Tap

(
JD0 (p∞M)

)
⊗H

because JD0 (prM) is precisely the quotient of Jr by the action of the diamond
operators. The map (39) is visibly surjective, and the proposition is proved. �
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7.3. Splitting cocycles. Recall the homomorphism Φ: H2(Γ,Z)→ T (Cp) from
Section 6, whose image is contained in T (Qp) and is, by definition, the lattice L.
Since T (Cp) is divisible, by the universal coefficient theorem there is a natural
isomorphism

H2
(
Γ, T (Cp)

)
' Hom

(
H2(Γ,Z), T (Cp)

)
,

and Φ defines in this way an element d ∈ H2
(
Γ, T (Cp)

)
. By construction, the

image in
H2
(
Γ, T (Cp)/L

)
' Hom

(
H2(Γ,Z), T (Cp)/L

)
of the class d is trivial, and L is the smallest subgroup of T (Qp) with this property.
Fix a point τ ∈ Kp − Qp, i.e., a Kp-rational point on Hp. Independently of this
choice, the class d can be represented by the 2-cocycle d ∈ Z2

(
Γ, T (Kp)

)
given

by

(40) dγ1,γ2 := ×
∫

P1(Qp)

t− γ−1
1 (τ)

t− τ
dµγ2(t),

where µ is a 1-cocycle representing µ.
Set Hp := H ⊗Kp for the rest of the article and consider the map

βL : T (Kp) −→ Hp, h⊗ k 7−→ h⊗ logp(k)− LDp · h⊗ ordp(k)

and the 2-cocycle βL ◦ d ∈ Z2(Γ, Hp), whose image in H2(Γ, Hp) we denote by
dL. Then βL(L) is the smallest subgroup of Hp such that the image of dL in
H2
(
Γ, Hp/βL(L)

)
is trivial.

Theorem 7.1 is a direct consequence of the following result.

Theorem 7.8. The cohomology class dL ∈ H2(Γ, Hp) is trivial.

This is the statement that we will prove in various steps in the remaining
subsections. To begin with, as in §6.4, we pick the base point τ ∈ Kp − Qp

appearing in (40) in such a way that red(τ) = v∗. In order to show that dL
is trivial in H2(Γ, Hp), we shall first prove that it splits when restricted to the
subgroup ΓD0 (M).

With obvious notation, the first observation is that

(41) (dL)|ΓD0 (M) = logp(d)|ΓD0 (M).

In fact, since red(τ) = v∗ and γ1 lies in the stabilizer of this vertex, we have

red
(
γ−1

1 (τ)
)

= γ−1
1

(
red(τ)

)
= v∗,

thanks to the GL2(Qp)-invariance of the reduction map. Thus the geodesic joining
red(τ) with red

(
γ−1

1 (τ)
)

is trivial and Proposition 5.3 asserts that

ordp

(
×
∫
t− γ−1

1 (τ)

t− τ
dµYH,γ2

(t)

)
= 0.

Since ordp ◦ tr = tr ◦ ordp, it follows from (4) and (40) that ordp(d) vanishes on
ΓD0 (M), whence equality (41).
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Let now µ̃ ∈ H1
(
ΓD0 (M),MX

)
be as in Theorem 7.5 and choose µ̃ ∈

Z1
(
ΓD0 (M),MX

)
representing µ̃. Note that these are cocycles with values in

measures taking values in H ⊗ Zp, which naturally embeds in Hp.

Definition 7.9. The 1-cochain ρ = ρτ ∈ C1
(
ΓD0 (M), Hp

)
is defined as

ργ := −
∫

X
logp(x− τy)dµ̃γ(x, y).

Note that ρ depends both on the choice of µ̃ and on the choice of τ , but we
shall drop any reference to either in order to lighten the notation.

Proposition 7.10. The 1-cochain ρ splits the 2-cocycle

(dL)|ΓD0 (M) = logp(d)|ΓD0 (M).

Proof. We must show that

γ1ργ2 + ργ1 − ργ1γ2 = logp(dγ1,γ2)

for all γ1, γ2 ∈ ΓD0 (M). Since the action of ΓD0 (M) on H ⊗Kp is trivial, one has

γ1ργ2 + ργ1 − ργ1γ2 = −
∫

X
logp(x− τy)d

(
µ̃γ1 + µ̃γ2 − µ̃γ1γ2

)
(x, y)

= −
∫

X
logp(x− τy)d

(
µ̃γ2 − γ1µ̃γ2

)
(x, y).

Thus if γ1 =
(
a b
c d

)
then

γ1ργ2 + ργ1 − ργ1γ2 = −
∫

X
logp(x− yτ)d

(
µ̃γ2 − γ1dµ̃γ2

)
(x, y)

= −
∫

X
logp

(
x− τy

ax+ by − τ(cx+ dy)

)
dµ̃γ2(x, y).

Now we argue as in [10, Proposition 5.14]. With notation as in §7.2, let µ :=
π∗(µ̃); since the integrand above depends only on x/y, we deduce that

γ1ργ2 + ργ1 − ργ1γ2 =

∫
P1(Qp)

logp

(
at+ b− (ct+ d)τ

t− τ

)
dµγ2(t)

=

∫
P1(Qp)

logp

(
t− γ−1

1 (τ)

t− τ

)
dµγ2(t)

−
∫

P1(Qp)

logp (a− cτ) dµγ2(t).

Since µγ2 has total mass zero, the last integral in the above expression vanishes,
and the result follows from (40). �
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7.4. Passing from ΓD0 (M) to Γ̂D0 (M). Notations and some of the ideas in this
subsection are borrowed from [1, §1]. Let Y be a locally compact and totally
disconnected (p-adic) topological space endowed with a left action of M2(Zp).

Recall from §2.2 the elements gi = gi(p) for i = 0, . . . , p− 1, which give rise to
the decomposition of the double cosets associated with the Hecke operator Up,
and recall also the set of representatives{

α∞ := 1, α0 := ω−1
p g0, . . . , αp−1 := ω−1

p gp−1

}
for the cosets ΓD0 (M)/ΓD0 (pM). Assume there exists a compact open subset Y∞
of Y satisfying the following conditions:

(I) γY∞ = Y∞ for all γ ∈ ΓD0 (pM);
(II) if Yi := αi ·Y∞ for i = 0, . . . , p−1 and Yaff :=

∐p−1
i=0 Yi then Y = Y∞

∐
Yaff ;

(III) gi · Y∞ ⊂ Y∞ and
∐p−1

i=0 gi · Y∞ = Y∞;
(IV) ωp · Yaff = Y∞ and ωp · Y∞ = pYaff , so that ωp · Y = Y∞

∐
pYaff .

Then it follows from (I) and (II) that

MY ' Coind
ΓD0 (M)

ΓD0 (pM)
(MY∞),

and Shapiro’s lemma produces an isomorphism

S : H1
(
ΓD0 (M),MY

) '−→ H1
(
ΓD0 (pM),MY∞

)
.

Conditions (III) and (IV) on Y∞ ensure that the Hecke operator Up is well defined
and well behaved on H1

(
ΓD0 (pM),MY∞

)
. In the spirit of [1, Lemma 1.1.4], we

transport the operator Up to an operator on H1
(
ΓD0 (M),MY

)
by means of the

isomorphism S . Namely, define

(42) U p := S −1UpS .

The same argument applied to Γ̂D0 (M) in place of ΓD0 (M) shows the existence of
an isomorphism

Ŝ : H1
(
Γ̂D0 (M),Mωp·Y

) '−→ H1
(
ΓD0 (pM),Mωp·Y∞

)
.

Lemma 7.11. For every ν ∈ H1
(
ΓD0 (M),MY

)
one has

(i) W−1
p Up

(
resΓD0 (pM)(ν |Y∞)

)
= resΓD0 (pM)(ν |Yaff

);

(ii) U2
p

(
resΓD0 (pM)ν |Y∞

)
=
(
WpUpresΓD0 (pM)ν

)
|Y∞

;

(iii)
(
WpUpresΓD0 (pM)ν

)
|pYaff

= WpUp
(
resΓD0 (pM)ν |Y∞

)
=
(
W 2
p resΓD0 (pM)(ν)

)
|pYaff

.

Moreover, for every ν ∈ H1
(
Γ̂D0 (M),Mωp·Y

)
one has

(iv) UpW
−1
p

(
resΓD0 (pM)(ν |pYaff

)
)

= resΓD0 (pM)(ν |Y∞).
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Proof. Let us show (i) first, the remaining statements being applications of or
variations on it. Let ν ∈ H1

(
ΓD0 (M),MY

)
and fix a representative ν of ν in

Z1
(
ΓD0 (M),MY

)
; set n := resΓD0 (pM)(ν|Y∞). An easy formal calculation shows

that for all γ ∈ ΓD0 (pM) the equality

(43) αi · να−1
i γαj(i)

= νγ − ναi + γ · ναj(i)
holds in Z1

(
ΓD0 (M),MY

)
. Here i 7→ j(i) is the permutation of indices such that

α−1
i γαj(i) ∈ ΓD0 (pM).
Since αi · nα−1

i γαj(i)
is supported on Yi, we deduce that

αi · nα−1
i γαj(i)

= νγ|Yi − ναi|Yi + (γναj(i))|Yi .

Note, however, that γ(ναj(i)|Yj(i)) = (γναj(i))|Yi ; the reason is that, since γ be-

longs to αi · ΓD0 (pM)α−1
j(i), both measures are supported at Yi and are in fact the

restriction of ναj(i) to this compact open subset of Y .

Setting m :=
∑p−1

i=0 ναi|Yi ∈MYaff
, equality (43) shows that

p−1∑
i=0

αiνα−1
i γαj(i)

=

p−1∑
i=0

νγ|Yi + γm−m.

Since αi = ω−1
p gi, by definition the first term is W−1

p Up(n). On the other hand,

the second term equals resΓD0 (pM)(ν|Yaff
) in H1

(
ΓD0 (pM),MYaff

)
, and (i) is proved.

For (iii), it suffices to show that

WpUp
(
resΓD0 (pM)ν |Y∞

)
= W 2

p resΓD0 (pM)

(
ν |Yaff

)
,

and this is is deduced from (i) upon applying W 2
p .

Part (iv) follows from (i) by taking into account that for every compact open
subset U of Y the map Wp induces an isomorphism

Wp : H1
(
ΓD0 (M),MU

) '−→ H1
(
Γ̂D0 (M),Mωp·U

)
.

Finally, to check (ii) it is again enough to prove that

U2
p

(
resΓD0 (pM)ν |Y∞) = WpUpresΓD0 (pM)

(
ν |Yaff

)
,

which follows by applying (iv) to WpU pν. �

Since ω2
p = p · gp for some gp ∈ ΓD0 (pM), the map W 2

p sends an element ν ∈
Z1
(
ΓD0 (M),MU

)
to the cocycle γ 7→ p · gpνg−1

p γgp
. A straightforward calculation

then shows that
gpνg−1

p γgp
= νγ + γνgp − νgp .

Thus, since the map γ 7→ γνgp − νgp is a coboundary, the equality

(44) W 2
p ν = p · ν

holds in H1
(
ΓD0 (pM),MU

)
for every compact open subset U of Y .



UNIFORMIZATIONS OF JACOBIANS OF SHIMURA CURVES 39

7.5. Splitting on Γ̂D0 (M). Define ˆ̃µ := WpU pµ̃ ∈ H1
(
Γ̂D0 (M),MωpX

)
and let ˆ̃µ

be a 1-cocycle representing ˆ̃µ. As above, we can define a Z×p -bundle

π̂ : ωpX −→ P1(Qp), (x, y) 7−→ x/y

which induces a map π̂∗ on cohomology.

Lemma 7.12. π̂∗
(
ˆ̃µ
)

= resΓ̂D0 (M) (µ).

Proof. It is immediate to check that WpU pµ̃ is a lift of WpU p · resΓD0 (M)(µ), that
is

π̂∗
(
ˆ̃µ
)

= WpU p · resΓD0 (M)(µ).

According to (42), one has U p = S −1 · Up ·S . Since ΓD0 (pM) is a subgroup of
finite index in ΓD0 (M), [1, Lemma 1.1.4] ensures that Shapiro’s isomorphism S

commutes with the action of Wp. More precisely, we have Ŝ −1 ·Wp = Wp ·S −1,
hence we must show that

Ŝ −1 ·Wp · Up ·S
(
resΓD0 (M)(µ)

)
= resΓ̂D0 (M) (µ).

Thanks to part (iii) of Lemma 7.11 applied to ν := resΓD0 (M)(µ), we have

Wp · Up ·S (ν) = W 2
p

(
resΓD0 (pM)(ν |Zp)

)
in H1

(
ΓD0 (pM), pZp

)
. Noting that P1(Qp)aff = Zp, it thus suffices to show that

Ŝ
(
resΓ̂D0 (M)(µ)

)
= W 2

p

(
resΓD0 (pM)(µ|Zp)

)
.

On the left hand side, the term Ŝ
(
resΓ̂D0 (M)(µ)

)
is equal, by definition, to

resΓD0 (pM)

(
µ|Zp

)
, since ωp

(
P1(Qp) − Zp

)
= Zp. On the right hand side, since

the action of GL2(Qp) on P1(Qp) factors through PGL2(Qp), we can argue as in
(44) and obtain that W 2

p (m) = resΓD0 (pM)

(
µ|Zp

)
for m = resΓD0 (pM)(ν |Zp), as we

wished to show. �

Thanks to Lemma 7.11 and equality (44), for all γ̂ ∈ Γ̂D0 (pM) we can write

(45) ˆ̃µγ̂ = U2
p µ̃γ̂ + γ̂m1 −m1 on X∞, ˆ̃µγ̂ = pµ̃γ̂ + γ̂m2 −m2 on pXaff

with m1 ∈ MX∞ and m2 ∈ MXaff
. The same argument as in Lemma 5.2 shows

that
U2
p (resΓD0 (pM)µ)γ = U2

p (µγ) = µγ.

Furthermore, it is clear that pµγ = µγ for all γ ∈ ΓD0 (pM), because the action
of GL2(Qp) on P1(Qp) factors through PGL2(Qp). Thus we find from (45) and
Lemma 7.12 that π̂∗(m1) and π̂∗(m2) are ΓD0 (pM)-invariant Hp-valued measures
on P1(Qp) and Zp, respectively. One easily shows that the groups of such measures
are trivial; the reason for this is that the ΓD0 (pM)-invariance would otherwise
contradict the fact that measures have to be p-adically bounded. Thus π̂∗(m1) = 0
on P1(Qp)− Zp and π̂∗(m2) = 0 on Zp.
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Now define the 1-cochain ρ̂ ∈ C1
(
Γ̂D0 (M), Hp

)
by the rule

ρ̂γ̂ :=−
∫
ωpX

logp(x− τy)d ˆ̃µγ̂(x, y) +

∫
X∞

logp(x− τy)d(γ̂m1 −m1)(x, y)

+

∫
pXaff

logp(x− τy)d(γ̂m2 −m2)(x, y)

for all γ̂ ∈ Γ̂D0 (M). As above, this cochain depends on τ and on the choices made
for the representatives of the cohomology classes. Nevertheless, we can prove

Proposition 7.13. The 1-cochain ρ̂ splits the 2-cocycle logp(d)|Γ̂0(M).

Proof. As in the proof of Proposition 7.10, if γ̂1 =
(
a b
c d

)
then γ̂1ρ̂γ̂2 + ρ̂γ̂1 − ρ̂γ̂1γ̂2

is the sum of the three integrals

A := −
∫
ωpX

logp

(
x− τy

ax+ by − τ(cx+ dy)

)
d ˆ̃µγ̂2(x, y),

B :=

∫
X∞

logp

(
x− τy

ax+ by − τ(cx+ dy)

)
d(γ̂2m1 −m1)(x, y),

C :=

∫
pXaff

logp

(
x− τy

ax+ by − τ(cx+ dy)

)
d(γ̂2m2 −m2)(x, y).

Since B and C depend only on x/y, from the vanishing of π∗(m1) and π∗(m2) we
deduce that B = C = 0. As in the proof of Proposition 7.10, the claim follows
from Lemma 7.12. �

7.6. Proof of Theorem 7.8. Set U := P1(Qp) − Zp and write µ for a cocycle
in Z1(Γ,M) representing µ. Since every γ ∈ ΓD0 (pM) leaves U invariant, the
cochain µU given by the rule

µU(γ) :=
(
µ|ΓD0 (pM)

)
γ
(U)

is independent of the choice of µ and belongs to Z1
(
ΓD0 (pM), Hp

)
. Below, by

LDp · µU

we obviously mean the cocycle γ 7→ LDp · µU(γ), with LDp acting on H as usual.

Lemma 7.14. The equality (ρ − ρ̂)|ΓD0 (pM) = LDp · µU holds in the group

Z1
(
ΓD0 (pM), Hp

)
.
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Proof. Let γ ∈ ΓD0 (pM). Using the decompositions X = X∞
∐

Xaff and ωpX =
X∞

∐
pXaff we split the difference

ργ − ρ̂γ =−
∫

X
logp(x− τy)dµ̃γ +

∫
ωpX

logp(x− τy)d ˆ̃µγ

−
∫

X∞
logp(x− τy)d(γm1 −m1)

−
∫
pXaff

logp(x− τy)d(γm2 −m2)

into the sum of A and B with

A := −
∫

X∞
logp(x− τy)dµ̃γ +

∫
X∞

logp(x− τy)d ˆ̃µγ

−
∫

X∞
logp(x− τy)d(γm1 −m1)

and

B := −
∫

Xaff

logp(x− τy)dµ̃γ +

∫
pXaff

logp(x− τy)d ˆ̃µγ

−
∫
pXaff

logp(x− τy)d(γm2 −m2).

By formulas (45), one has

A = −
∫

X∞
logp(x− τy)

(
1− U2

p

)
dµ̃γ.

As for B, since logp(p) = 0, using again (45) we can write∫
pXaff

logp(x− τy)d
(
W 2
p µ̃
)
γ

=

∫
Xaff

logp(px− τpy)dµ̃γ

+

∫
pXaff

logp(x− τy)d(γm2 −m2)

=

∫
Xaff

logp(x− τy)dµ̃γ

+

∫
pXaff

logp(x− τy)d(γm2 −m2),

whence B = 0. Therefore

(46) (ρ− ρ̂)γ = −
∫

X∞
logp(x− τy)

(
1− U2

p

)
dµ̃γ.

By [10, Lemma 5.16] (once one makes the obvious modifications in the notation;
namely, replace m by γ and −ψ(m) by µγ(U)), the integral in (46) is equal to
LDp · µγ(U), and the proof is complete. �
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Since Γ = ΓD0 (M) ∗ΓD0 (pM) Γ̂D0 (M) by (13), the Mayer–Vietoris long exact se-

quence for amalgamated products of groups (cf. [26, Theorem 2.3]) yields an
exact sequence

H1
(
ΓD0 (pM), Hp

) ∆−→ H2(Γ, Hp) −→ H2
(
ΓD0 (M), Hp

)
⊕H2

(
Γ̂D0 (M), Hp

)
−→ H2

(
ΓD0 (pM), Hp

)
which, by means of the identifications provided by Shapiro’s lemma, can also
be regarded as the long exact sequence in cohomology associated with the short
exact sequence of Γ-modules

0 −→ Hp −→ F(V , Hp)
F−→ F0(E , Hp) −→ 0

with F (f)(e) := f
(
t(e)
)
−f
(
s(e)

)
for all e ∈ E . Observe that this exact sequence

is nothing other than the dual of (14).
Let ρ− ρ̂ denote the class of (ρ − ρ̂)|ΓD0 (pM) in H1

(
ΓD0 (pM), Hp

)
. The last

ingredient we need is the following

Proposition 7.15. ∆(ρ− ρ̂) = LDp · ordp(d).

Proof. Writing µU for the class of the cocycle µU in H1
(
ΓD0 (pM), Hp

)
, by Lemma

7.14 it is enough to prove that

∆(µU) = ordp(d)

in H2(Γ, Hp). This equality, which is the counterpart of [12, Equation (22)],
follows by combining Proposition 5.3, the commutativity relation (32) and the
explicit description of the map ∆. �

Now we can prove Theorem 7.8, which implies Theorem 7.1.

Proof of Theorem 7.8. The combination of Propositions 7.10 and 7.13 ensures
that logp(d) lies in the image of ∆; in fact, it follows from the definition of the
maps involved in the above Mayer–Vietoris sequence that

logp(d) = ∆(ρ− ρ̂),

because ρ and ρ̂ split logp(d)|ΓD0 (M) and logp(d)|Γ̂0(M), respectively. Proposition
7.15 then asserts that

logp(d) = LDp · ordp(d),

hence dL is trivial in H2(Γ, Hp). �

7.7. Proof of a conjecture of M. Greenberg. As an application of Theo-
rem 7.1, we give a proof of the conjecture formulated by M. Greenberg in [12,
Conjecture 2] in the special case where the totally real field appearing in [12] is Q.

To state this result, let E/Q be an elliptic curve of conductor N = pMD and let
K be a real quadratic field in which the primes dividing M split and the primes
dividing pD are inert. In particular, the completion Kp of K at the unique
prime above p is the unramified quadratic extension of Qp, so this notation is
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consistent with the one used in the rest of the paper. Observe that E acquires
split multiplicative reduction over Kp, write qE ∈ pZp for Tate’s p-adic period of
E and let 〈qE〉 be the lattice in K×p generated by qE.

Now, as in [12, §3.4], choose a sign ε ∈ {±1} and set HE := H1(E,Z)εT . With
the notation used in the previous sections of this paper, there are natural Hecke-
equivariant surjections

H1

(
ΓD0 (pM),Z

)
−→ H

πE−→ HE.

One can attach to E the measure-valued cohomology class µE := µHE ∈
H1
(
Γ,M0(HE)

)
introduced at the end of §4.2.

Fix an isomorphism HE ' Z. For every prime ` write a`(E) for the `-th Fourier
coefficient in the q-expansion of the newform associated with E by modularity.
Thanks to Proposition 5.1 and Lemma 5.2, it is immediate to show that µE
spans the one-dimensional subspace of H1

(
Γ,M0(Q)

)
on which the Hecke algebra

H(p,M) acts via the map
λE : H(pM) −→ Z

attached to E such that

λE(T`) := a`(E) if ` - pDM, λE(Wp) := ap(E), λE(W∞) := ε.

Hence we conclude that our measure-valued class is an explicit version of the one
considered in [12, §8, (17)]. Recall from Sections 5 and 6 that there is a pairing

〈 , 〉E : H1(Γ,D)×H1
(
Γ,M0(HE)

)
−→ C×p ⊗HE ' C×p

and a Hecke-equivariant integration map∫
E

: H1(Γ,D) −→ C×p

which fits into the commutative triangle

H1(Γ,D)

R
//

R
E $$JJJJJJJJJJJJ

T (Cp)

id⊗πE
��

C×p .

Set

ΦE :=

∫
E

◦ ∂ : H2(Γ,Z) −→ C×p

and let LE ⊂ C×p denote the image of ΦE. Arguing as in the proof of Theorem
6.4, or invoking [12, Proposition 30], it follows that LE is a lattice in K×p .

As in [12, Definition 29], we say that two lattices Λ1 and Λ2 in K×p are homo-
thetic if Λ1 ∩ Λ2 has finite index in both Λ1 and Λ2.

The result we want to prove, which was originally proposed in [12, Conjec-
ture 2], is the following
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Theorem 7.16. The lattices LE and 〈qE〉 are homothetic in K×p .

Proof. Multiplicity one ensures that the Tate elliptic curve K×p /〈qE〉 is, up to

isogeny, the unique quotient of JD0 (pM)p-new on which the action of the Hecke
operators T` for ` - pDM and of the Atkin–Lehner involutions Wp and W∞
factors through λE. Similarly, K×p ⊗HE ' K×p is the unique quotient of K×p ⊗H
on which the action of these operators factors through λE.

Hence it follows from Theorem 1.1 that K×p /〈qE〉 and K×p /LE are isogenous
over Kp, which amounts to saying that the lattices LE and 〈qE〉 are homothetic
in K×p . �

Remark 7.17. If f ∈ S2(N)p-new is a normalized p-new eigenform with not neces-
sarily integral Fourier coefficients then Theorem 7.16, with the obvious modifica-
tions in the statement and in the proof, holds true as well.
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