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Abstract. The work studies a general multiserver queue in which the service
time of an arriving customer and the next interarrival period may depend on
both the current waiting time and the server assigned to the arriving customer.
Stability of the system is proved under general assumptions on the predeter-
mined distributions describing the model. The proof exploits a combination
of the Markov property of the workload process with a regenerative property
of the process. The key idea leading to stability is a characterization of the
limit behavior of the forward renewal process generated by regenerations. Ex-
tensions of the basic model are also studied.

1. Introduction

Including various dependencies in a queueing model to reflect real-life effects
makes it more realistic. The aim of this work is to establish stability conditions
for a multiserver queue in which the service time of an arriving customer, and
the next interarrival period are dependent on the customer’s waiting time and
its assigned server. This model contains a wide class of state-dependent queues.
The main motivation of this work is to present a wider framework in which
the regenerative approach combined with the Markov property of the workload
process are instrumental in the stability analysis of state-dependent queues. The
general model we consider illustrates this framework, but it also may have an
independent interest because some known and new systems can be analyzed as
special cases. We will not give an extensive description of state-dependent queues,
but only mention a few examples.

The simplest example is a workload-dependent model that uses a rejection rule
for arriving customers. In this case, the impatience of a customer reflects a simple
dependence between workload and service time in that the service time equals
zero if the workload exceeds a random time. A general form of this rejection rule
for an M/G/1 queue is presented in [1], where a state-dependent Poisson arrival
rate is also discussed. (An explicit steady-state solution for a Markovian model
with bounded waiting time was obtained earlier in [13].)

Another approach is used in [3], which considers systems with workload - depen-
dent arrival rates and service speeds. The results give explicit characterizations of
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the steady-state workload in M/G/1 type queues and in a general G/G/1 queue
with state-dependent release. In particular, the latter model generalizes several
well-known relations for the workload at arbitrary epochs and embedded instants
in the standard GI/G/1 queue. A wide class of state-dependent networks under
exponential assumptions is considered in [34].

In [10], Lindley’s recursion for the waiting time sequence is used to estab-
lish stability conditions for a single-server queue where the distribution of the
(discrete) service time of an arriving customer is determined by his waiting
time. The paper [41] is devoted to the stability analysis of a wide class of state-
dependent single-server queues described by a modified Lindley’s recursion. The
single-server queues with Poisson input and dependence between waiting time
and service time given by conditional distributions is considered in [32]. We also
mention earlier related works [9, 10, 14, 33].

An interesting interpretation of a reliability/maintenace model as queueing
system with a dependence between service time and the next interarrival time
is considered in [7]. There are related papers on ruin models, where dependence
between claim sizes and claim intervals is allowed. For instance, in [2] the time
between two claim occurrences depends on the previous claim size. (This work
also contains a list of relevant references.) The key element of the analysis in the
mentioned works is the Markovian property of the waiting time process, which
allows one to describe the dependence by (a modified) Tákacs integro-differential
equation, when the arrival process is Poisson (or state-dependent Poisson). A
rather complete bibliography on state-dependent queues satisfying Lindley-type
recursions can be found in [8, 40].

Our study concerns a general m-server queue in which the service time of an
arriving customer and next interarrival period may depend on both the current
waiting time and the server assigned to the arriving customer. A wide class of
(conditional) distributions describing the model is considered in such a way that
the workload process retains the Markov property. In general, such a complicated
system includes as specific cases both some well-studied and less known systems.
(This topic is discussed in section 5.) In such a general setting, we do not obtain
explicit formulas for the very complicated steady-state performance parameters.
Nevertheless, we are able to develop stability analysis under the assumption that
the workload Markov process has classical regenerations appearing when arriving
customers meet an empty system.

The stability analysis presented in this work is based on renewal theory and
a characterization of the limiting behavior of the forward renewal time in the
process generated by regenerations of the workload process. This approach turns
out to be effective in the stability analysis of many queues including general
retrial queue [28], and also multiserver system with non-identical servers [25].
This characterization gives a straightforward way to establish positive recurrence
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(finiteness of mean regeneration period) of the embedded renewal process of re-
generations in the terms of given distributions. (In a general form, this approach
is presented in [25].)

The main advantage of the presented approach is that, instead of the direct
proof of the finiteness of the mean regeneration period, that is typically a diffi-
cult problem, we show that the forward renewal time in the process generated
by regenerations does not go to infinity in probability. The latter condition is
typically much easier to verify. This verification consists of two steps: i) using
negative drift assumptions to show that the workload process does not go to in-
finity; ii) using regeneration assumptions to show that the forward regeneration
time does not go to infinity. Then the mentioned characterization immediately
implies positive recurrence of the basic process. Although the workload process
is Markovian, which is useful for intermediate steps of analysis, the presented
method also works successfully outside of Markovian models. A recent example
is in the paper [28]. Also recent review paper [30] contains detailed description
of the method with applications to various known and new models. (The latter
paper is based on the report [29].)

In the final section, we discuss in brief a possible relaxation of assumptions
implying more general one-dependent (or weak) regenerations, in which case the
workload process turns out to be a Harris Markov chain. In this case a depen-
dence between two adjacent cycles is allowed while the cycle lengths stay i.i.d. A
detailed presentation of this topic can be found, for instance, in [1, 16, 20, 39],
while some specific aspects related to one-dependent regeneration of queueing
processes are presented in [22]–[25], [31], [35]-[37]. A review paper [17] gives
sufficient and modern introduction to various techniques applying in stability
analysis of queues. Considerable attention in [17] is devoted to a popular and
effective stability analysis based on the fluid approximation, which uses the i.i.d.
assumptions [11, 12], but it is inapplicable to the models in the present work.
The work [17] also discusses a relation between Harris chains and the theory of
renovating events (developed in [5]).

This work is organized as follows. Section 2 describes our model in detail.
Section 3 contains the proof of the main result. An extension of the basic model
is considered in Section 4. Finally, Section 5 discusses the model assumptions
and compares them with stability assumptions for the known models, including
classical multiserver systems. We also discuss a possible relaxation of the as-
sumptions leading to one-dependent regeneration. The work is a considerable
revision of [26].

2. Description of the model

Consider a first-come-first-served m-server queue. Let {tn} be the arrival times
of customers, τn = tn+1 − tn, and let Sn be the service time of customer n,
n ≥ 1, t1 = 0. Denote the (unfinished) workload at server i at instant t−n by
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W
(i)
n , i = 1, . . . ,m. Then Wn = min1≤i≤m{W (i)

n } is the waiting time of customer
n. Unlike conventional models, we allow the random variables τn, Sn, Wn to be
dependent. To describe these dependencies, we introduce a sequence of random
variables σn ∈ {1, . . . ,m}, where σn is the server assigned to customer n. We
assume that on the event

En(dy, i) = {Wn ∈ dy, σn = i}
the interarrival time τn and service time Sn are (conditionally) independent (and
independent of everything else) and are distributed as some random variables
τi(y) and Si(x), with given distributions

Ai, y(x) = P(τi(y) ≤ x), Gi, y(x) = P(Si(y) ≤ x),(1)

respectively, x ≥ 0, y ≥ 0, n ≥ 1, i = 1, . . . ,m. We also use the notations
Fn(x) = P(Wn ≤ x), and (x)+ = max(0, x).

We adopt the major assumption that the assignment of servers to arriving
customers regenerates each time the system becomes empty. The assignment is
arbitrary for the case when a minimal value Wn is attained by several servers
simultaneously. Denote by νn the number of customers in the system at instant
t−n . The customers that meet an empty system are

βn = min(k > βn−1 : νk = 0), n ≥ 1 (β0 = 0).(2)

Then βn, when they are finite, constitute the classical regeneration epochs for
the processes {νn}, {Wn} with the i.i.d. regeneration periods βn − βn−1, n ≥ 2,
distributed as a random variable β. In the zero-delayed case, β1 = β and ν1 =
t1 = 0.

Define the forward renewal time β(n) = min { βk − n : βk − n > 0 } at instant
n ≥ 0 (β(0) = β1). In the zero-delayed case β(0) = β. The key to our stability
result is the following dichotomy describing the asymptotic behavior of β(n) [15].
For arbitrary initial value β1,

β(n)⇒∞ if and only if Eβ =∞.(3)

(⇒ stands for the convergence in probability.) To establish (stability) condition
Eβ <∞, it is sufficient to show that β(n) 6⇒ ∞, that is,

inf
k

P
(
β(nk) ≤ L

)
≥ ε,

for some constants L < ∞, ε > 0 and a non-random sequence nk → ∞. If
moreover, the regeneration period is aperiodic, then the stationary distribution
limn→∞ P(νn ∈ ·) exists. (In this case the stationary distribution of the vector
workload process also exists.)

We prove the condition Eβ < ∞ in two settings. In the first case, for each
i, we allow any number of different service time distributions Gi, y, but exclude
heavy-tailed ones. In contrast, in the second setting we assume that the number
of different distributions Gi, y is finite. Note that we consider the zero-delayed
case only.
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3. Stability analysis

First, we establish the stability conditions with no restriction on the number
of different (conditional) service time distributions Gi,y.

Theorem 1. Assume the following conditions hold for each i = 1, . . . ,m:

sup
x≥0

Eτi(x) <∞, sup
x≥0

ESi(x) <∞;(4)

lim sup
x→∞

E
(
Si(x)−mτi(x)

)
< 0;(5)

there exist ε > 0 and a finite constant T such that

inf
x≥0

inf
y≥0

Gi,y(x+ T )−Gi,y(x)

1−Gi,y(x)
≥ ε;(6)

for each x ≥ 0, there exists a constant δi(x) > 0 such that

inf
y≤x

P
(
τi(y) > δi(x) + Si(y)

)
:= ρi(x) > 0.(7)

Then

Eβ <∞.(8)

Proof. Define

Vn =
m∑
i=1

W (i)
n , ρ(x) = min

i
ρi(x), δ(x) = min

i
δi(x),

S(i)
n = SnI{σn=i}, i = 1, . . . ,m; n ≥ 1,

where I is the indicator function. Observe that V1 = 0, ρ(x) > 0 for each x ≥ 0

and
∑m

i=1 S
(i)
n = Sn, n ≥ 1. Instead of Kiefer-Wolfowitz recursion, we use the

following relations

W
(i)
n+1 = (W (i)

n + S(i)
n − τn)+, i = 1, . . . ,m, n ≥ 1.

Denoting the increments ∆n = Vn+1 − Vn, we have

∆n =
m∑
i=1

(W (i)
n + S(i)

n − τn)+ −
m∑
i=1

W (i)
n

= Sn −mτn +
m∑
i=1

(τn −W (i)
n − S(i)

n )+, n ≥ 1.(9)

On the event En(dx, i) denote the difference ∆n by ∆(x, i). Also note that

W (i)
n = x ≤ W (j)

n , j 6= i on the event En(dx, i).
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By (9) the following upper bound holds:

∆(x, i) = Si(x)−mτi(x) + (τi(x)− x− Si(x))+ +
∑
j 6=i

(τi(x)−W (j)
n )+

≤ Si(x) +m((τi(x)− x)+ − τi(x)) := αi(x), n ≥ 1.(10)

We first show, using assumption (5), that the waiting time Wn 6⇒ ∞. It follows
from (4), (10) that

E∆n ≤
∫
x≥0

m∑
i=1

Eαi(x)P(En(dx, i))

≤ max
i

sup
x≥0

Eαi(x) := R <∞,

and thus for each x ≥ 0,

E∆n ≤ RFn(x) + max
i

sup
y>x

Eαi(y)(1− Fn(x)), n ≥ 1.

Assume that Wn ⇒ ∞, then we obtain by (5) that lim supn→∞ E∆n < 0. This
easily implies maxn EVn < ∞. Together with inequality Wn ≤ Vn this contra-
dicts the assumption, and thus Wn 6⇒ ∞. Because of this property, there exist
constants ε0 > 0, T0 <∞ and a non-random sequence nk →∞ such that

inf
k

P(Wnk ≤ T0) ≥ ε0 > 0.(11)

Consider the events

Bn = {Wn ≤ T0}, An = {Sn + δ(T0) ≤ τn}, n ≥ 1,

and denote r0 = dT0/δ(T0)e. Note that for any i ≥ 0,

Bnk ∩ ∩ip=0Ank+p ⊆
{
Wnk+i ≤ (T0 − iδ(T0))

+
}
,

that is, each occurrence of an event Ak decreases residual work not less than by
δ(T0) (as long as all servers are busy). Thus we conclude that

Bnk ∩ ∩
r0
i=0Ank+i ⊆

{
Wnk+p = 0 for some p ∈ [0, r0]

}
.

Fix some nk satisfying (11) and observe that

P
(
Bnk ∩ Ank

)
=

∫ T0

0

m∑
i=1

P
(
Si(x) + δ(T0) ≤ τi(x)

)
P(Enk(dx, i))

≥ min
i

inf
x≤T0

P
(
Si(x) + δi(T0) ≤ τi(x)

)
P(Bnk)

= min
i
ρi(T0)P(Bnk) ≥ ρ(T0)ε0.
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It is easy to conclude that

P
(
Wnk+p = 0 for some p ∈ [0, r0]

)
≥ P

(
Bnk ∩ ∩

r0
i=0Ank+i

)
≥ ε0[ρ(T0)]

r0 := δ0 > 0.(12)

It now follows that lim supn→∞ P(Wn = 0) ≥ δ0, and there exists a non-random
sequence zk →∞ such that

inf
k

P(Wzk = 0) ≥ δ0.(13)

Next, we show that β(n) 6⇒ ∞ under assumptions (6), (7). Consider the
(right-continuous) unfinished S̃i(t) and attained S̄i(t) service time, respectively,
at each server i = 1, . . . ,m, at instant t, and let

S̃i(tzk) = S̃(i)
zk
, S̄i(tzk) = S̄(i)

zk
(S̃(i)

zk
= S̄(i)

zk
= 0 for an empty server), n ≥ 1.

Let, for non-empty sever i, ni(zk) be the number of the customer being served at
instant tzk . Fix some zk satisfying (13) and let T satisfy (6). Denote

y = (y1, . . . , ym), x = (x1, . . . , xm), S̃zk = (S̃(1)
zk
, . . . , S̃(m)

zk
),

BT = [0, T ]× · · · × [0, T ] ∈ Rm+ ,

and introduce the events

Ck(dx, dy) =
{
Wzk = 0, S̄(i)

zk
∈ dxi, Wni(zk) ∈ dyi, i = 1, . . . ,m

}
,

where we put Wni(zk) = 0 if server i is free at instant tzk . Then it follows from
(6), (13) that

P(F(zk)) := P
(
Wzk = 0, S̃zk ∈ BT

)
=

∫
x≥0

∫
y≥0

P
(
S̃zk ∈ BT | Ck(dx, dy)

)
P(Ck(dx, dy))

≥
[
min
i

inf
xi≥0, yi≥0

P
(
Si(yi) ≤ T + xi|Si(yi) ≥ xi

)]m
P(Wzk = 0) ≥ εmδ0,

where, in the last line, we use the equality

P
(
Si(yi) ≤ T + xi|Si(yi) ≥ xi

)
=
Gi, yi(xi + T )−Gi, yi(xi)

1−Gi, yi(xi)

and assumption (6). Note that each event Dj = {τj > δ(0)+Sj} decreases residual
work at each server not less than by δ(0). Denoting dT/δ(0)e = r, we obtain from
(7) (and conditioning in the same way as in the derivation of (14)) that

P(β(zk) ≤ r) = P(νzk+p = 0, for some p ∈ [zk, zk + r])

≥ P
(
F(zk) ∩ ∩zk+rj=zk

Dj

)
≥ [ρ(0)]rεmδ0,(14)

and hence, β(n) 6⇒ ∞.
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Note that the proof of (13) does not use assumption (6) and that {Wn = 0} =
{νn = 0}. Thus,

inf
k

P(β(zk − 1) = 1) ≥ δ0

and we obtain the following statement.

Corollary 1. If m = 1, then the statement of Theorem 1 holds without as-
sumption (6).

Remark 1. It follows from (7) that

P(τi(0) > Si(0)) > 0, i = 1, . . . ,m,

and thus regeneration period β is aperiodic. In particular, the stationary distri-

bution of the m-dimensional workload process limn→∞ P
((
W

(1)
n , . . . ,W

(m)
n

)
∈ ·
)

exists.

Assumption (6) is the most restrictive and introduced to guarantee the tight-
ness of the residual service time process. (The importance of the tightness for the
stability analysis is discussed in [24].) Condition (6), in particular, does not hold
for long/heavy-tailed distributions, which are discussed say, in [38]. For instance,
if (for some i, y) the service time Si(y) is Pareto with exponent αi(y) ∈ (0,∞),
then

Gi, y(x+ T )−Gi, y(x) = o(1−Gi, y(x)), x→∞
for any constant T <∞, and this contradicts (6).

We now consider the system with (6) replaced by other conditions that ensure
the required tightness. Assume that, for each server i, there exist constants

0 = b
(i)
0 < b

(i)
1 < · · · < b

(i)
Mi

and distribution functions Ĝi, k, k = 0, . . . ,Mi, such that mini, k Ĝi, k(0) < 1 and

Gi, y = Ĝi, k, y ∈ [b
(i)
k , b

(i)
k+1), k = 0, . . . ,Mi (b

(i)
Mi+1 =∞).(15)

Let, for each i, k, {S(i)
k (n), n ≥ 1} be the i.i.d. sequence with distribution Ĝi, k

and generic element S
(i)
k .

Assumption (15) seems to be less restrictive and more practical than (6) since
allows only a finite number of switching of service time distribution. This simpli-
fies considerably the state-dependence control mechanism governing the behavior
of the system. In particular, on the event En(dy, i), the service time Sn is insen-

sitive to change of the waiting time provided Wn = y ≥ b
(i)
Mi

. The proof of the
following result in part is similar to the proof of Theorem 1, but it uses the
Kiefer-Wolfowitz representation of the workload vector instead of the unordered
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workloads. Moreover, another idea is used to establish the tightness of the resid-
ual service time process.

Theorem 2. Assume that the following conditions hold for each i = 1, . . . ,m :

sup
x≥0

Eτi(x) <∞, max
1≤k≤Mi

ES
(i)
k <∞;(16)

ES
(i)
Mi
< m lim inf

x→∞
Eτi(x);(17)

there exists a constant δ > such that

inf
y∈[b

(i)
k , b

(i)
k+1)

P(τi(y) > δ + S
(i)
k ) := ρ

(i)
k > 0, k = 0, . . . ,Mi.(18)

Then Eβ <∞.
Proof. Assume that m > 1, denote by Ŵ

(i)
n the i-th smallest residual work at

instant tn (among m components), and consider Kiefer-Wolfowitz sequence

Ŵn = (Ŵ (1)
n , . . . , Ŵ (m)

n ), n ≥ 1.

Assume arbitrary fixed initial state Ŵ1 = (x
(1)
1 , . . . , x

(m)
1 ) and denote

Dn = Ŵ (m)
n − Ŵ (1)

n , A = (m− 1)x
(m)
1 −

m−1∑
i=1

x
(i)
1 .

It is assumed that Sn = S
(i)
k (n) on the event En(dy, i) provided

Wn ≡ Ŵ (1)
n = y ∈ [b

(i)
k , b

(i)
k+1).

Also denote

Yn = max
(

(m− 1)Sn, (m− 1)Sn−1 − Sn,

. . . , (m− 1)S1 − S2 − · · · − Sn, A− S1 − S2 − · · · − Sn
)

;

α(n) = max
1≤i≤m

max
0≤k≤Mi

S
(i)
k (n); β(n) = min

1≤i≤m
min

0≤k≤Mi

S
(i)
k (n), n ≥ 1.

Note that {α(n)}, {β(n)} are i.i.d. (independent) sequences and that with prob-
ability 1 (w.p.1)

β(n) ≤ Sn ≤ α(n), n ≥ 1.

Since mini mink Ĝi, k(0) < 1, then Eβ(1) > 0. Following [24], we obtain

P(Yn ≤ x1) ≥ P
(
α(i) ≤ x1 +

∑i−1
k=1 β(k)

m− 1
, i ≥ 1

) (∑
∅

= 0
)
,(19)

where x1 is chosen in such a way that x1 ≥ (m− 1)x
(1)
m . Since α(i)/i→ 0 and, by

the Strong Law of Large Numbers,
∑i−1

k=1 β(k)/i → Eβ(1) > 0, i → ∞ w.p.1, it
follows easily from (19) that the sequence {Yn} (and hence {Dn}) is tight. (The
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detailed proof of the tightness is based of the Kiefer-Wolfowitz ”key” lemma [19]
and its extension presented in [24].) As in Theorem 1, we use (16)–(18) to prove

(13). (Recall that Wn = Ŵ
(1)
n .) Thus, a constant C <∞ exists such that

inf
k

P(Ŵ (1)
zk

= 0, Dzk ≤ C) ≥ δ0/2.

Then denoting dC/δe = r, ρ = mini ρ
(i)
0 we obtain as in (14) (using the events

{τi(0) > S
(i)
0 + δ}) that

P(β(zk) ≤ r) ≥ δ0ρ
r/2 > 0.

Remark 2. We stress that the statement of Theorem 2 holds for the zero-delayed
case only, while the tightness of {Dn} takes place for arbitrary initial state Ŵ1.
Also instead of a common δ in (18) we could use different δi > 0 and then put
δ = mini δi.

4. An extension

Using the same notation, consider the following extension, which only differs
from the basic model in that, on the event

Dn(dx, i, dz) := En(dx, i) ∩ {Si(x) ∈ dz},
the interval τn is distributed as a random variable τi(x, z) with a given distribu-
tion, n ≥ 1. Also we denote τi(x, Si(x)) the interval τn on the event En(dx, i).
Note that the βn in (2) are classical regeneration points of the workload sequence
because at each such point

Sβk = Sσβk (0), τβk = τσβk (0, Sσβk (0))

and the sequence {σn} also regenerates. Here is an extension of Theorem 1.

Theorem 3. Assume that (6) and the following conditions hold for each i =
1, . . . ,m:

sup
x≥0

ESi(x) <∞, sup
x≥0

sup
y≥0

Eτi(x, y) <∞;(20)

lim sup
x→∞

E(Si(x)−mτi(x, Si(x))) < 0;(21)

for each x ≥ 0 there exists a constant δi(x) > 0 such that

inf
u≤x

P(τi(u, Si(u)) > Si(u) + δi(x)) := ρi(x) > 0.(22)

Then Eβ <∞. If m = 1 then assumption (6) is not necessary.
Proof. The proof of Theorem 1 allows us to simplify the following proof. Note

that

∆(x, i) ≤ Si(x)−mτi(x, Si(x)) +m
(
τi(x, Si(x))− x

)+

,(23)
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and that by (20),
lim
x→∞

sup
y≥0

E(τi(x, y)− x)+ = 0.

Then (21), (23) imply the lower bound (11). Denote

ρ(x) = min
i
ρi(x), δ(x) = min

i
δi(x).

Then for any nk, by (22),

P(Wnk ≤ T0, τnk > δ(T0) + Snk)

≥
m∑
i=1

∫
u≤T0

P(τi(u, Si(u)) > Si(u) + δi(T0))P(En(du, i))

≥ ρ(T0)ε0.

Denote r0 = dT0/δ(T0)e and note that

{Wn ≤ T0} ∩ {τn > Sn + δ(T0)} ⊆ {Wn+1 ≤ (T0 − δ(T0))
+}, n ≥ 1.

As in Theorem 1 one can show that a non-waiting customer arrives in the interval
[nk, nk + r0] with a probability ≥ ε0[ρ(T0)]

r0 , and thus (13) holds. Then exactly
as in Theorem 1 we obtain (14). Then it is easy to show that for any zk,

P
(
F(zk) ∩ {τzk > δ(0) + Szk}

)
≥ min

i
P
(
τi(0, Si(0)) > Si(0) + δi(0)

)
P(F(zk))

≥ ρ(0)εmδ0.

The rest of proof is now obvious. Denoting r = dT/δ(0)e we note that a regen-
eration occurs in (any) interval [zk, zk + r] with a probability ≥ [ρ(0)]rεmδ0. As
above, the statement of theorem for the single-server case holds without assump-
tion (6).

We note a connection between (22) and given distributions of τi(u, z) and Si(u)
for each i = 1, . . . ,m:

P(τi(u, Si(u)) > Si(u) + δi(x)) =

∫ ∞
0

P(τ(u, z) > z + δi(x))P(Si(u) ∈ dz).

The proof of the following result is omitted since it is analogous to those of
Theorems 2, 3.

Theorem 4. Assume that (15) and the following conditions hold for each
i = 1, . . . ,m :

sup
x≥0

sup
y≥0

Eτi(x, y) <∞, max
1≤k≤Mi

ES
(i)
k <∞;(24)

ES
(i)
Mi
< m lim inf

x→∞
Eτi(x, S

(i)
Mi

);(25)
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there exists a constant δ > 0 such that

inf
y∈[b

(i)
k , b

(i)
k+1)

P(τi(y, S
(i)
k ) > δ + S

(i)
k ) > 0, k = 0, . . . ,Mi.(26)

Then Eβ <∞.

5. Discussion of assumptions

In this section, we discuss our assumptions and compare them with the sta-
bility assumptions of classical models. Also, we describe some state-dependent
models with various dependencies between random variables, and discuss possible
weakening of assumptions leading to one-dependent regeneration.

First of all, note that for a standard GI/G/m queue (that is for the i.i.d. case)
with the interarrival time τ (with distribution A) and the service time S (with dis-
tributionG), the negative drift assumptions considered above take the well-known
form λ := 1/Eτ < m/ES := mµ. If we assume a dependence between service time
and the assigned server only, then we obtain the system with non-identical servers
(with service rates µi). Perhaps it is surprisingly, that in this case, our negative
drift assumptions reduce to assumption λ < mµi, i = 1, . . . ,m, which is stronger
than minimal requirement λ <

∑m
i=1 µi implying stability [21, 25].

Keeping assumption (15), one can obtain another realistic model assuming that
a dependence between interarrival times and waiting time is expressed (for each

server i) by a finite number Ni + 1 of distributions Âi, k such that (see (1))

Ai, y = Âi, k, y ∈ [a
(i)
k , a

(i)
k+1), k = 0, . . . , Ni,

where 0 = a
(i)
0 < a

(i)
1 < · · · < a

(i)
Ni

are given constants (a
(i)
Ni+1 = ∞). In this case

the negative drift assumption becomes especially simple:

ES
(i)
Mi
< mEτ

(i)
Ni
,

where τ
(i)
Ni

has distribution Âi, Ni , i = 1, . . . ,m. (An interesting case is Ni ≡
Mi, a

(i)
k ≡ b

(i)
k .)

Next, we discuss regeneration assumptions (which are reduced to P(τ > S) > 0
for the i.i.d. case) in more detail. First, to illustrate how requirement (7) can be
satisfied, we assume that τi(y) and Si(y) are exponential with parameters λi(y)
and µi(y), respectively. Then for any δ > 0 and x ≥ 0

inf
y≤x

P(τi(y) > Si(y) + δ) > 0,(27)

provided the following natural assumptions hold:

inf
y≤x

µi(y) > 0, sup
y≤x

(λi(y) + µi(y)) <∞.
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To show a role of local uniformity in (7), consider the following counterexample
for a single server system. Assume that, for a constant C > 2 w. p. 1

τ(Uk)− S(Uk) := δ(Uk) =
1

Ck+1
, k = 0, 1, . . . ,(28)

where we denote

U0 = C, Uk = C −
k∑
i=1

1/Ci, k ≥ 1.

Then
Uk → C − 1/(C − 1) > 1, k →∞,

and hence,

{Wn = C} ⊆
{
β(n) := min(k : Uk ≤ 0) =∞

}
.

Thus, on the event {Wn = C} regeneration point is not attainable after instant
n. It is because infk≥0 δ(Uk) = 0 and no δ(C) > 0 exists satisfying (7).

We discuss in brief a possible relaxation of regeneration assumptions which
may lead to one-dependent regeneration. First, consider the GI/G/m system
with m ≥ 3 and define

b = ess inf G := inf(x : G(x) = 0), a = ess supA := sup(x : 1− A(x) > 0).

Then assumption λ < mµ implies am > b. If a > b, then a positive recurrent
process of classical regenerations exists. Otherwise,

(k0 − 1)a < b < k0a

for some integer 1 < k0 ≤ m. (We assume that ak 6= b, any integer k.) Then the

Markov chain {Ŵn} is Harris ergodic and has one-dependent regenerations with
a regeneration set R. Denote the events

Ak =
{
Sk ∈ [b, b+ ε), τk ∈ (a− ε, a]

}
,

where we choose ε ∈ (0, k0a− b). Note that a minimal regeneration set is

R0 =
{
x ∈ Rm+ : xi ≤ (i− 1 + k0 −m)+a, i = 1, . . . ,m

}
,

in which case the chain regenerates whenever the renovating event

Ωn = {Ŵn ∈ R0} ∩ ∩n+k0−1
k=n Ak}

occurs. (Definitions and more details can be found in [1], pp. 345–346; [5]; [17];
[25]; [36]; [39], pp. 369–372.)

Now consider our basic model described in Theorem 1. By (5), for each i, there
exists δ(x) > 0 such that

P(Si(x) + δ(x) < mτi(x)) > 0
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for each (large) x. Even if we sharpen the condition requiring a local uniformity,
that is

inf
y≤x

P(Si(y) + δ(x) < mτi(y)) > 0 for each x ≥ 0,(29)

(cf. (7)), then it is still not enough to reach a regeneration within a finite interval
with a probability which is uniformly lower bounded (over zk) by a positive con-
stant, which is required to apply characterization (3). Indeed, assumption (29)
allows to decrease residual work whenever events {Si(y) + δ(T ) < mτi(y)} occurs
(provided y ≤ T ) as long as all servers are busy. In the GI/G/m queue, con-

struction of a regeneration point on the event {Ŵ (1)
n = 0} is based on realization

of a (required) number of events Ak (k ≥ n) and on a monotonicity property and
domination of a cyclic queue [1]. By an analogy, we could consider the following
(rather unnatural and restrictive) assumptions

ess inf Gi, y = b, ess supAi, y = a for all i and y(30)

to construct one-dependent regenerations in our model. Furthermore, unlike the
GI/G/m system, the order of occupation of free servers during renovation period
preceding a regeneration point in our model with the non-identical servers may
significantly influence the regeneration measure (distribution of the workload pro-
cess at the regeneration instant). To overcome this problem, we note that in the
GI/G/m system on the event Ωn, provided k0 < m, at least two servers are free
at each arrival instant (during minimal renovation period [n, n + k0)), and thus
a fixed order of occupation of servers is achieved during at most m! successive
renovation periods. As to the mentioned cyclic system, which is inapplicable in
our case, a careful analysis shows that, at least in the GI/G/m system, it is not
necessary to obtain a regeneration instant. Thus, assumptions (30) and k0 < m
(together with (5)) seem to be sufficient for the existence of positive recurrent
one-dependent regenerations in the basic model. (Similar arguments can be ap-
plied to other variations of the model.) We will not go further in this direction
since, as we see, an analysis using one-dependent regeneration in our models
seems to be complicated, requires restrictive and rather unnatural assumptions,
and thus a serious motivation is needed to justify this scenario. However, the
corresponding proofs could be obtained by a combination of those above and the
known construction of one-dependent regeneration in GI/G/m queue.

Finally, we mention a possibility to extend the model to the case, when the in-
terarrival time depends on whole workload vector Ŵn rather than on its minimal
component. This dependence still retains the Markov property of the work-
load process. We conjecture that stability of this model can be studied by the
techniques presented above, but the analysis (especially the tight negative drift
condition) may be very complicated. To some extent it is demonstrated in a
recent related paper [18], where a stability region of an exponential multiclass
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system with service rates depending on the current (vector) queue-size is studied
under monotonicity assumptions.
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