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Abstract. A family of nonempty closed convex sets is built by using the data
of the Generalized Nash equilibrium problem (GNEP). The sets are selected
iteratively such that the intersection of the selected sets contains solutions
of the GNEP. The algorithm introduced by Iusem-Sosa (2003) is adapted to
obtain solutions of the GNEP. Finally some numerical experiments are given
to illustrate the numerical behavior of the algorithm.

1. Introduction

The standard definition of a non-cooperative game usually requires that each
player in the game has a feasible set (or strategies set) independently on the rival’s
strategies. In a game with N players, for player i-th, we denote by Ki ⊂ Rni

its feasible set and the function hi :
N∏
i

Ki → R will be called the loss function.

So, in this game, the feasible set of the game is
N∏
i

Ki. The goal of this game is

find x̄ in the feasible set of the game such that hi(y) ≥ hi(x̄) ∀y ∈
N∏
i

Ki and

∀i ∈ {1, · · · , N}. It was well understood from the early developments in the
field (see [1, 8, 10]) that in many cases the interaction among the players can
also take place at the feasible set of each player, in this case the feasible set for
each player depend on the strategy of the other players, so the feasible set of the
game can be different to the product of the feasible set of each player. We speak
of Generalized Nash game, when the feasible set of each player depend on the
strategies of the other players. Next we shall introduce some notations.

The index set of players is denoted by I = {1, 2, ..., N}. For each x ∈ Rn and
each i ∈ I, x = [xi]i∈I , where xi ∈ Rni and n =

∑
i∈I

ni. Now, taking Λ =
∏

j∈I,j 6=i

Rnj ,

we define x−i = PΛ(x) where PC(x) denotes the orthogonal projection of x on
the set C. Note that xi = PRni (x). Now, for each x ∈ Rn, each i ∈ I and each
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CONCYTEC (projects STIC-AMSUD), Peru and Fundación Carolina and CRM, Spain.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Diposit Digital de Documents de la UAB

https://core.ac.uk/display/13293289?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 LUIZ CARLOS MATIOLI, WILFREDO SOSA, AND JINYUN YUAN

ρ ∈ Rni , we define x(i, ρ) ∈ Rn as (x(i, ρ))i = ρ and (x(i, ρ))−i = x−i. Note, that
this notation is different to the classical notation, but we prefer it because we feel
it more flexible than the classical one, from the mathematical view point.

For the Generalized Nash game considered here, we denote its feasible set by
K and we consider K as a convex closed set. For each x ∈ K, and each i ∈ I,
the set Ki(x) = {ρ ∈ Rni : x(i, ρ) ∈ K} will be the feasible set of the i-th player
when the other players choose strategies x−i. It is easy to see that

(1) K = {x ∈ Rn : xi ∈ Ki(x), i = 1, . . . , N}.
For each player i ∈ I, we consider its loss function defined by hi : Ω → R,

where Ω is an open set of Rn and K ⊂ Ω. Assume that hi is continuously
differentiable on Ω and hi(x(i, ·)) : Rni → R∪{+∞} pseudo-convex (in the sense
of Karamardian [6]) for each x ∈ K and each i ∈ I.

Using the above notation, we state the formal definition of the Generalized
Nash Equilibrium Problems (GNEP in the sequel) as follows:

The GNEP is a Nash game, in which the feasible set of each player depends on
the other player’s strategies, which consists of finding a point in the feasible set
of the game x̄ ∈ K such that, for each i ∈ I, x̄i solves the minimization problem
defined by:

(2) minhi(x̄(i, ρ)) subject to ρ ∈ Ki(x̄).

For recent study of the GNEP, Facchinei and Kanzow have given an excellent
survey in [2].

The paper is organized as follows. Some basic results are given In Section 2.
A numerical algorithm based on successive projection for solving the GNEP is
introduced in Section 3, as a specialization of the other one introduced by Iusem
and Sosa ([4]). The convergence of the algorithm is studied as well in the sec-
tion 3. Compared with other methods, our method is simpler and more efficient.
Our method does not require extras variables. Some numerical experiments and
comments are given in the last section. In terms of numerical tests, our method
can be applied to solve large scale problems.

2. Previous results

Given the GNEP, we define:

(3) F : Ω→ Rn by F (x) = [∇ihi(x(i, ·))(xi)]i∈I

(4) f : Ω× Rn → R by f(x, y) = 〈F (x), x− y〉
for each x ∈ K:

(5) Lf (x) = {y ∈ K : f(x, y) ≥ 0}

Remark 2.1. We point out that f(x, y) =
∑

i∈I〈∇ihi(x(i, ·))(xi), xi − yi〉
∀x, y ∈ K. So, when y = x(i, ρ) for i ∈ I and ρ ∈ Ki, then f(x, y) =
〈∇ihi(x(i, ·))(xi), xi − ρ〉, because for each j 6= i, yj = xj and so xj − yj = 0.
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The next lemma follows directly from the previous definitions without proof.

Lemma 2.2. The following statements hold.

(1) The function f is continuous on Ω× Rn.
(2) For each x ∈ Ω, f(x, x) = 0.
(3) For each x ∈ Ω, f(x, ·) : Rn → R is linear affine (in particular is convex

and concave).
(4) For each y ∈ Ω, Lf (y) is nonempty closed and convex (in particular if K

is a polyhedron, then Lf (y) is also a polyhedron).

Lemma 2.3. If x∗ ∈ K is a local minimal point of the function f(·, x∗) : K → R,
then x∗ is a solution of GNEP.

Proof. If x∗ ∈ K is local minimal point of the function f(·, x∗) : K → R,
then there exists a nonempty open convex set U such that x∗ ∈ U ∩ K and
0 = f(x∗, x∗) ≤ f(y, x∗) for each y ∈ U ∩ K. Now, ∀y ∈ K and y 6= x∗,
there exists t̄ ∈]0, 1[ such that xt = ty + (1 − t)x∗ ∈ U ∩ K for each t ∈]0, t̄[.
But, 0=f(xt, xt)= tf(xt, y) + (1− t)f(xt, x

∗) for each t ∈]0, t̄[. Thus, f(xt, y)≤0
for each t ∈]0, t̄[. In the limit, we have that f(x∗, y) ≤ 0. Now, for each
i ∈ I, ρ ∈ Ki(x

∗) and y = x∗(i, ρ), we have, from the previous remark, that
〈∇ihi(x

∗), ρ − x∗i 〉 = −f(x∗, y) ≥ 0. Therefore, the statement follows from the
pseudo-convexity of the functions hi for each i ∈ I. �

Lemma 2.4. If there exists x∗ ∈ K such that F (x∗) = 0, then x∗ is a solution
of GNEP.

Proof. Follows from the pseudo convexity of the functions hi for each i ∈ I. �

3. The Algorithm

In this section, we introduce an algorithm, based on a successive projection
scheme. Each iteration basically consists of two steps: an inexact local mini-
mization of a continuous function over a compact set, and an orthogonal pro-
jection onto a set of the form Lf (y) for some y ∈ K. The algorithm requires
a constant α ∈ (0, 1) and three parameter sequences: relaxation parameters
{λm} ⊂ [α, 2− α], precision parameters {εm > 0} ↓ 0 for the inexact maximiza-
tion, and {δm > α} ↑ δ for the local minimization respectively. The algorithm
generates two sequences {xm}, {ym} ⊂ K in the following way.

Algorithm 3.1.

Initial step: Choose x0 ∈ K.
Iterative step: Given xm ∈ K,

a) Find ym ∈ K ∩ B̄(xm, δm) satisfying

(6) f(ym, xm) ≤ min{f(y, xm) : y ∈ K ∩ B̄(xm, δm)}+ εm.
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b) Compute xm+1 ∈ K as

(7) xm+1 = xm + λm(PLf (ym)(x
m)− xm).

Next we shall study the properties of the sequences generated by Algorithm 3.1.

Lemma 3.1. Given a convergent sequence {xm} ⊂ Rn and {δm > α} ↑ δ. If x∗

is the limit of the sequence {xm}, then for each ε > 0, there exists M > 0 such
that for all m ≥M , the following statements hold.

(1) ‖xm − x∗‖ < ε
2
.

(2) δm > δ − ε
2
.

(3) B(x∗, δ − ε) ⊂ B(xm, δm) ⊂ B(x∗, δ + ε
2
).

(4) For all y ∈ B(x∗, δ), there exists i ≥ m such that δi ≥ ‖y − xi‖

Proof. Since {xm} converges to x∗, the sequence {‖xm − x∗‖} converges to zero.
Hence, there exists M1 > 0 such that ‖xm − x∗‖ < ε

2
for each m ≥ M1. Also

since {δm} ↑ δ = sup{δm : m ∈ N}, there exists M2 > 0 such that δm > δ − ε
2
.

Then, items (1) and (2) follows from taking M = max{M1,M2}. Now, for
y ∈ B(x∗, δ− ε), ‖y−xm‖ ≤ ‖y−x∗‖+ ‖x∗−xm‖ ≤ δ− ε+ ε

2
= δ− ε

2
< δm. The

other inclusions are analogous. Thus item (3) follows. For item (4), suppose that
there exists m ≥M and y ∈ B(x∗, δ) such that δi < ‖y−xi‖ for all i ≥ m. Taking
the limit, we obtain δ ≤ ‖y − x∗‖ which is a contradiction because y ∈ B(x∗, δ).
The proof is complete. �

Now, we start the convergence analysis of the algorithm

Proposition 3.2. Algorithm 3.1 is well defined.

Proof. Since xm ∈ K for all m, all intersections K ∩ B̄(xm, δm) are nonempty
and trivially compact. It follows from the continuity of f that f(·, xm) attains
its minimum over K ∩ B̄(xm, δm). Hence, there exists ym satisfying (6). Since,
Lf (y

m) is closed and convex, xm+1 is uniquely defined by (7). �

Lemma 3.3. Let {xm} and {ym} be the sequences generated by Algorithm 3.1.
If there exists M > 0 such that

⋂
m≥M Lf (y

m) is nonempty, then

(1) The sequence {‖xm − x̄‖} is convergent, for each x̄ ∈
⋂
m≥M Lf (y

m).
(2) The sequence {xm − PLf (ym)(x

m)} converges to zero.
(3) The sequences {xm} and {ym} are bounded.

Proof. (1) Set x̄ ∈
⋂
m≥M Lf (y

m), by (7):

||xm+1 − x̄||2 = ||xm − x̄||2 + λ2
m||xm − PLf (ym)(x

m)||2

+ 2λm〈xm − x̄, PLf (ym)(x
m)− xm〉

= ||xm − x̄||2 + λ2
m||xm − PLf (ym)(x

m)||2−2λm||xm − PLf (ym)(x
m)||2

+ 2λm〈PLf (ym)(x
m)− x̄, PLf (ym)(x

m)− xm〉.
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Since x̄ belongs to Lf (y
m) for each m ≥M , the last term in the previous

expression is nonnegative, because of the following well known property
of orthogonal projections: 〈PC(x)− y, PC(x)− x〉 ≤ 0 for any closed and
convex set C, any x ∈ Rn and any y ∈ C. Thus, it follows that, for all
m ≥M ,

(8) ||xm+1 − x̄||2 ≤ ||xm − x̄||2 − λm(2− λm)||xm − PLf (ym)||2 ≤ ||xm − x̄||2,

by the fact that λm(2−λm) > 0. We conclude from (8) that the sequence
{||xm− x̄||}m≥M is non-increasing, and henceforth, being nonnegative, so
{||xm − x̄||}∞m=0 is convergent.

(2) Rewriting (8) and using the conditions on {λm} we get

α(2− α)||xm − PLf (ym)(x
m)||2 ≤ λm(2− λm)||xm − PLf (ym)(x

m)||2

≤ ||xm − x̄||2 − ||xm+1 − x̄||2.

using the convergence of {||xm − x̄||} we obtain, since α(2− α) > 0,

(9) lim
m→∞

(xm − PLf (ym)(x
m)) = 0.

(3) The convergence of {||xm − x̄||} also implies that the sequence {xm}
is bounded. For each m, since ym ∈ K ∩ B̄(xm, δm), ‖ym‖ − ‖xm‖ ≤
‖ym − xm‖ ≤ δm. Thus, ‖ym‖ ≤ ‖xm‖+ δm. The statement follows from
the facts that {‖xm‖} and {δm} are bounded. �

Let {xm} be sequence generated by Algorithm 3.1. Remember that x∗ is a
cluster point of {xm} if there is a subsequence {xmi} of {xm} such that {xmi}
converges to x∗.

Theorem 3.4. Let {xm} and {ym} be the sequences generated by Algorithm 3.1
and let M > 0.

i) If
⋂
m>M Lf (y

m) is nonempty, then any cluster point of {xm} is a local
minimizer of f(·, x∗) over K.

ii) If {xm} converges to x∗ ∈ K, then x∗ is local minimizer of f(·, x∗) over
K.

iii) If GNEP lacks solutions, then {xm} is not convergent (though it might be
bounded).

Proof. i) From Lemma 3.3, we know that {xm} and {ym} are bounded. Let
x∗ be a cluster point of {xm} ⊂ K. Since K is closed, x∗ belongs to K.
Thus, we can select a subsequence {xkm} of {xm} such that limm→∞ x

km =
x∗ and {ykm} converges to y∗. By (9), limm→∞ PLf (ykm )(x

km) = x∗. It
follows from the continuity of f that

(10) f(y∗, x∗) = lim
m→∞

(f(ykm , PLf (ykm )(x
km)) ≥ 0,
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where the inequality follows from the definition of Lf (y
km) and the fact

that

PLf (ykm )(x
km) ∈ Lf (ykm).

From Item (3) of Lemma 3.1, for any fixed ε > 0, there exists Mε > 0
such that B(x∗, δ − ε) ⊂ B(xkm , δkm) for all km > Mε. Taking M̄ =
max{M,Mε}, for each y ∈ B(x∗, δ− ε) and each km > M̄ , we obtain from
equation (6) of Algorithm 3.1 that f(ykm , xkm) ≤ f(y, xkm) + εkm . Hence,
in the limit, f(x∗, x∗) = 0 ≤ f(y∗, x∗) ≤ f(y, x∗) which implies that x∗ is
a local minimum of f(·, x∗) : K → R.

ii) If {xm} converges to x∗, then {xm} and {ym} are bounded and
limm→∞ PLf (ykm )(x

km) = x∗. Thus, the statement follows from the same
argument as in the previous item.

iii) Suppose that {xm} converges to x∗. From the previous item, x∗ is a local
minimum of f(·, x∗). From Lemma 2.3 x∗ is a solution of the GNEP which
contradicts to the hypothesis of this item.. �

Next we shall consider the Convex Feasibility Problem (CFP in short)

∩y∈KLf (y),

which is associated to GNEP.

Corollary 3.5. If the CFP has solutions, then every cluster point of the sequence
{xm} generated by Algorithm 3.1 is a solution of the GNEP.

Proof. If the CFP has solutions, then ∅ 6= ∩y∈KLf (y) ⊂ ∩∞m=1Lf (y
m). The result

follows from Theorem 3.4(i) immediately. �

In the next result we consider the notion of pseudomonotonicity (for details see
for instance [6], [5]) for the operator F defined in 3, i.e. F is pseudomonotone if for
x, y ∈ dom(T ): 〈F (x), y−x〉 ≥ 0 implies 〈F (y), x−y〉 ≤ 0. Note that the previous
implication is equivalent to say that 〈F (x), y − x〉 > 0 implies 〈F (y), x− y〉 < 0.

Lemma 3.6. If F is pseudomonotone, then {Lf (y)}y∈K is such that for each
{x1, · · · , xp} ⊂ K we have that co{x1, · · · , xp} ⊂

⋃p
i=1 Lf (x

i)

Proof. Suppose that ∃x̄ ∈ co{x1, · · · , xp} such that x̄ /∈
⋃p
i=1 Lf (x

i), then x̄ =∑p
i=1 λix

i with λi ≥ 0 and
∑p

i=1 λi = 1 and 〈F (xi), xi − x̄〉 < 0, ∀i, then
〈F (xi), x̄ − xi〉 > 0, ∀i, So, from the pseudomonotonicity of F , we have that
〈F (x̄), xi − x̄〉 < 0, ∀i. So, 0 = 〈F (x̄), x̄ − x̄〉 =

∑p
i=1 λi〈F (x̄), xi − x̄〉 < 0. The

statement follows from this contradiction. �

Corollary 3.7. Let {xm} and {ym} be the sequences generated by Algorithm 3.1.
If F is pseudo-monotone and either {xm} or {ym} is bounded, then every cluster
point of the sequence {xm} is a solution of the GNEP.
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Proof. If {xm} is bounded, then {ym} is bounded by the same argument as in the
proof of (i) of Theorem 3.4. Thus we may assume that {ym} is bounded. By the
previous Lemma and Lemma 2.3 in [4] ∩∞m=1Lf (y

m) 6= ∅. The statement follows
from (i) of Theorem 3.4. �

4. Numerical Experiments

First of all we set K = {x ∈ Rn : 〈ai, x〉 ≤ bi, xj ≥ 0, i = 1, . . . ,m, j = 1, . . . , n}
as a polyhedron

In (6) we minimize a linear approximation of f in a compact set, that is, we
solve the following subproblem: (given xm in K and δm)

(11)
minimize 〈F (xm), y − xm〉

s.t. y ∈ B̄(xm, δm) ∩K

to find ym. Note that in our implementation the region B̄(xm, δm) is a box.
In step (b) of Algorithm 3.1, we determine xm+1 by an orthogonal projection

of xm onto Lf (y
m), which is equivalent to solving the following subproblem:

(12)
minimize

1

2
||z − xk||2

s.t. z ∈ K ∩ {y : 〈F (xm), y〉 ≤ 〈F (xm), xm 〉 }

The subproblems (11) end (12) are solved, respectively, by routines linprog end
lsqlin from optimization toolbox of Matlab 6.0.0.88 (R12). The stop criteria is
||xm+1 − xm||
||xm+1||

< 10−10.

The initial point in K is determined by solving

mins,x

m∑
i=1

si

subject to Ax+ s = b, s, x ≥ 0.

We consider only nonnegative x because negative variables have no real
application meaning for most practical problems. In the implementation of
Algorithm 3.1 we initialize α = 0.2 in Problem 2, and α = 0.5 in all other prob-
lems. The parameter δm controls the radio of box B̄(xm, δm) and is increased
till δmax. The updating form of this parameter is given by δ0 = (α + δmax)/2
and δm+1 = (δm + δmax)/2. All computations are executed by Matlab 6.0.0.88 on
Laptop TOSHIBA Satellite M115-S3144 with intel Core 2 with 2 GB de RAM
Memory.

Problem 1: F (x1, x2) = (3x2
1x

2
2, 3x

2
1x

2
2) and K = {(x1, x2) : x1 + x2 ≤ 3,

x1 ≥ 1;x2 ≥ 1}. The exact solution is x = [1 1]T . The numerical results
are showed in Table 1, whose first column is the number of iterations, the second
and third columns are the decision of players.
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Problem 2: This problem is taken from [3] where authors transform the Nash
equilibrium problem to Variational Inequality. In sense of Variational Inequality

the solution is unique x̄ = (
3

4
,
1

4
) which belongs to solution set of the Nash

equilibrium problem. Here the problem is given by: F (x1, x2) = (2x1−2, 2x2−1)
and K = {(x1, x2) : x1 + x2 ≤ 1, x1 ≥ 0, x2 ≥ 0}.

m xm1 xm2

0 1.3618 1.3618

1 1.0618 1.0618

2 1.0000 1.0000

Table 1. Numerical results for Problem 1

Problem 3: We consider the River Basin Pollution problem [7] with three players
j = 1, 2, 3. The problem is given by hj(x) = pjx

2
j + 0.01xj(x1 + x2 + x3)− qjxj.

Now using F (x) = [∇jhj(x(j, .))(xj)], j = 1, 2, 3, we have

F (x) =

 2p1x1 + 0.01(2x1 + x2 + x3)− q1

2p2x2 + 0.01(x1 + 2x2 + x3)− q2

2p3x3 + 0.01(x1 + x2 + 2x3)− q3


where p = [0.01; 0.05; 0.01]T and q = [2.9; 2.88; 2.85]T . The polyhedron K is given
by constraints: g1(x) = 3.25x1 + 1.25x2 + 4.125x3 ≤ 100, g2(x) = 2.2915x1 +
1.5625x2 + 2.8125x3 ≤ 100, and x1, x2, x3 ≥ 0.

Problema 4[9]: The authors solve the problem by means of Linear Complemen-
tary Problem whose solution depends on multipliers. The problem is defined by
F (x) = (F1(x), F2(x))T where F1(x) = −1+x1+0.5x2 and F2(x) = −2+0.5x1+x2.
Here the polyhedron is given by x1 + x2 ≤ 1, x1, x2 ≥ 0. The solution founded
by our algorithm is x̄ = (x1, x2) = (0, 1).

Problem 5 [7]: The problem is give by

F (x) =

[
2(x1 + x2)

4
+

2(x1 − x2)

9
;
2(x1 + x2)

4
− 2(x1 − x2)

9

]
.

Here K = {0 ≤ x1, x2 ≤ 10}.

Problems 6–10. We define the problems by

Fj(x) = 2pjxj + αxj + α
n∑
k=1

xk − qj
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where Fj(x) is the j-th component of F (x), the constants p, α as well as the m
constraints are generated by function rand of Matlab with corresponding dimen-
sions given in Table 2. The purpose of these problems is to test the numerical
behavior of Algorithm 3.1 for large scale problems.

The numerical results and comparisons are given in Table 2 where the first
column is the problem, second column is the number of variable, third column is
the number of constraints, forth column is the parameter α, fifth column is the
δmax, sixth column is number of iteration, seventh column is the number of the
iterations of the method given in the cited references. Here − means that there
is no number of iteration for other methods.

Problem n m α δmax nit IT of other methods

Prob2 2 1 0.2 0.3 2 –[3]

Prob3 2 2 0.5 1.3 9 7[7]

Prob4 2 1 0.5 1.3 2 –[9]

Prob5 3 2 0.5 1.5 15 19[7]

Prob6 50 30 0.5 1 3 –

Prob7 100 80 0.5 1 4 –

Prob8 200 120 0.5 1 3 –

Prob9 500 50 0.5 1 5 –

Prob10 1000 30 0.5 1 2 –

Table 2. Numerical results and comparisons

The main advantages of Algorithm 3.1 compared with other methods are as
follows.

(1) Algorithm 3.1 doesn’t require extra variables unlike other methods given
in [7, 9].

(2) By our numerical results, it seems that the convergence of Algorithm 3.1
is independent on number of variables which will be studied in the future.

(3) The convergence rate is very competitive from our numerical experiments.
(4) So far Algorithm 3.1 is the best compared with all existing methods for

the problem.

We shall give further study and modifications of Algorithm 3.1 in the next
paper.
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