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OPERATORS

MICHAEL T. LACEY, ERIC T. SAWYER, AND IGNACIO URIARTE-TUERO

Abstract. Let σ and ω be positive Borel measures on Rn and 1 < p < ∞.
For a class of dyadic Calderón-Zygmund operators T, we characterize the two
weight inequalities

‖T♮(fσ)‖Lp(w) . ‖f‖Lp(σ) ,

where T♮ denotes the maximal truncations of the operator T. The character-
ization is given in terms of testing conditions, identifiable as a variant of the
T 1 theorem of David and Journé.

1. Introduction

We are interested in two weight inequalities for dyadic Calderón-Zygmund
operators. Indeed, our main results, Theorem 1.19 and Theorem 1.22 below
characterize the weak and strong type (p, p) two weight inequalities for such
operators. The characterization holds for all 1 < p < ∞, and for individual

operators. Let Q denote the class of dyadic cubes in Rd, specifically,

Q =
{

2k(j + [0, 1)d) : k ∈ Z , j ∈ Zd
}

.

We consider dyadic operators, of Calderón-Zygmund type, but our definition is
unconventional, in that we will permit the operators be unbounded on L2(dx).

Definition 1.1. Specifically, let Q denote dyadic cubes on Rd. Consider an
operator

T f(x) :=
∑

Q∈Q

〈f, h′
Q〉 · hQ(1.2)

The function hQ is assumed to satisfy

‖hQ‖∞ ≤ |Q|−1/2,(1.3)

hQ is supported on Q,(1.4)

hQ is constant on dyadic subcubes Q′ of Q with |Q′| ≤ 2−ζd|Q|.(1.5)
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In the last condition, ζ ≥ 1 is a fixed positive integer. These are discrete analogs
of the usual size and smoothness conditions placed upon a Calderón-Zygmund
kernel. The assumptions on h′

Q are the same, and we assume that hQ ≡ 0 if and
only if h′

Q ≡ 0. We work with maximal truncations of singular integrals.

T♮ f(x) := sup
0<ǫ<ρ<∞

|Tǫ,υf(x)| ,

Tǫ,υ f :=
∑

Q∈Q
ǫ≤ℓ(Q)|<ρ

〈f, h′
Q〉 · hQ .(1.6)

Here, and throughout the paper, ℓ(Q) = |Q|1/d is the side length of the cube Q.
For a positive 0 < τ < 1, let us define a (much simpler) maximal operator by

Uτ f(x) := sup
Q∈Uτ

|〈f, h′
Q〉hQ(x)|(1.7)

Uτ := {Q ∈ Q : inf
x∈Q

min
{

|hQ(x)| , |h′
Q(x)|

}
√

|Q| < τ} .(1.8)

That is, the collection of Uτ consists of those Q for which hQ(x) is ‘small’ at some
point x ∈ Q.

There are relevant examples of L2(dx) bounded operators that fall within the
scope of this definition. We will leave it to the reader to write down an example
of an operator which fits this definition but is not bounded on L2(dx).

Example 1.9 (Martingale Transforms). Let hQ be a Haar function. That is it
satisfies (1.3), is constant on dyadic strict subcubes of Q, and has integral zero.
A martingale transform would be

T f :=
∑

Q∈Q

εQ〈f, hQ〉hQ , εQ ∈ {±1} .

Here, we assume that hQ satisfy (1.3)—(1.5) and satisfy
∫

hQ dx = 0 for all
Q. The Beurling operator can be obtained from the averages of such in two
dimensions, [3].

Example 1.10 (Haar Shift). The Haar shift in one dimension would be

T f :=
∑

I

〈f, hI〉(hIleft + hIright
)

Here, I denotes a dyadic intervals in one dimension, hI is the L2-normalized Haar
function supported on I, and Ileft is the left-half of I, likewise for Iright. These
operators were introduced in [9], and are shown in this reference that the Hilbert
transform can be obtained as an appropriate average of these operators. Also see
[11] for higher dimensional Haar shift operators and the Riesz transforms.
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Example 1.11 (Paraproduct Operators). Let hQ be a Haar function. That is it
satisfies (1.3), is constant on dyadic strict subcubes of Q, and has integral zero.
Let b be a function, and define

P(b, f) :=
∑

Q∈Q

〈b, hQ〉 · EQf · hQ(1.12)

EQf := |Q|−1

∫

Q

f dx .(1.13)

Here, we impose the condition on b that |〈b, hQ〉| ≤ |Q|1/2 for all dyadic Q,
(a weaker condition than b ∈ BMO, which is equivalent to P(b, ·) being a bounded
operator on L2(dx)). Holding b fixed, the linear operator P(b, ·) satisfies the
our Definition 1.1. These operators are commonly called dyadic paraproduct
operators.

Note that the for 0 < τ < 1, the collection Uτ in (1.8) will be empty for all of
these examples. In those examples where it is not empty, it is dominated by the
maximal function, which is easy to see from (1.3).

Part of the interest in this class of dyadic operators is that significant advances
of our understanding of weighted estimates have come from analysis specialized
to these cases. We refer to just two of Nazarov-Treil-Volberg series of innovative
papers on weighted inequalities [7, 8]; the work of Wittwer [17] addressing A2

estimates for martingale transforms and [18] for the continuous square function;
the work of Petermichl and Volberg [12] which proved the sharp A2 inequality
for the Beurling operator, answering a question of Astala; Petermichl’s proof of
the (much harder) sharp Ap inequality for the Hilbert transform [10], and the
Riesz transforms [12]; Beznosova’s sharp Ap inequality for discrete paraproducts
[1]; and the recent work of Lacey-Petermichl-Reguera [4] giving, with a single
argument, the sharp Ap inequality for all Haar shifts. (The Beurling, Hilbert
and Riesz are in the convex hull of Haar shifts. The papers [10,12,12,17] proved
weighted estimates for the associated Haar shift, the proof depending upon the
particular Haar shift being used.)

We recall this dyadic variant of the T 1 theorem of David and Journé [2].

The T 1 Theorem of David and Journé 1.14. An operator T be as in Defini-

tion 1.1 extends to a bounded operator on L2(Rd) if and only if these conditions

are met. For all cubes Q, R with Q(ζ) ⊃ R or R(ζ) ⊃ Q

|〈T1Q, 1R〉| .
√

|Q| · |R| (Wkly Bounded)
∫

Q

|T1Q|
2 dx . |Q| (T 1 ∈ BMO)

∫

Q

|T∗ 1Q|
2 dx . |Q| (T∗ 1 ∈ BMO)(1.15)
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The primary focus of this paper is extensions of this Theorem to the two weight
setting. These considerations are motivated in part by a well developed theory of
two weight estimates for positive operators. These Theorems have formulations
strikingly similar to the T 1 Theorem, which theory encompasses the Theorems
due to Sawyer concerning two weight, both strong and weak type, for the maximal
operator [15] and fractional integral operators [13, 14]. There is also the bilinear
embedding inequality of Nazarov-Treil-Volberg [7]. We refer the reader to [6] for
a discussion of these results. While directly relevant to the considerations of this
paper, developing this theme will unnecessarily lengthen this introduction.

There is a beautiful result of Nazarov-Treil-Volberg [8], a two-weight version
of the T 1 theorem, with one notable caveat, namely (1.17) below. A subcase of
their result is as follows.

Nazarov-Treil-Volberg Two weight T 1 Theorem. 1.16. Let T be as in

Definition 1.1, with the additional assumption that

(1.17)

∫

hQ dx =

∫

h′
Q dx = 0 Q ∈ Q .

Let σ, µ be two positive measures. The L2 inequality

‖T(σf)‖L2(µ) . ‖f‖L2(σ)

holds iff the following three conditions hold. For all cubes Q(ζ) ⊃ R or R(ζ) ⊃ Q,
∣

∣〈T(σ1Q), 1Rµ〉
∣

∣ .
√

σ(Q)µ(R) (Weak Bnded)
∫

|T(σ1Q)|2 µ(dx) . σ(Q) (T1 ∈ BMO)
∫

|T∗(µ1Q)|2σ(dx) . µ(Q) (T ∗1 ∈ BMO)(1.18)

It is essential to note that this result requires (1.17)—it does apply to paraprod-
uct operators in (1.12), unlike the results below. Its proof is also fundamentally
restricted to the case of p = 2, whereas 1 < p < ∞ is arbitrary below. We will
prove a characterization of a two-weight inequalities for the pair of operators of
the maximal function and T♮.

Weak Type Inequalities for T♮. 1.19. Let T be as in Definition 1.1, and let

0 < τ < 1. These two conditions are equivalent.

(1.20) ‖T♮(fσ)‖Lp,∞(w) . ‖f‖Lp(σ) ,

if and only if

(1.21)

{

‖Uτ (fσ)‖Lp,∞(w) . ‖f‖Lp(σ) ,
∫

Q
T♮(σf1Q) ω(dx) . ‖f‖Lp(σ)ω(Q)1/p′

For the strong type, we have this characterization.
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Strong Type Inequalities for T♮. 1.22. Let T be as in Definition 1.1, and let

0 < τ < 1. We have the equivalence

(1.23) ‖T♮(fσ)‖Lp(w) . ‖f‖Lp(σ) ,

if and only if

(1.24)











‖Uτ (fσ)‖Lp(w) . ‖f‖Lp(σ) ,
∫

Q
T♮(σf1Q) ω(dx) . ‖f‖Lp(σ)ω(Q)1/p′ , ∀ Q ∈ Q ,

‖1Q T♮(fσ1Q)‖Lp(w) . σ(Q)1/p ∀ ‖f‖∞ ≤ 1 , Q ∈ Q .

The conditions involving the operator Uτ , as defined in (1.7), are not satisfac-
tory in that they require the corresponding norm inequality, but keep in mind
that this operator is much smaller and simpler than T♮, and in many relevant
examples, this operator will in fact be zero.

The testing condition appearing in the weak-type characterization
∫

Q

T♮(σf1Q) ω(dx) . ‖f‖Lp(σ)ω(Q)1/p′

looks rather complicated, with the appearance of f ∈ Lp(σ) in it. It is however
a close relative of the ‘T∗ 1 ∈ BMO’ conditions of (1.15) and (1.18). This is
discussed in § 2.2 below, see in particular (2.7).

The dual testing condition

(1.25) ‖1Q T♮(fσ1Q)‖Lp,∞(w) . σ(Q)1/p

has the complication of involving an arbitrary function f bounded by one on the
left-hand side, though f does not appear on the right hand-side of the inequality.
(There is a similar difficulty in (2.7).) Despite this difficulty, we are not as of yet
aware of a situation where the more natural testing condition below holds, but
the one above does not.

(1.26) ‖1Q T♮(σ1Q)‖Lp,∞(w) . σ(Q)1/p .

Nor are we aware of a setting in which we can verify (1.26) but not (1.25).

The method of proof is an extension of that of Sawyer’s approach to the two
weight fractional integrals [14], but also [6]. A significant variant of this argu-
ment arises from the multi-height Calderón-Zygmund decompositions in § 6.1.
This argument follows the outlines of the proof in [5], which proves variants of
Theorem 1.19 and Theorem 1.22 for smooth Calderón-Zygmund operators. The
current argument is, naturally, much easier while retaining the essential ideas
and techniques of [5]. (The reader can also compare the arguments of this paper
to those of [6].) We think the main results of this paper are interesting in their
own right, as well the proof should be a guide to its much more complicated
variant [5].
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2. Generalities of the Proof

2.1. Universal Maximal Function, and its Consequences. A fundamental
tool is derived from (the usual) general maximal function estimates that hold for
any measure. In particular, for weight w we define

Mw f(x) := sup
Q∈Q

1QEw
Q|f | ,

Ew
Qf := ω(Q)−1

∫

Q

f ω(dx) .

Here we are extending the definition in (1.13) to arbitrary weights. It is a basic
fact, proved by exactly the same methods that prove the non-weighted inequality,
that we have

Theorem 2.1. We have the inequalities

(2.2) ‖Mw f‖Lp(w) . ‖f‖Lp(w) , 1 < p < ∞ .

This will place variants of the Calderón-Zygmund Decomposition at our dis-
posal. Indeed, we will use Calderón-Zygmund Decompositions at all heights si-

multaneously.

2.2. Linearizing Maximal Operators. We use the method of linearizing max-
imal operators. This is familiar in the context of the maximal function, and we
make a comment about it here. Let {E(Q) : Q ∈ Q} be any selection of measur-
able disjoint sets E(Q) ⊂ Q indexed by the dyadic cubes. Define corresponding
linear operator N by

(2.3) Nφ :=
∑

Q∈Q

1E(Q)Ew
Qf .

Then, (2.2) is equivalent to the bound ‖N f‖Lp(w) . ‖f‖Lp(w) with implied con-
stant independent of w and the sets {E(Q) : Q ∈ Q}. This estimate will be
used repeatedly below.

There is a related way to linearize T♮, which deserves careful comment as we
would like, at different points, to treat T♮ as a linear operator. While it is not
a linear operator, T♮ is a pointwise supremum of the linear truncation operators
Tε,υ, and as such, the supremum can be linearized with measurable selection of
the truncation parameters.
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Definition 2.4. We say that L is a linearization of T♮ if there are measurable
functions ǫ(x), υ(x) ∈ (0,∞) and ϑ(x) ∈ [0, 2π) such that, using (1.6), we have

(2.5) L f(x) = eiϑ(x) Tǫ(x),υ(x) f(x) ≥ 0, x ∈ Rd.

(The requirement that L f(x) ≥ 0 then defines ϑ(x) everywhere except when
Tǫ(x),υ(x) f(x) = 0.) For fixed f we can always choose a linearization L so that
T♮ f(x) ≤ 2 L f(x) for all x.

A key advantage of L is that it is a linear operator, and as such it has an
adjoint, given by the formal expression

(2.6) L∗ ν(y) =
∑

Q∈Q

τQh′
Q(y)

∫

Q∩{ε(x)≤|Q|≤υ(x)}

eiϑ(x)f(x)hQ(x) dx .

The testing condition in (1.24) has a more convincing formulation in the lin-
earizations. It is equivalent to

‖L∗(1Qgw)‖Lp′(σ) ≤ Tω(Q)1/p′ , ‖g‖∞ ≤ 1 ,(2.7)

T := sup
Q

sup
‖f‖Lp(σ)≤1

∫

Q

T♮(fσ1Q) ω(dx) .(2.8)

This holds uniformly over all choices of linearizations, which fact is referred to
repeatedly below.

The operators L∗ have a certain ‘smoothness property’ that is fundamental
for us.

Lemma 2.9. Suppose for measure ν and cube Q0 we have |ν|(Q0) = 0. Then,

L∗ ν(·) is constant on subcubes Q′ ⊂ Q0 with |Q′| ≤ 2−ζd.

Proof. The sum (2.6) defining the adjoint operator becomes

L∗ ν(y) =
∑

Q∈Q
Q0⊂Q

h′
Q(y)

∫

Q∩{ǫ(x)≤|Q|≤υ(x)}

eiϑ(x)hQ(x) ν(dx) .

The sum is restricted to a sum over cubes Q ⊃ Q0, so the Lemma follows by
assumption on the functions h′

Q. �

2.3. Whitney Decompositions. We make general remarks about the sets

(2.10) Ωk = {T♮(fσ) > 2k}

where f is a finite linear combination of indicators of dyadic cubes. The assump-
tions we will have will show that Ωk will be an open set with compact closure.

Let Q(1) denote the parent of Q, and inductively define Q(j+1) = (Q(j))(1). For
an integer ρ ≥ 2, we should choose collections Qk of disjoint dyadic cubes so that
these several conditions are met.

Ωk =
˙⋃

Q∈Qk

Q (disjoint cover)(2.11)
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Q(ρ) ⊂ Ωk , Q(ρ+1) ∩ Ωc
k 6= ∅ (Whitney condition)(2.12)

∑

Q∈Qk

1Q(ρ) . 1Ωk
(finite overlap)(2.13)

sup
Q∈Qk

♯{Q′ ∈ Qk : Q′ ∩ Q(ρ)} . 1 , (crowd control)(2.14)

Q ∈ Qk , Q′ ∈ Ql , Q $ Q′ implies k > l . (nested property)(2.15)

We will apply the Whitney decompositions with ρ = ζ + 1, where ζ is the
constant in (1.5).

Proof. Take Qk to be the maximal dyadic cubes Q ⊂ Ωk which satisfy (2.12).
Then (2.11) holds. As the sets Ωk are themselves nested, (2.15) holds.

Let us show that (2.13) holds. Note that holding the volume of the cubes
constant we have

∑

|Q|=1

1Q(ρ) ≤ 2ρd

where d is the dimension. So if we take an integer ρ, and assume that for some
k and x ∈ Rd

∑

Q∈Qk

1Q(ρ+1)(x) ≥ 8 · 2(ρ+1)n ,

then we can choose Q, R ∈ Qk with x ∈ Q(ρ) ∩ R(ρ) and the side-length of R

satisfies |R|1/d ≤ 2−3|Q|1/d. But then it will follow that R(ρ+1) ⊂ Q(ρ). We thus
see that R(ρ+1) does not meet Ωc

k, which is a contradiction.

Let us see that (2.14) holds. Fix Q ∈ Qk. If we had Q′ % Q(ρ) for any
Q′ ∈ Qk, we would violate (2.12). Thus, we must have Q′ ⊂ Q(ρ). The cubes
Q′ are disjoint. Suppose that there were more than 2ρ+2 in number. Then, there
would have to be a Q′ ⊂ Q(ρ) with |Q′| ≤ 2−ρ−1|Q(ρ)|. That is, (Q′)(ρ+1) ⊂ Q(ρ),
violating the Whitney condition (2.12). �

2.4. Maximum Principle. A fundamental tool is the use of what we term here
as ‘maximum principle’. (We could also use the term ‘good-λ technique’): Subject
to the assumption that a maximal function is of small size, we will be able to see
that the maximal truncations are large due to the restriction of the function to
a local cube. This leads to an essential ‘localization’ of the singular integrals.

Maximum Principle. 2.16. For any cube Q ∈ Qk as above we have the point-

wise inequality

(2.17) sup
ℓ(Q)+ζ+1<ǫ<υ

|Tǫ,υ(fσ)(x)| . 2k + sup
ζ+2≤r≤2ζ+2

Q(r)∈Uτ

|〈fσ, h′
Q(r)〉hQ(r)(x)| , x ∈ Q .
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In particular if Uτ , given in (1.8) is empty, we have

(2.18) sup
ℓ(Q)+ζ+1<ǫ<υ

|Tǫ,υ(fσ)(x)| . 2k , x ∈ Q .

Remark 2.19. One can give a more familiar upper bound in (2.17). By the support
and size conditions on hQ and h′

Q, namely (1.4) and (1.3), we have

2ζ+2
∑

r=ζ+2

|〈fσ, h′
Q〉hQ(x)| . EQ(2ζ+2) |f |σ .

The last term is obviously dominated by the maximal function. But our point
here is to obtain the smallest possible terms here, so we prefer (2.17) as written.

Proof. Take x ∈ Q. By the Whitney condition in (2.12), there is a point x ∈
Q(ζ+2) ∩ Ωc

k. Consider the differences

hQ(r)(x)〈fσ, h′
Q(r)〉 − hQ(r)(x)〈fσ, h′

Q(r)〉 .

Note that by (1.5), if r ≥ ζ + ρ + 1 = 2ζ +2, then hQ(r)(x) = hQ(r)(x), and so the
difference above is 0. Thus,

sup
x∈Q

sup
ℓ(Q)+2<ǫ<υ

|Tǫ,υ(fσ)(x)| ≤ T♮ fσ(x) +

2ζ+2
∑

r=ζ+2

|hQ(r)(x)〈fσ, h′
Q(r)〉| .

Consider ζ + 2 ≤ r ≤ 2ζ + 2. If Q(r) ∈ Uτ , we have |hQ(r)(x)〈fσ, h′
Q(r)〉| ≤

Uτ fσ(x). Otherwise, we have, upon combining (1.3) and (1.8),

|hQ(r)(x)〈fσ, h′
Q(r)〉| ≤ τ−1|hQ(r)(x)〈fσ, h′

Q(r)〉| ≤ τ−1 T♮ fσ(x) .

As T♮ fσ(x) < 2k, this proves (2.17). (The parameters τ and ζ enter into the
implied constant, but we do not attempt to track this dependence throughout
the proof.) �

3. Proof of the Weak-Type Inequality

We prove (1.19), the characterization of the weak-type inequalities. The ne-
cessity of the conditions follows immediately from standard considerations.

We turn to the reverse implication, namely the inequality (2.8). Specifically,
we will show that

‖T♮(σ·)‖Lp(σ)7→Lp,∞(ω) . T + U(3.1)

U := ‖Uτ (σ·)‖Lp(σ)7→Lp,∞(ω) ,(3.2)

where T expression is defined in (2.8).
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Let us first note that the testing condition (2.8) gives us a two weight Ap type
condition. By taking f = h′

Q, we can estimate as follows provided Q is not in

the collection Uτ in (1.8).

σ(Q)ω(Q)

|Q|3/2
≤ τ−2

∫

Q

|〈h′
Qσ, h′

Q〉|
ω(dx)
√

|Q|

≤ τ−3

∫

T♮(h
′
Q)ω(dx) ,

≤ τ−3
T

σ(Q)1/p

√

|Q|
ω(Q)1/p′ .

This yields the condition

(3.3) sup
Q∈Q−Uτ

σ(Q)1/p′ω(Q)1/p

|Q|
. T .

Let us note that if f is a finite linear combination of indicators of dyadic cubes,
that we then have for any integer k,

(3.4) sup
k

2kpω({T♮(fσ) > 2k}) < ∞ .

Indeed, we can cover the support of f by a union of at most 2d cubes. Let E

denote the union of the doubles of these cubes. For cubes Q that meet E, but
are not contained in it, we can use a combination of (3.3) and the boundedness
of the maximal operator Uτ to see that (3.4) holds. (At first read, one is free to
set Uτ = 0!)

Now, we will argue that for an absolute constant m and 0 < η < 1 we have

2kpω({T♮(fσ) > 2k+m , Uτ (σf) < η2k})(3.5)

. T
p‖f‖p

Lp(σ) + η2kpω({T♮(fσ) > 2k}) .

Apply this inequality for a choice of k for which the left-hand side is close to its
supremum. For sufficiently small η, this proves (3.1).

Apply the Whitney decomposition (2.11)—(2.14) for the set Ωk as in (2.10),
which we can do as (3.4) holds. For Q ∈ Qk, let

Ek(Q) := Q ∩ {T♮(fσ) > 2k+m , Uτ (σf) < η2k} .

Apply the Maximum Principle (2.16). We deduce that for x ∈ Ek(Q) we have

T♮(f1(Q(ζ))σ) ≥ 2k+m − C2k − Cη2k .

For 0 < η < 1 sufficiently small, m sufficiently large and x ∈ Ek(Q) we will have

2k+1 ≤ T♮(f1(Q(ζ))σ) .

And so we have

2kω(Ek(Q)) .

∫

Ek(Q)

T♮(f1(Q(ζ))σ) ω(dx) .
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The sets Ek(Q) are disjoint by (2.11). And so we should sum this last inequality.
But we do so subject to one more division of the Q ∈ Qk. Let

Qsmall
k := {Q ∈ Qk : ω(Ek(Q)) ≤ ηω(Q)},

and Qbig
k := Qk\Q

small
k . Now,

2kp
∑

Q∈Qsmall
k

ω(Ek(Q)) ≤ 2kpη
∑

Q∈Qk

ω(Q)

≤ 2kpηω({T♮(fσ) > 2k}) .

This is the first half of (3.5).
We also use the testing condition in (1.21) to estimate

2kp
∑

Q∈Qbig
k

ω(Ek(Q)) . η−p
∑

Q∈Q

ω(Ek(Q))
[

Ew
Q(ζ) T(f1Q(ζ)σ)

]p

. T
p
∑

Q∈Q

ω(Ek(Q))
[

ω(Q(ζ))−1 · ‖f1Q(ζ)‖Lp(σ)ω(Q(ζ))1/p′
]p

. T
p
∑

Q∈Q

‖f1Q(ζ)‖p
Lp(σ)

. T
p‖f‖p

Lp(σ) .

The last line follows from the finite overlap condition (2.13). This completes the
proof of (3.4).

4. First Steps in the Proof of the Strong Type Inequality

The conditions (1.24) easily follow from the strong type inequality (1.23). For
the first condition, just note that Uτf ≤ T♮ f ; the second follows from Hölder’s
inequality; and the last condition obviously follows from (1.23). Thus, the content
of the Theorem is that the testing conditions (1.24) imply (1.23).

We will show that

‖T♮(fσ)‖Lp(ω) .
{

T + T
∗ + U

}

‖f‖Lp(σ) ,(4.1)

T
∗ := sup

‖g‖∞≤1

sup
Q

σ(Q)−1/p‖T♮(g1Q)‖Lp(ω) ,(4.2)

T is defined in (2.8), and U is defined in (3.2). This proof requires some initial
steps before the main steps can be taken. The reader can consult Figure 4.1 for
a schematic tree of the proof of this estimate.

4.1. Initial Decomposition of ‖T♮(fσ)‖Lp(w). Take f to be a bounded function
which is a finite sum of indicators of dyadic cubes. We use the notation (2.10),
and apply the decomposition of the sets Ωk into collections of cubes Qk as in
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Figure 4.1. The schematic tree of the proof of the strong type
inequality. For the purposes of this figure, we suppress the de-
pendence of the estimates on K, and replace S(K) in the root of
the diagram by

∫

(T♮ fσ)pω(dx). Terms in diamonds are further
decomposed and those in rectangles are final estimates. On edges
leading into rectangles, we indicate how that term is controlled.
By ‘absorb’ in the edge leading into I1, we mean that I1 can be
absorbed into the left hand side. The term I3 is the sole term con-
trolled by U. The term II1 is associated with the ‘good function’
of the Calderón-Zygmund decompositions, and is controlled by the
dual testing condition T∗. The term II2 and its descendent’s are
associated with the ‘bad function’ and are controlled by the testing
condition T.

(2.11)—(2.15). In particular, we take ρ = ζ + 1. We modify the notation of
Ek(Q) from the previous section to

(4.3) Ek(Q) := Q ∩ {Ωk+m−1 − Ωk+m} , Q ∈ Qk .

For an illustration, see Figure 4.2. Here, m will be a fixed constant depending
upon dimension, ζ and τ . We emphasize that a given dyadic cube Q can be in
many collections Qk, which fact will enter into a late stage of the proof. Also note
that these sets are disjoint in Q, thus we have the estimate following from (2.3),

(4.4)
∑

k

∑

Q∈Qk

ω(Ek(Q))
∣

∣Ew
Qφ

∣

∣

p
. ‖φ‖p

Lp(w) .
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Figure 4.2. The set Ek(Q).

Our testing conditions do not trivially imply that ‖T♮ fσ‖Lp(ω) is finite, which
difficulty we circumvent with these definition. For an integer K > 1, we take

(4.5) Z′ := {k ∈ Z : ω(Ωk+m−1−Ωk+m) > 1
2m

ω(Ωk)} , Z′(K) = Z′∩ [−K, K] .

Note that we have ‖T♮(fσ)‖p
Lp(w) .

∑

k∈Z′ 2kpω(Ωk+m−1 − Ωk+m), and we will
estimate

S(K) :=
∑

k∈Z′(K)

∑

Q∈Qk

2kpω(Ek(Q)) .(4.6)

The point here is that the this sum is finite: The testing conditions imply that
T♮ satisfies the two weight weak type inequality (1.20), whence S(K) is finite.

4.2. Linearization and Maximum Principle. We now make a choice of lin-
earization, as in Definition 2.4, adapted to the collections Qk. For a choice of
integer m that depends upon the implied constants occurring in Lemma 2.16, we
can choose L, as in (2.5), so that these conditions hold for all k and all Q ∈ Qk,
and x ∈ Ek(Q):

ρ(x) ≤ ℓ(Q) + ζ + 1 , x ∈ Ek(Q) ,(4.7)

T♮(fσ)(x) ≤ C L(fσ)(x) + sup
ζ+2<r≤2ζ+2

Q(r)∈Uτ

|〈fσ, h′
Q(r)〉hQ(r)(x)|(4.8)

Is certainly possible to achieve all of these conditions, as the sets Ek(Q) are
disjoint as Q ∈ Qk and k ∈ Z vary. Note that we can then write

L(fσ)(x) = L(1Q(ζ+1)fσ)(x) , x ∈ Ek(Q) , Q ∈ Qk .

The sum S(K) is estimated as follows. For a constant 0 < η < 1, which we
will take to be of order cp for absolute constant c, estimate

S(K) ≤ I1(K) + I2(K) + I3(K)(4.9)
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Ij(K) :=
∑

k∈Z′(K)

∑

Q∈Qj
k

2kpω(Ek(Q)) , j = 1, 2, 3

Q1
k := {Q ∈ Qk : ω(Ek(Q)) < ηω(Q)}(4.10)

Q2
k :=

{

Q ∈ Qk − Q1
k : inf

x∈Ek(Q)
L(fσ)(x) > c2k

}

(4.11)

Q3
k := Qk −Q1

k −Q2
k .

Observe that for appropriate m in (4.3), if Uτ = ∅ we have (2.18) in force, in
which case Q3

k = ∅ for all k. In (4.11), we take 0 < c < 1 to be a small constant
depending upon the implied constant in (2.17).

The estimates we will prove are, with implied constants depending only on the
parameter τ associated with the operator T and dimension.

I1 . ηS(K) ,(4.12)

I2(K) . η−p−1
{

T + T
∗
}p
‖f‖p

Lp(σ) ,

I3(K) . U
p‖f‖p

Lp(σ) .

With these estimates proved, we have from (4.6) and (4.9)

S(K) . ηS(K) + η−p−1
{

T + T
∗
}p
‖f‖p

Lp(σ) + U
p‖f‖p

Lp(σ) .

For 0 < η < 1 sufficiently small, the first term can be absorbed into the left hand
side of the inequality. Letting K → ∞ proves (4.1).

5. Two Easy Estimates.

Proof: Estimate for I1. The proof of (4.12) is straight forward. By definitions,
especially (4.5), we have

I1(K) ≤ η
∑

k∈Z′(K)

2kp
∑

Q∈Qk

ω(Q)

≤ 2ηm
∑

k∈Z′(K)

2kpω(Ωk+m−1 − Ωk+m) ≤ 2ηmS(K) . �

It is for the proof above that we introduced the set Z′, the parameter K being
introduced to get the a priori finiteness of S(K). Having exploited both of these
points, we will suppress their appearance in the remaining arguments.

Proof: Estimate for I3. For Q ∈ Q3
k, we necessarily have the estimate below from

(2.17).

sup
ζ+2≤r≤2ζ+2

Q(r)∈Uτ

|〈fσ, h′
Q(r)〉hQ(r)(x)| ≥ c2k
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And this means that the sum below can be controlled in terms of the maximal
function Uτ .

I3 .

∞
∑

k=−∞

∑

Q∈Qk

ω(Ek(Q)) × sup
ζ+2≤r≤2ζ+2

Q(r)∈Uτ

|〈fσ, h′
Q(r)〉hQ(r)(x)|

. U
p‖f‖p

Lp(σ) .

Here, one dominates the supremum over r by a sum of at most ζ terms. �

6. The Estimate for I2.

6.1. The Calderón-Zygmund Decompositions. We utilize Calderón-
Zygmund decompositions adapted to measure σ. In addition, we will use the
decomposition at all heights simultaneously. The purpose of this section is to
describe this decomposition and apply it to the term I2.

Let Gt be the maximal dyadic cubes Q such that

(6.1) 2t ≤ Eσ
Q|f | ≤ 2t+1 .

Then, we have the following variant of (2.2), which we will refer to below.

(6.2)
∞

∑

t=−∞

2tp
∑

G∈Gt

σ(G) . ‖f‖p
Lp(σ) .

It is the cubes in Gt that we use to organize our proof. Let G =
⋃

t Gt. Let
τ : G 7→ Z be given by τ(Gt) := t, for all t. This map is well-defined as each cube
is a member of a unique Gt. For any cube Q, let Γ(Q) denote the minimal cube
G ∈ G such that Q ⊂ G. (Γ(Q) is the ‘father’ of Q in G.) We have the following
nested property.

G ∈ Gk , G′ ∈ Gl , G ( G′ implies k ≥ l . (nested property)

That is, the containment is strict.
We construct the Calderón-Zygmund decompositions. We set

(6.3) C(G) := {G′ ∈ Gτ(G)+1 : G′ ⊂ G} .

These are the ‘children’ of G in the collection G. For G ∈ G, we set f1G = gG+bG

where

(6.4) gG :=











Eσ
G′f x ∈ G′ , G′ ∈ C(G)

f(x) x ∈ G −
⋃

{G′ : G′ ∈ P(G)}

0 x 6∈ G .

This choice then specifies bG. It is simple to see that ‖gG‖∞ ≤ 2τ(G)+2, thus gG is
the ‘good function at height 2τ(G)’ and bG is the ‘bad function.’ The cancellation
property that the bad function has is that Eσ

GbG = 0. See Figure 6.1.
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Figure 6.1. A given cube Q is contained in G ∈ Γ(Q). Cubes
G′ ∈ C(G) are contained inside G. If no cube G′ is contained in Q,
then |f |1Q ≤ 2τ(G)+2 ω-a.e.

Let

H(G) := {(Q, k) : Q ∈ Q2
k , Γ(Q) = G} , G ∈ G .

We now refine the sum for I2 according to the collections H and the Calderón-
Zygmund Decomposition. Due to the definition of Q2

k, we can estimate

I2 . β−p{II1 + II2}

II1 :=
∑

G∈G

∑

(Q,k)∈H(G)

ω(Ek(Q))
∣

∣

∣
ω(Q)−1

∫

Ek(Q)

L(gGσ)(x) ω(dx)
∣

∣

∣

p

(6.5)

II2 :=
∑

G∈G

∑

(Q,k)∈H(G)

ω(Ek(Q))
∣

∣

∣
ω(Q)−1

∫

Ek(Q)

L(bGσ)(x) ω(dx)
∣

∣

∣

p

(6.6)

6.2. The Estimate for the Good Functions. The term II1 in (6.5) involve
the good functions. We have

II1 . (T∗)p‖f‖p
Lp(σ) .

Proof. We estimate from (6.5), using the condition in (4.2), and the fact that the
good functions are bounded, namely ‖gG‖∞ ≤ 2t+2 for G ∈ Gt. But first, the sets
Ek(Q) are disjoint so

II1 ≤
∑

G∈G

∑

(Q,k)∈H(G)

ω(Ek(Q))
∣

∣Ew
Q L(gGσ)

∣

∣

p

.
∑

G∈G

∫

G

∣

∣L(gGσ)
∣

∣

p
ω(dx) (by (4.4))
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=

∞
∑

t=−∞

2p(t+2)
∑

G∈Gt

∫

G

|L(2−t−2gGσ)|p ω(dx) (recall (6.4))

≤ (T∗)p
∞

∑

t=−∞

2p(t+1)
∑

G∈Gt

σ(G) (by (4.2))

. (T∗)p‖f‖p
Lp(σ) . (by (6.2))

Here, we can apply the testing condition (4.2) since ‖2−t−2gG‖∞ ≤ 1. �

7. The Analysis of II2

We turn our attention to the term II2 defined in (6.6), which is the term arising
from the ‘bad functions.’ Its analysis will occupy the remainder of the proof. We
did not explicitly define the ‘bad’ functions before, so let us do so now. They are

bG :=

{

βG′ x ∈ G′ , G′ ∈ C(G) (See (6.3))

0 x 6∈ G .
(7.1)

βG′ := 1G′

(

f(x) − Eσ
G′f

)

, G′ ∈ G .(7.2)

In particular, βG′ is supported on G′ and has σ-mean zero.
The operator L is selected in (4.7)—(4.8). We are considering the expressions

below, where G ∈ G, and (Q, k) ∈ H(G):
∫

Ek(Q)

L(bGσ)(x) ω(dx) =
∑

G′∈C(G)

∫

Ek(Q)

L(βG′σ)(x) ω(dx)(7.3)

These conditions mean:

• G ∈ G: The average value of f on G, with respect to σ-measure is about
2τ(G), and G is a maximal dyadic cube with this property, see (6.1).

• (Q, k) ∈ H(G): G is the minimal cube in G containing Q, and Q ∈ Q2
k.

• Recall that G′ ∈ Gτ(Q)+1, G′ ( G and Γ(Q) = G.

There is a cancellation that takes place here: Recall the role of the integer ζ

in (1.2). We have

(7.4) supp(L(βG′σ)) ⊂ (G′)
(ζ)

.

If x 6∈ (G′)
(ζ)

, and P is any dyadic cube that contains x and intersects (G′)
(ζ)

, let
P ′ be the subcube with ℓ(P ′) = 2−ζℓ(P ) that contains G′. It follows that and
that h′

P is constant on P ′ and
∫

P ′
βG′ σ(dy) = 0. Hence, 〈βG′, h′

Q〉 = 0. This
proves the assertion above.

The cubes G′ ∈ C(G) are disjoint, but this does not apply to the cubes (G′)(ζ)

to address this point we make the following construction. Take C(Q) to be the
maximal cubes among the collection

{(G′)(ζ) : G′ ∈ C(Q) , Q ∩ (G′)(ζ) 6= ∅}
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Figure 7.1. The largest cube is Q ∈ Qk, with Γ(Q) = G. The
cube Q contains two members of G′ ∈ C(G), and the maximal cube
of the form (G′)(ζ) is denoted as G.

If any G′ satisfies Q ⊂ (G′)(ζ), then this collection consists of a single tile, a
complication we will have to track in the analysis of below. See Figure 7.1 for an
illustration. Take ΓQ : C(Q) 7→ C(Q) to be the map that assigns to G′ ∈ C(Q)
the minimal element of C(Q) that contains it, if such a cube exists. (No such
cube exists for G′ if Q ∩ (G′)(ζ) = ∅.) Set

(7.5) βG :=
∑

G′∈C(G)

ΓQ(G)=G

βG′ .

We argue that we have the estimate

(7.6) |βG| . Mσ f ×
∑

G′∈C(G)

ΓQ(G)=G

1G′ ≤ Mσ f × 1Q .

Indeed, the collection of cubes {G′ ∈ C(G) : ΓQ(G′) = G} are pairwise disjoint,
a property inherited from C(Q), and the estimate above follows from (7.2).

By (7.4), we have the equality

L(βΓ(Q)σ)1Q = 1Q

∑

G∈C(Q)

L(βGσ) .

Therefore, we can continue the equality in (7.3) to conclude that for (Q, k) ∈
H(G) we have

∫

Ek(Q)

L(bGσ)(x) ω(dx) =
∑

G∈C(Q)

∫

Ek(Q)∩G

L(βGσ)(x) ω(dx)

=
∑

G∈C(Q)

∫

βG L∗(1Ek(Q)∩Gω)(y) σ(dy)
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= III1(Q) + III2(Q)

III1(Q) :=
∑

G∈C(Q)

∫

G\Ωk+m

βG L∗(1Ek(Q)∩Gω)(y) σ(dy) .

The definition of III2(Q) is similar with the integration being done over G ∩ Ωk+m.
With these definitions, we set

(7.7) IIIv :=

∞
∑

k=−∞

∑

Q∈Q2
k

ω(Ek(Q))
[

ω(Q)−1IIIv(Q)
]p

, v = 1, 2 .

We have II2 . III1 + III2. And we turn to the proof of

III1 . T
p‖f‖p

Lp(σ) .

Proof: Estimate for III1. Use Hölder’s inequality and the testing condition (2.8)
in its dual linearized form (2.7).

|III1(Q)| ≤
∑

G∈C(Q)

‖1G\Ωk+m
βG‖Lp(σ)‖L

∗(1Ek(Q)∩Gω)‖Lp′(σ)

≤ T

∑

G∈C(Q)

‖1G\Ωk+m
βG‖Lp(σ)ω(Q ∩ G)1/p′

≤ Tω(Q)1/p′‖1Q\Ωk+m
Mσ f‖Lp(σ) .

Here, we have used Hölder’s inequality, in the variable G ∈ C(Q), as well as (7.6).
We can now appeal to the definition of III1, (7.7), to see that

III1 ≤ T
p

∞
∑

k=−∞

∑

Q∈Q2
k

ω(Ek(Q))
[

ω(Q)−1/p‖1Q\Ωk+m
Mσ f‖Lp(σ)

]p

≤ T
p

∞
∑

k=−∞

∑

Q∈Q2
k

‖1Q\Ωk+m
Mσ f‖p

Lp(σ)

≤ T
p

∞
∑

k=−∞

‖1Ωk\Ωk+m
Mσ f‖p

Lp(σ)

≤ T
p‖f‖p

Lp(σ) .

The proof of this estimate is complete. �

8. The Analysis of III2

We analyze the term III2. To be specific, one has

III2(Q) :=
∑

G∈C(Q)

∫

G∩Ωk+m

βG L∗(1Ek(Q)∩Gω)σ(dy)

We turn to the collection Qk+m, namely the Whitney decomposition of Ωk+m.
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Figure 8.1. A cube Q ∈ Qk, sets Ωk+m−1, Ωk+m and Ek(Q) are
indicated. A set R ∈ Qk+m is indicated. This particular cube is
also contained inside of Q, which is not general the case.

Note that as Ek(Q)∩Ωk+m = ∅, the function L∗(1Ek(Q)∩G′ω) is constant on each

cube of the form R ∈ Ωk+m. Indeed, the cube R(ρ) = R(ζ+1) does not intersect
Ek(Q), so this follows from Lemma 2.9. (This conclusion is our rationale for
linking the Whitney decompositions to the structure of the operators we consider.
See Figure 8.1 for an illustration.) Thus,

∫

R∩G∩Q

βG · L∗(1Ek(Q)∩Gω)σ(dy)

=

∫

R∩G∩Q

L∗(1Ek(Q)∩Gω) σ(dy) × Eσ
R∩G∩Q

βG , R ∈ Qk+m .

There are two points to note in the last display: We can apply the testing
condition to the integral, and we have the σ-averages of βG above. We define

R(R, G) := {R ∈ Qk+m : R ∩ G ∩ Q 6= ∅} , G ∈ C(Q) .(8.1)

By the nested property of the Qk, if R ∩ Q 6= ∅, we must have R ⊂ Q. We have
by (7.1) and (7.5)

Eσ
R∩G∩Q

|βG| ≤ Eσ
R∩G∩Q

∣

∣f − Eσ
G
f
∣

∣

≤ Eσ
R∩G∩Q

|f | +

∣

∣

∣

∣

∣

Eσ
R∩G∩Q

∑

G′∈C(G)

ΓQ(G)=G

βG′

∣

∣

∣

∣

∣

(by (7.5))

≤ 2Eσ
R∩G∩Q

|f | + 2τ(Γ(Q))+1 (by (6.1))(8.2)

For the last line, recall the definition of βG′ from (7.2). By selection of G′ we
have |Eσ

G′f | ≤ 2τ(Γ(G))+1 for all G′. Hence, the last line follows.
This estimate reveal that there is a distinguished subset of R(Q, G), it is

(8.3) R1(Q, G) := {R ∈ R(Q, G) : Eσ
R∩G∩Q

|f | ≤ 2τ(Γ(Q))+4} .
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Let R2(Q, G) := R(Q, G)\R1(Q, G). By the construction of the cubes G, we
have the inclusion

(8.4) R ⊂ G′ ∩ Q , R ∈ R2(Q, G) , G′ ∈ C(Q), G′ ⊂ G .

Now, we estimate

III2(Q) . IV1(Q) + IV2(Q) ,

IVv(Q) :=
∑

G∈C(Q)

∑

R∈Rv(Q,G)

∫

R∩G∩Q

|L∗(1Ek(Q)∩Gω)| σ(dy)×Eσ
R|βG| , v=1, 2.(8.5)

We define IV1, IV2 as in (7.7).
We claim

IV1 . Jσ, wKp′

T,p‖f‖
p
Lp(σ)

Proof: Estimate for IV1. In this case, we are nicely set up to appeal to the max-
imal function inequality (2.2). For Q ∈ Q2

k, we estimate as follows.

IV1(Q) . 2τ(Γ(Q))
∑

G∈C(Q)

∑

R∈R1(Q,G)

∫

R∩G∩Q

|L∗(1Ek(Q)∩Gω)| σ(dy)

. 2τ(Γ(Q))
∑

G∈C(Q)

∫

G∩Q

|L∗(1Ek(Q)∩Gω)| σ(dy)

. 2τ(Γ(Q))
∑

G∈C(Q)

σ(Q ∩ G)1/p‖L∗(1Ek(Q)∩Gω)‖Lp′(σ) (Hölder’s inequality)

. T2τ(Γ(Q))
∑

G∈C(Q)

σ(Q ∩ G)1/pω(Q ∩ G)1/p′ (See (4.2), (2.7).)

. T2τ(Γ(Q))σ(Q)1/p · ω(Q)1/p′ (Hölder’s inequality)

. η−1
T2τ(Γ(Q))σ(Q)1/p · ω(Ek(Q))1/p′ .

In the last line, we have used the fact that Q 6∈ Q1
k to pass from ω(Q) to ω(Ek(Q)).

See (4.10). Let us also note, as follows from definitions, that Q ⊂ Γ(Q) ⊂
{Mσ f > 2τ(Γ(Q))}, which fact we will use below.

We estimate as follows.

IV1 .

∞
∑

k=−∞

∑

Q∈Q2
k

ω(Ek(Q))
[

ω(Q)−1IV1(Q)
]p

. η−1
T

p
∞

∑

k=−∞

∑

Q∈Q2
k

ω(Ek(Q))
[

2τ(Γ(Q))ω(Q)−1/pσ(Q)1/p
]p

. η−1
T

p
∑

G∈G

2pτ(G)σ({Mσ f > 2τ(G)})
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. η−1
T

p‖f‖p
Lp(σ) .

The last line follows from (6.2). �

9. Analysis of IV2

We turn to the estimate for IV2, showing that

(9.1) IV2 . Jσ, wKp′

T,p‖f‖
p
Lp(σ)

This is case in which combinatorics of our decomposition are essential to obtain
an estimate on this sum. This proof also completes the proof of our Theorem.

We begin with an estimate for IV2(Q), taking these steps: (a) invoke (8.4) to
simplify the range of integration that appears in (8.5); (b) use the definition of
R2(Q, G) and (8.2) to insert the term Eσ

R|f |; and (c) insert σ(Q)±1/p into the
sum below and apply Hölder’s inequality in the summing indicies.

IV2(Q) =
∑

G∈C(Q)

∑

R∈R2(Q,G)

∫

R

|L∗(1Ek(Q)∩Gω)| σ(dy) × Eσ
R|f |

≤ A(Q) · B(Q) ,

A(Q)p :=
∑

G∈C(Q)

∑

R∈R2(Q,G)

σ(R)
[

Eσ
R|f |

]p
,

B(Q)p′ :=
∑

G∈C(Q)

∑

R∈R2(Q,G)

σ(R)−p′/p

[

∫

R

|L∗(1Ek(Q)∩Gω)| σ(dy)

]p′

≤
∑

G∈C(Q)

∑

R∈R2(Q,G)

∫

R

|L∗(1Ek(Q)∩Gω)|p
′

σ(dy)

≤
∑

G∈C(Q)

∫

Q∩G

|L∗(1Ek(Q)∩Gω)|p
′

σ(dy)

≤ T
p′

∑

G∈C(Q)

ω(Q ∩ G) (See (4.2), (2.7).)

≤ T
p′ω(Q) .

Recall that the rectangles R above are disjoint, since they are members of Qk+m,
and contained in Q, by (8.4).

Therefore, we have

IV2 =

∞
∑

k=−∞

∑

Q∈Q2
k

ω(Ek(Q))
[

ω(Q)−1IV2(Q)
]p
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.

∞
∑

k=−∞

∑

Q∈Q2
k

ω(Ek(Q))
[

ω(Q)−1A(Q) · B(Q)
]p

. T
p

∞
∑

k=−∞

∑

Q∈Q2
k

ω(Ek(Q)) · ω(Q)−1 ×
∑

G∈C(Q)

∑

R∈R2(Q,G)

σ(R)
[

Eσ
R|f |

]p

. T
p

∞
∑

k=−∞

∑

Q∈Q2
k

∑

G∈C(Q)

∑

R∈R2(Q,G)

σ(R)
[

Eσ
R|f |

]p
.(9.2)

It is our intention to dominate this last sum (9.2) by ‖Mσ f‖p
Lp(σ). To accom-

plish this, there are two points that should be demonstrated. (1) Any given cube
R can arise in the sum above at most a bounded number of times. (2) Two given
cubes R1 ( R2 that arise in the sum above satisfy Eσ

R1
|f | > 4Eσ

R2
|f |. Both points

are true, and require some combinatorial arguments to verify.

Definition 9.3. Say that a cube R is of type IV2 if it arises in the sum (9.2).
More specifically, we say that (k, Q, G′, R) is a type IV2 quadruple if

(1) k ∈ Z,
(2) Q ∈ Q2

k,
(3) G′ ∈ C(Q) and R ⊂ G′, (See (8.4).)
(4) R ∈ R2(Q, Γ(G′)). In particular R ∈ Qk+m and Eσ

R|f | > 2τ(G′)+3. (See
(8.1) and (8.3).)

Let us set IV2 the collection of type IV2 quadruples.

Proposition 9.4. A given cube R can occur as a type IV2 cube in only a bounded

number of ways. Namely, if (kt, Qt, R, G′
t), for 1 ≤ t < T are distinct type IV2

quadruples, with R fixed, then we have T ≤ m + η−1.

Proof. Let us note that we have kt 6= ks for 1 ≤ s 6= t ≤ T . Assuming that
ks = kt we would have R ⊂ Qks

∩ Qkt
by (8.4), so that by (2.11), we would have

Q = Qks
= Qkt

. Likewise, we have R ⊂ G′
ks
∩ G′

kt
, with G′

ks
, G′

kt
∈ C(Q), hence

G′
ks

= G
′

kt
, and the data are equal.

Now, let us assume that k1 < k2 < · · · < kT . We have R ∈ Qkt+m. We see
that of necessity, that R ∈ Qk for k1 + m ≤ k ≤ kT + m. That is, for m ≤ t ≤ T

both R and Qkt
are in Qkt

. (We can assume T > m.) Then the disjoint cover
condition (2.11) implies that R = Qkt

.
An important difficulty that arises here is that a given cube Q can be a member

of an unbounded number of Qk. But the additional assumption is that we have
R ∈ Q2

kt
for m ≤ t ≤ T implies that ω(Ekt

(Q)) ≥ ηω(Q). These last sets are
disjoint and contained in Q, so that we see our claim is proved. �

This last Proposition is an important step towards our goal. Still, the cubes R

of type IV2, even if distinct, can still overlap. We address this point in the next
two propositions.
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Proposition 9.5. For each G0 ∈ G, we have
∑

(k,Q,R,G′)∈IV2

Γ(Q)=G0, k=εmod m

1R ≤ m , ε = 0, 1, . . . , m − 1 .

That is, there are bounded overlaps of the type IV2 cubes if we hold constant both

the principle cube G0, and the parity of k mod m.

Proof. Let (ks, Qs, Rs, G
′
s) ∈ IV2 for s = 1, 2 be two distinct type IV2 quadruples

with R1 ⊂ R2 and Γ(Q1) = Γ(Q2) = G0. Then, we must have k1 ≥ k2 by the
nested property and the fact that Rs ∈ Qks+m. The case of k1 = k2 would imply
that the quadruples are the same, and so seeking contradiction we must have
k1 > k2 + m. Then, we have

R1 ⊂ Q1 ⊂ R2 ⊂ Q2 .

But, by definition we have

Eσ
R2
|f | > 8Eσ

Q2
|f | > 4Eσ

Γ(Q2)|f | .

That is, we cannot have Γ(Q1) = Γ(Q2). We have our contradiction. �

Proposition 9.6. If we have two type IV2 quadruples (ks, Qs, Rs, G
′
s) ∈ IV2 for

s = 1, 2, with R1 ( R2 and k1 = k2 mod m then we have

Eσ
R1
|f | ≥ 4Eσ

R2
|f | .

Proof. The hypotheses, with the nested property (2.15) give us that k1 ≥ k2 +m.
By the previous Proposition, we must have G′

1 6= G′
2, hence R1 ( G′

1 ( R2. And
from this we see that

Eσ
R1
|f | ≥ 8Eσ

G′

1
|f | ≥ 8EΓ(R2)|f | ≥ 4Eσ

R2
|f | .

And so our claim is proved. �

We can complete the estimate for IV2. Let

T := {R : ∃k, Q, G ∋ (k, Q, R, G) ∈ IV2} .

Note that Proposition 9.6 implies that we have
∑

R∈T

σ(Q)
[

Eσ
R|f |

]p
. ‖Mσ f‖p

Lp(σ) .

And so we can estimate using Proposition 9.4,

(9.2) . β−1
∑

R∈T

σ(Q)
[

Eσ
R|f |

]p
. ‖f‖Lp(σ)

This completes the proof of (9.1).
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