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Abstract. We construct a new family of semi-discrete numerical schemes for
the approximation of the one-dimensional periodic Vlasov-Poisson system. The
methods are based on the coupling of discontinuous Galerkin approximation
to the Vlasov equation and several finite element (conforming, non-conforming
and mixed) approximations for the Poisson problem. We show optimal error
estimates for the all proposed methods in the case of smooth compactly sup-
ported initial data. The issue of energy conservation is also analyzed for some
of the methods.

1. Introduction

The Vlasov-Poisson system is one of the basic and simplest models in the
mesoscopic description of large ensembles of interacting particles. In one-space
dimension and in dimensionless variables, the Vlasov equation reads

(1)
∂f

∂t
+ v

∂f

∂x
− Φx

∂f

∂v
= 0 (x, v, t) ∈ Ωx × R× [0,∞),

where the electrostatic field, −Φx(x, t), derives from a potential Φ(x, t) that sat-
isfies:

(2) − Φxx = ρ(x, t)− 1 (x, t) ∈ Ωx × [0,∞),

with ρ(x, t) being the charge density which is defined by

(3) ρ(x, t) =

∫
R
f(x, v, t) dv for all (x, t) ∈ Ωx × [0,∞).

The above system describes the evolution of a collisionless plasma of charged
particles (electrons and ions) in the case where the only interaction (between
particles) considered relevant is the mean-field force created through electro-
static effects, hence neglecting the electromagnetic effects. f(x, v, t) is the elec-
tron distribution, which is a non-negative function depending on the position:
x ∈ Ωx ⊂ R; the velocity: v ∈ R, and the time: t ∈ R, with Ωx denoting the
spatial domain where the plasma is confined. As ions are much heavier than
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electrons, it is assumed that their distribution is uniform and since the plasma
should be neutral, one has

(4)

∫
Ωx

ρ(x, t) dx =

∫
Ωx

∫
R
f(x, v, t) dv dx = 1 for all t ∈ [0,∞).

We refer to the surveys [41, 12, 34] for good account on the state of the art in
the mathematical analysis and properties of the solutions of the Cauchy problem
for the Vlasov-Poisson system.

Many efforts have been dedicated to the numerical approximation of the Vlasov-
Poisson system with either probabilistic or deterministic solvers. Since the be-
ginnings of numerical plasma simulations in the 60′s, Particle methods [11] have
been often preferred because of their lower computational complexity. For these
methods, the motion of the plasma is approximated by a finite number of macro-
particles in the physical space that follow backward the characteristics of the
Vlasov equation. Several works have also analyzed their convergence in one
[30, 59] and higher dimensions [58]. However, a well known drawback of these
methods is their inherent numerical noise which prevents from getting an accu-
rate description of the distribution function in the phase space for many applica-
tions. To overcome this lack of precision, eulerian solvers, methods discretizing
the Vlasov equation on a mesh of the phase space, have been also considered.
Their design has been explored by many authors and with many different tech-
niques: finite volumes [36, 37]; Fourier-Fourier transform [44]; finite elements
[60, 61], splitting schemes [33, 17]; and semi-lagrangian methods [39, 31, 16].
All these methods present different pros and cons and we refer to [38] and the
references therein for a discussion. Finite volumes are a simple and inexpensive
option, but in general, are low order. Fourier-Fourier transform schemes suffer
from Gibbs phenomena if other than periodic boundary conditions are imposed.
Semi-lagrangian schemes can achieve high order allowing also for time integration
with larger time steps. However, they require high order interpolation to com-
pute the origin of the characteristics, which in turn destroys the local character
of the reconstruction. Standard Finite Element methods suffer from numerical
oscillations when approximating the Vlasov equation. In contrast, Discontinuous
Galerkin (DG) finite elements are particularly well suited for hyperbolic prob-
lems and their application to non-linear conservation laws has already shown
their usefulness [26, 25, 28].

Based on a totally discontinuous finite element spaces, DG methods are ex-
tremely versatile and have numerous attractive features: local conservation prop-
erties; can easily handle irregularly refined meshes and variable approximation
degrees (hp-adaptivity), weak approximation of boundary conditions and built-
in parallelism which permits coarse-grain parallelization. In addition, DG mass
matrices are block-diagonal and can be inverted at a very low computational
cost, giving rise to very efficient time-stepping algorithms in the context of time-
dependent problems, as it is the case here. Pioneering research on discontinuous
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Galerkin methods was pursued in [51, 47, 35, 56, 3]. We refer to [24, 4] for a
detailed historical overview and for more recent developments to [54, 49, 14, 5]
and references therein. However, although DG methods can deal robustly with
partial differential equations of almost any kind, their application in the realm
of numerical approximation of kinetic models has been considered only very re-
cently. In [20] and [9] the authors study, respectively, the use of DG for the
Boltzmann-Poisson system in semiconductors and for water-bag approximations
of the Vlasov-Poisson system. In [40], an L1-analysis is carried out in for a
simplified linear Vlasov-Boltzmann equation with a given confining force field.

Despite the numerical performance of all these eulerian solvers has been exten-
sively studied, to our knowledge, the issue of their convergence and error analysis
for the Vlasov-Poisson system, has not been tackled till very recently, and only for
the one-dimensional periodic case. The convergence and error analysis for a low
order finite volume scheme is contained in [37]. More recently, semi-lagrangian
schemes have been analyzed; of first order in [7] and high order is considered
in [8, 10]. In these works the authors have also proved a-priori error bounds in
different norms for both the distribution function and the electrostatic field. We
also mention that for other kinetic models, finite differences [52] and spectral
methods [46, 45] have been also considered and analyzed.

The present paper is concerned with the design and analysis of discontinuous
Galerkin approximation for the one-dimensional periodic Vlasov-Poisson system.
We introduce a new whole family of eulerian schemes, based on the combination
of DG approximation to the Vlasov equation with various different finite element
(conforming and nonconforming) approximations to the electrostatic field. The
first one is a direct conforming approximation obtained by taking advantage of the
explicit integration of the Poisson equation in one dimension. Such approximation
is equivalent to what most authors, if not all, have usually considered for this
system. However, in spite of its simplicity, it might not be the most appropriate
scheme in view of the possible extension/adaptation of the numerical scheme to
higher dimensions and to more complex kinetic models. For this reason, in the
present paper we also examine a different approach: since the coupling in the
Vlasov-Poisson system is through the electrostatic field, the main interest in the
Poisson problem is the approximation to Φx rather than to Φ, and therefore mixed
finite element methods seem to be the right choice. We explore Raviart-Thomas
and several mixed DG approximations for the Poisson problem.

We also deal with the convergence and error analysis for the proposed DG
methods for the case of smooth compactly supported solutions. We derive op-
timal error bounds in the L2-norm for both the distribution function and the
electrostatic field, for high order methods, namely k ≥ 1, k being the polynomial
degree of the DG approximation for the distribution function. The analysis for
piecewise constant approximation (k = 0) is different and will be carried out
somewhere else. Although Vlasov equation might be seen as a simple trans-
port equation, its coupling with Poisson, brings into play in such equation, a
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non-linear (quadratic) and non-local term. This generates some difficulties in
the error analysis, precluding a straightforward extension of other works. A key
ingredient is the construction of some projection operators, inspired in those in-
troduced in [47, 53, 23, 62], but specially designed for the Vlasov-Poisson system.
These special projections allow for avoiding the loose of half order, typical of the
standard error analyses of finite element methods for hyperbolic problems. We
have focused on semi-discrete schemes; discussion on suitable time integrators
and design and analysis of fully discretized schemes is outside the scope of this
paper and will be the subject of future research.

Finally, we wish to note that while developing the methods, we have taken
special care in ensuring that physical properties of the continuous system are
preserved. The DG approximation for the Vlasov equation ensures in an easy
way that the total charge of the system is preserved (4). We also discuss the con-
servation of the total energy for the proposed schemes. In particular, we propose
a full DG method (DG for Vlasov equation and a particular Local discontinuous
Galerkin (LDG) for Poisson problem), that preserves the total discrete energy
of the system. To the best of our knowledge this is the first scheme proposed
in literature for which energy conservation can be shown. Our proof however
requires a technical assumption on the polynomial degree for the DG methods,
namely k ≥ 2. Whether this restriction is really necessary or not, will be the
subject of future research. For many others full DG schemes presented in the
paper, we provide a bound on the energy dissipated by the system.

Extension to higher dimensions, numerical validation of the results presented
here and numerical performance of the presented numerical schemes in challeng-
ing questions such as the Landau damping of Langmuir waves [63] or the Raman
scattering instability [9] will be carried out somewhere else.

The outline of the paper is as follows. In section 2 we describe the main
properties of the continuous problem, we introduce the notations and revise some
basic results we need for the description and analysis of the numerical methods.
In section 3 we present the numerical methods proposed to approximate the one
dimensional periodic Vlasov-Poisson system. The error analysis for the presented
method is detailed in section 4. We discuss the energy conservation properties of
the schemes in section 5. The paper is completed with two appendix, Appendix A
and B, containing some proofs of technical and auxiliary lemmas used in the
convergence analysis.

2. Preliminaries, Notation and Auxiliary Results

Throughout this paper, we use the standard notation for Sobolev spaces [1].
For a bounded domain B ⊂ R2, we denote by Hm(B) the L2-Sobolev space of
order m ≥ 0 and by ‖ · ‖m,B and | · |m,B the usual Sobolev norm and seminorm,
respectively. For m = 0, we write L2(B) instead of H0(B). We shall denote
by Hm(B)/R the quotient space consisting of equivalence classes of elements of
Hm(B) differing by constants; for m = 0 it is denoted by L2(B)/R. We shall
indicate by L2

0(B) the space of L2(B) functions having zero average over B. This
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notation will also be used for periodic Sobolev spaces without any other explicit
reference to periodicity to avoid cumbersome notations.

2.1. Continuous Problem: The 1D periodic Vlasov-Poisson System. In
the rest of the paper we take Ωx = [0, 1] in (1)-(2)-(3)-(4). Let f0 denote a given
initial distribution f(x, v, 0) = f0(x, v) in (x, v) ∈ [0, 1]×R. We impose periodic
boundary conditions on x for the transport equation (1),

f(0, v, t) = f(1, v, t) for all (v, t) ∈ R× [0,∞).

and also for the Poisson equation (2),

(5) Φ(0, t) = Φ(1, t) and Φx(0, t) = Φx(1, t) for all t ∈ [0,∞).

Notice that (4) is coherent with the 1-periodicity of Φx. Let us also emphasize
that the correct way of including periodic boundary conditions is to assume that
f and Φ are the restriction to [0, 1] of periodic functions defined in R in the right
spaces. To guarantee the uniqueness of the solution Φ (otherwise is determined
only up to a constant), we fix the value of Φ at a point. We set

(6) Φ(0, t) = 0 for all t ∈ [0,∞).

However, notice that since the Poisson equation (2) is one-dimensional it could
be directly integrated. More precisely, by using twice the Fundamental Theorem
of Calculus, it follows that Φ is defined for all t ∈ [0,∞) as

(7) Φ(x, t) = D + CEx+
x2

2
−
∫ x

0

∫ s

0

ρ(z, t) dz ds ∀x ∈ [0, 1] ,

where D and CE are integration constants determined from (6) and (5);

(8) D = 0, CE =

∫ 1

0

∫ z

0

ρ(s, t) ds dz − 1

2
∀ t ∈ [0, T ].

Denoting then by E(x, t) = Φx(x, t), and differentiating (7) with respect to x, we
find

(9) E(x, t) = Φx(x, t) = CE + x−
∫ x

0

ρ(s, t) ds ∀x ∈ [0, 1] ,

with CE defined as in (8). Throughtout the paper, E will be referred as the
electrostatic field. Although the physical one is indeed −E, we shall use this
abuse in the notation to follow the standard notation for the Poisson solvers
in the Discontinuous Galerkin community. Observe that (5) implies that the
electrostatic field has zero average in agreement with the charge neutrality.

In order to perform our error analysis we restrict our attention to smooth
compactly supported solutions f in a fixed time interval [0, T ] for all T > 0.
Given a distribution function f(x, v, t), we will denote by

Q(t) = 1 + sup{|v| : ∃x ∈ [0, 1] and τ ∈ [0, t] such that f(x, v, τ) 6= 0},
for all t ∈ [0,∞) as a measure of the support of the distribution function. The

following result is essentially contained in [29, 57, 41].
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Theorem 2.1 (Well-posedness Continuous 1DVP). Given f0 ∈ C1(Rx × Rx),
1-periodic in x and compactly supported in v, Q(0) ≤ Q0 with Q0 > 0. Then
the periodic Vlasov-Poisson system (1)-(2) has a unique classical solution (f, E),
f ∈ C1(0, T ;C1(Rx × Rv)) and E ∈ C1(0, T ;C1(Rx)) that is 1-periodic in x for
all time t in [0, T ] for all T > 0, such that:

i) Regularity: If in addition f0 ∈ Cm(Rx×Rx), m ≥ 2, then, the distribution
function f belongs to Cm(0, T ;Cm(Rx × Rv)) and the force field E ∈
Cm(0, T ;Cm(Rx)).

ii) Control of Support: There exists a constant C depending on Q0 and f0

such that Q(T ) ≤ CT for all T > 0.

In the rest of this work, we will assume that the initial data f0 satisfies the
hypotheses in Theorem 2.1, and thus, the unique classical solution to the periodic
Vlasov-Poisson system (1)-(2) satisfies that there exists L > 0 depending on f0,
T and Q0 such that supp( f(t) ) ⊆ Ω for all t ∈ [0, T ], where we have defined
Ω = I × J , with I = [0, 1] and J = [−L,L]. The Vlasov transport equation (1)
is regarded as a transport equation in ΩT := Ω× [0, T ]. Taking into account the
boundary conditions, the weak formulation of the continuous problem (1) reads:
find (f, E) such that

(10)

∫∫
Ω

ftφ dx dv −
∫∫

Ω

vfφx dx dv +

∫∫
Ω

Ef φv dx dv = 0 ∀φ ∈ C∞(Ω).

It is well known [41, 12, 34] that the continuous solution of (1)-(2) satisfies four
important properties:

• Positivity: f(t, x, v) ≥ 0, for all (x, v, t) ∈ ΩT .
• Charge conservation: as given in (4).
• Lp-conservation:

(11) ‖f(t)‖Lp(Ω) = ‖f0‖Lp(Ω) 1 ≤ p ≤ ∞ , ∀ t ∈ [0, T ] .

• Conservation of the total Energy:

(12)
d

dt

(∫
Ω

|v|2f(x, v, t) dx dv +

∫
I
|E(x, t)|2 dx

)
= 0 .

In deriving numerical methods for (1)-(2), we will try to ensure that the resulting
schemes will be able to produce approximate solutions, enjoying some of these
properties. As usual with high-order schemes for hyperbolic problems, we cannot
expect to preserve positivity of the scheme. However, we will be able to conserve
the total energy for particular method, see section 5.

2.2. Discontinuous Galerkin Approximation: Basic Notations. Let {Th}
be a family of partitions of our computational/physical domain Ω = I × J =
[0, 1]× [−L,L], which we assume to be regular [21] and made of rectangles. Each
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cartesian mesh Th is defined as Th := {Tij = Ii × Jj, 1 ≤ i ≤ Nx, 1 ≤ j ≤ Nv }
where

Ii = [xi−1/2, xi+1/2] ∀ i = 1, . . . , Nx ; Jj = [vj−1/2, vj+1/2] ∀ j = 1, . . . , Nv ,

and the mesh sizes hx and hv relative to the partition are defined as

0 < hx = max
1≤i≤Nx

hxi := xi+1/2 − xi−1/2, 0 < hv = max
1≤j≤Nv

hvj := vi+1/2 − vi−1/2 ,

being hxi and hvj the cell lengths of Ii and Jj, respectively. The mesh size of the
partition is defined as h = max (hx, hv). For simplicity in the exposition we also
assume that v = 0 corresponds to a node, vj−1/2 = 0 for some j, of the partition
of [−L,L]. The set of all vertical edges is denoted by Γx, and respectively, we
will refer to Γv as the set of all horizontal edges;

Γx :=
⋃
i,j

{xi−1/2} × Jj , Γv :=
⋃
i,j

Ii × {vj−1/2} , Γh = Γx ∪ Γv .

By {Ih} we shall denote the family of partitions of the interval I;

Ih := { Ii : 1 ≤ i ≤ Nx } γx :=
⋃
i

{xi−1/2} .

Next, for k ≥ 0, we define the discontinuous finite element spaces V k
h and Zkh and

a conforming finite element space, W k+1
h ,

V k
h =

{
ψ ∈ L2(I) : ψ ∈ Pk(Ii), ∀x ∈ Ii i = 1, . . . Nx,

}
,

Zkh :=
{
z ∈ L2(Ω) : z ∈ Qk(Tij), ∀ (x, v) ∈ Tij = Ii × Jj, ∀i , j

}
,

W k+1
h =

{
χ ∈ C0(I) : χ ∈ Pk+1(Ii), ∀x ∈ Ii i = 1, . . . Nx,

}
∩ L2(I)/R ,

where Pk(Ii) is the space of polynomials (in one dimension) of degree up to k,
and Qk(Tij) is the space of polynomials of degree at most k in each variable.

Trace Operators: We denote by (ϕh)
+
i+1/2,v and (ϕh)

−
i+1/2,v the values of ϕh at

(xi+1/2, v) from the right cell Ii+1× Jj and from the left cell Ii× Jj, respectively;

(ϕh)
±
i+1/2,v = lim

ε↓0
ϕh(xi+1/2 ± ε, v) , (ϕh)

±
x,j+1/2 = lim

ε↓0
ϕh(x, vj+1/2 ± ε) ,

for all (x, v) ∈ I × J or in short-hand notation

(13) (ϕh)
±
i+1/2,v = ϕh(x

±
i+1/2, v) , (ϕh)

±
x,j+1/2 = ϕh(x, v

±
j+1/2) ,

for all (x, v) ∈ Ii × Jj. The jump [[ · ]] and average {·} trace operators of ϕh at
(xi+1/2, v), ∀ v ∈ Jj are defined by

(14)
[[ϕh ]]i+1/2,v := (ϕh)

+
i+1/2,v − (ϕh)

−
i+1/2,v ∀ϕh ∈ Zkh ,

{ϕh}i+1/2,v :=
1

2

[
(ϕh)

+
i+1/2,v + (ϕh)

−
i+1/2,v

]
∀ϕh ∈ Zkh .
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2.3. Technical Tools. We start defining the space

Hm(Th) := {ϕ ∈ L2(Ω) : ϕ|Tij
∈ Hm(Tij) ∀Tij ∈ Th } m ≥ 0.

In our error analysis, since we consider a non-conforming approximation, we shall
employ the following seminorm and norms,

|ϕ|21,h =
∑
i,j

|ϕ|21,Tij
‖ϕ‖2

m,Th
:=
∑
i,j

‖ϕ‖2
m,Tij

∀ϕ ∈ Hm(Th),m ≥ 0

‖ϕ‖0,∞,Th
= sup

Tij∈Th

‖ϕ‖0,∞,Tij
‖ϕ‖pLp(Th) :=

∑
i,j

‖ϕ‖pLp(Tij) ∀ϕ ∈ L
p(Th) ,

for all 1 ≤ p < ∞. We also introduce the following norms over the skeleton of
the finite element partition,

‖ϕ‖2
0,Γx

:=
∑
i,j

∫
Jj

|(ϕ)i+1/2,v|2 dv , ‖ϕ‖2
0,Γv

=
∑
i,j

∫
Ii

|(ϕ)x,j+1/2|2 dx ∀ϕ ∈ H1(Th) .

Then, we define ‖ϕ‖2
0,Γh

= ‖ϕ‖2
0,Γx

+ ‖ϕ‖2
0,Γv

. We notice that all the above defi-
nitions apply also for the partition Ih with the obvious changes in the notation.

Projection operators: For k ≥ 0, we denote by P k : L2(I) −→ V k
h the

standard L2-projection onto the finite element space V k
h defined locally, i.e., for

each 1 ≤ i ≤ Nx,

(15)

∫
Ii

(
P k(w)− w

)
qh dx = 0 ∀qh ∈ Pk(Ii) .

This projection is stable in Lp(I) for all p [32], i.e.,

(16) ‖P k(w)‖Lp(Ih) ≤ C‖w‖Lp(I) ∀w ∈ Lp(I), 1 ≤ p ≤ ∞ .

We next introduce two more refined projections (see [53]), which we denote by
π±, that can be defined only for more regular functions, say w ∈ H1/2+ε(Ii) for
all i. The projections π+(w) and π−(w) are the unique polynomials of degree at
most k ≥ 1, that satisfy for each 1 ≤ i ≤ Nx

(17)

∫
Ii

(
π±(w)− w

)
qh dx = 0, ∀qh ∈ Pk−1

h (Ii),

together with the matching conditions;

(18) π+(w(x+
i−1/2)) = w(x+

i−1/2) ; π−(w(x−i+1/2)) = w(x−i+1/2) .

Provided w enjoys enough regularity, say w ∈ Hk+1(Ii), the following error esti-
mates can be easily shown for all these projections:

(19)
‖w − P k(w)‖0,Ii

‖w − π±(w)‖0,Ii

}
≤ Chk+1|w|k+1,Ii ∀w ∈ Hk+1(Ii).
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where C is a constant depending only on the shape-regularity of the mesh and
the polynomial degree [21, 53]. For the standard L2-projection we will also need
estimates in the L∞-norm [55],

(20) ‖w − P k(w)‖0,∞,I ≤ Chk+1|w|k+1,∞,I .

Let k ≥ 0 and let Ph : L2(Ω) −→ Zkh be the standard L2-projection (in the
two-dimensional case) defined by Ph(w) = (P k

x ⊗ P k
v )(w); i.e., for all i and j,

(21)

∫
Ii

∫
Jj

(Ph(w(x, v))− w(x, v))ϕh(x, v) dv dx = 0 ∀ϕh ∈ Pk(Ii)⊗ Pk(Jj) .

From its definition, it follows inmediately its L2-stability, but it can be shown to
be stable in Lp for all p [32],

(22) ‖Ph(w)‖Lp(Th) ≤ C‖w‖Lp(Ω) ∀w ∈ Lp(Ω), 1 ≤ p ≤ ∞ .

3. The suggested numerical methods

In this section we formulate the numerical schemes we propose to approximate
the Vlasov-Poisson system. The first one is a scheme where the DG approxima-
tion for the transport equation is coupled with a simple conforming approxima-
tion of higher degree for the electrostatic field. The second scheme results by
combining mixed finite element approximation for the Poisson problem together
with DG approximation to the transport equation. Last approach is based on
fully DG approximation for both variables the electron distribution f and the
electrostatic field.

Due to the special structure of the transport equation: v is independent of
x and E is independent of v; for all methods the DG approximation for the
electron distribution function is done exactly in the same way. Therefore we
start by introducing the DG method for the transport equation (1), and in what
follows, we denote by Ei

h the restriction to Ii of the finite element approximation
Eh to be defined later on.

Let fh(0) = Ph(f0) be the approximation to the initial data. The numerical
method reads: find (Eh, fh) : [0, T ] −→ (Wh,Zkh) such that

(23)
Nx∑
i=1

Nv∑
j=1

Bhij(Eh; fh, ϕh) = 0 ∀ϕh ∈ Zkh ,

where the bilinear form Bhij(Eh; fh, ϕh) is defined for each i, j and ϕh ∈ Zkh as:
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Bij(Eh; fh, ϕh) =

∫
Tij

∂fh
∂t

ϕh dv dx−
∫
Tij

vfh
∂ϕh
∂x

dv dx+

∫
Tij

Ei
hfh

∂ϕh
∂v

dv dx

+

∫
Jj

[
((̂vfh)ϕ

−
h )i+1/2,v − ((̂vfh)ϕ

+
h )i−1/2,v

]
dv(24)

−
∫
Ii

[(
(̂Ei

hfh)ϕ
−
h

)
x,j+1/2

−
(

(̂Ei
hfh)ϕ

+
h

)
x,j−1/2

]
dx,

where we have used the short hand notation given in (13). Notice that the
expression Bhij(Eh; fh, ϕh) is in fact a bilinear form. Eh is used only to emphasise
the nonlinear dependence on it. Here, the boundary terms are the so-called
numerical fluxes, which are nothing but the approximation of the functions vf
and Ef at the vertical and horizontal boundaries Γx and Γv, respectively. By
specifying them, the DG method is completely determined. The design of these
numerical fluxes is the key issue to ensure the stability of the numerical scheme.
We consider the following upwind choice:

(25) v̂fh =

{
v f−h if v ≥ 0,
v f+

h if v < 0,
Êi
hfh =

{
Ei
h f

+
h if Ei

h ≥ 0,
Ei
h f
−
h if Ei

h < 0 .

We define the numerical fluxes at the boundary ∂Ω by

(v̂fh)1/2,v = (v̂fh)Nx+1/2,v, (Êi
hfh)x,1/2 = (Êi

hfh)x,Nv+1/2 = 0, ∀ (x, v) ∈ I×J ,

so that the periodicity in x and the compactness in v are reflected. The discrete
density, denoted by ρh(x, t), is given by

(26) ρh(x, t) =
∑
j

∫
Jj

fh(x, v, t) dv ∀ x ∈ I, ∀ t ∈ [0, T ].

Note that from the definitions (3) and (26) of ρ and ρh, respectively, and using
Cauchy-Schwartz’s inequality it is straightforward to see that

(27) ‖ρ(t)− ρh(t)‖2
0,I ≤ 2L‖fh(t)− f(t)‖2

0,Th
∀t ∈ [0, T ].

One of the nice features of the DG approximation for the transport is that charge
conservation is ensured by construction, as the following result shows:

Lemma 3.1. Particle or Mass Conservation: Let k ≥ 0 and let fh ∈
C1([0, T ];Zkh) be the DG aproximation to f , satisfying (23)-(24). Then,
(28)∑

i,j

∫
Tij

fh(t) dv dx =
∑
i,j

∫
Tij

fh(0) dv dx =
∑
i,j

∫
Tij

f0 dv dx = 1 ∀ t ∈ [0, T ].
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Proof. Note that since fh(0) = Ph(f0), from the definition of the L2-projection
(21) (with ϕh = 1) together with (4) we have

(29)
∑
i,j

∫
Tij

fh(0) dv dx =
∑
i,j

∫
Tij

Ph(f0) dv dx =
∑
i,j

∫
Tij

f0 dv dx = 1.

We now fix an arbitrary Tij and take in (24) the test function ϕh = 1 in Tij; ϕh = 0
elsewhere. Noting that such a test function verifies (ϕh)

−
i+1/2,v = (ϕh)

+
i−1/2,v = 1,

we have

Bij(Eh : fh, 1) =
d

dt

∫
Tij

fh dv dx+

∫
Jj

[(̂vfh)i+1/2,v − (̂vfh)i−1/2,v] dv

−
∫
Ii

[(̂Ei
hfh)x,j+1/2 − (̂Ei

hfh)x,j−1/2] dx .

Moreover, note that since the choice of Tij was done arbitrarily, last identity holds
true for all i, j. By summing last identity over all i and j, the flux terms telescope
and there is no boundary term left because of the periodic (for i) and compactly
supported (for j) boundary conditions. Hence, taking into account (23) we have,

0 =
∑
i,j

Bij(Eh; fh, 1) =
d

dt

∑
i,j

∫
Tij

fh dv dx = 0,

and so integration in time together with (29) lead to (28). �

We next deal with the approximation to the electrostatic field E(x, t)=Φx(x, t).
The discrete Poisson problem reads,

(30) (Φh)xx = 1− ρh x ∈ [0, 1], Φh(1, t) = Φh(0, t).

The well posedness of the above discrete problem is guaranteed by (28) from
Lemma 3.1 which in particular implies

(31) (Φh)x(1, t) = (Φh)x(0, t).

To ensure the uniqueness of the solution we set Φh(0, t) = 0. To get the solution
of the discrete Poisson problem at least two possible approaches arise:

i) Direct integration of the discrete Poisson problem (30),
ii) approximation of (2) with some mixed finite element method; possibly

discontinous.

We next consider in detail these approaches.

3.1. Conforming approximation to the Electrostatic potential. Reason-
ing as in section 2.1, direct integration of the discrete Poisson problem (30) to-
gether with Φh(0, t) = 0 gives

(32) Φh(x, t) = Ch
Ex+

x2

2
−
∫ x

0

∫ s

0

ρh(z, t)dzds ∀x ∈ [0, 1] ,
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where Ch
E is determined from the boundary conditions in (30),

(33) Ch
E =

∫ 1

0

∫ z

0

ρh(s, t) ds dz −
1

2
∀ t ∈ [0, T ].

Then, differentiation w.r.t x in (32) leads to

(34) Eh(x, t) = Ch
E + x−

∫ x

0

ρh(s, t) ds ∀x ∈ [0, 1].

Observe that since ρh ∈ V k
h , Eh turns out to be a continuous polynomial of degree

k + 1; so Eh is conforming. Its restriction to Ii is given by

(35) Ei
h(x, t) = Ei−1

h (xi−1/2, t)+(x−xi−1/2)−
∫ x

xi−1/2

∫
J
fh(s, χ, t)dχds ∀x ∈ Ii,

and Ei
h(x, t) = 0 for all x ∈ I r [xi−1/2, xi+1/2]. The boundary condition (31)

reads

(36) E0
h(x1/2, t) = ENx

h (xNx+1/2, t) ∀ t ∈ [0, T ].

To show that Eh indeed belongs to W k+1
h we have to verify that it has zero

average. From (33) it follows straightforwardly

∑
i

∫
Ii

Eh(x) dx=Eh(x1/2, t)
∑
i

hi+
∑
i

x2
i+1/2 − x2

i−1/2

2
−
∑
i

∫
Ii

∫ x

x1/2

ρh(x) dx = 0.

Finally, we state a Lemma that relates the error committed in the approximation
to E, with the error in accumulated in the approximation to f . This result will
be used in our subsequent analysis and its proof is given in Appendix A.

Lemma 3.2. Let k ≥ 0 and let (Eh, fh) ∈ C0([0, T ];W k+1
h )×C1([0, T ];Zkh) be the

conforming-DG approximation to the solution of Vlasov-Poisson system (E, f),
solution of (23)–(24)–(34). Then,

(37) ‖E(t)− Eh(t)‖0,I ≤ C1‖f(t)− fh(t)‖0,Th
∀ t ∈ [0, T ] ,

where 2L =meas(J ) and C1 = (4L(1 + hx))
1/2. Furthermore, if the force field

E ∈ C0([0, T ];H1(I)), the following estimates also hold for all t ∈ [0, T ],

(38) ‖E(t)− Eh(t)‖0,∞,I ≤ C2‖f(t)− fh(t)‖0,Th
with C2 = ((2L)1/2 + C1),

and

(39) ‖Eh(t)‖0,∞,I ≤ C2‖f(t)− fh(t)‖0,Th
+ ‖E(t)‖1,I .
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3.2. Mixed Finite Element Approximation for the Poisson problem. We
rewrite problem (30) as a first order system:

(40) Eh =
∂Φh

∂x
x ∈ [0, 1]; −∂Eh

∂x
= ρh − 1 x ∈ [0, 1]

with boundary condition Φh(0, t) = Φh(1, t) = 0. In this section, we consider
a mixed approximation to (40), with the one-dimensional version of Raviart-
Thomas elements, RTk k ≥ 0 [50, 15]. In 1D the mixed finite element spaces
turn out to be the (W k+1

h , V k
h )-finite element spaces. Note that in particular,

d
dx

(W k+1
h ) = V k

h . For k ≥ 0 the scheme reads: find (Eh,Φh) ∈ W k+1
h × V k

h such
that for all i ∫

I
Eh z dx+

∫
I

Φh zx dx = 0 ∀ z ∈ W k+1
h ,(41)

−
∫
I
(Eh)x p dx =

∫
I
(ρh − 1)p dx ∀ p ∈ V k

h .(42)

We refer to [50, 15] for the stability and error analysis of the method for linear
second order problems (see also [6] for the 1D-version of the scheme in the lowest
order case k = 0). However, in our case, the Poisson problem is “non linear”
since the source term in (2) depends on the solution through ρ. Therefore in the
error analysis a consistency error appears. We have the following result, whose
proof can be found in Appendix A.

Lemma 3.3. Let k ≥ 0 and let (Eh,Φh) ∈ C0([0, T ];W k+1
h × V k

h ) be the RTk

approximation to the Poisson problem (40). Then, the following estimates hold
for all t ∈ [0, T ]:

‖E(t)− Eh(t)‖0,I + |E(t)− Eh(t)|1,I≤Chk+1‖E(t)‖k+1,I+
√

2L‖f(t)−fh(t)‖0,Th
,

‖E(t)− Eh(t)‖0,∞,I ≤ Chk+1‖E(t)‖k+1,I + (2L)1/2‖f(t)− fh(t)‖0,Th
,

(43)

‖Eh(t)‖0,∞,I ≤ |E(t)|1,I + (2L)1/2‖f(t)− fh(t)‖0,Th
+ Ch‖E(t)‖1,I , .

3.3. DG approximation for the Poisson problem. Consider the DG ap-
proximation to the first order system (40): find (Eh,Φh) ∈ Vrh ×Vrh such that for
all i: ∫

Ii

Ehz dx = −
∫
Ii

Φhzx dx+ [(Φ̂hz
−)i+1/2 − (Φ̂hz

+)i−1/2] ∀ z ∈ Vrh,(44) ∫
Ii

Ehpx dx−
[
(Êhp

−)i+1/2 − (Êhp
+)i−1/2

]
=

∫
Ii

(ρh − 1)p dx ∀ p ∈ Vrh,(45)
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where (Φ̂h)i−1/2 and (Êh)i−1/2 are the numerical fluxes. In this work we focus on
the following family of DG-schemes (see however remark 3.5):

(46)

{
(Φ̂h)i−1/2 = {Φh}i−1/2 − c12[[ Φh ]]i−1/2 + c22[[Eh ]]i−1/2 ,

(Êh)i−1/2 = {Eh}i−1/2 + c12[[Eh ]]i−1/2 + c11[[ Φh ]]i−1/2 ,

where the parameters c11, c12 and c22 depend solely on xi−1/2 ∀ i, and are still at
our disposal. At the boundary nodes due to periodicity in x we impose

(Φ̂h)1/2 = (Φ̂h)Nx+1/2, (Êh)1/2 = (Êh)Nx+1/2.

Following [18] we define

a(Eh, z) :=
∑
i

∫
Ii

Ehzdx+
∑
i

c22[[Eh ]]i−1/2[[ z ]]i−1/2 ,

b(Φh, z) :=
∑
i

∫
Ii

Φhzxdx+
∑
i

({Φh} − c12[[ Φh ]])[[ z ]]i−1/2 ,

c(Φh, p) :=
∑
i

c11[[ Φh ]]i−1/2[[ p ]]i−1/2 ,

and

A((Eh,Φh); (z, p)) = a(Eh, z) + b(Φh, z)− b(p, Eh) + c(Φh, p) .

Thus, problem (44)-(45) can be rewritten as: find (Eh,Φh) ∈ V r
h × V r

h such that

(47) A((Eh,Φh); (z, p)) =
∑
i

∫
Ii

(ρh − 1)p dx ∀ (z, p) ∈ V r
h × V r

h .

Note that A(·, ·) induces the following semi-norm ∀ (z, p) ∈ H1(Ih)×H1(Ih):

(48) |(z, p)|2A := A((z, p); (z, p)) = ‖z‖2
0,Ih

+ ‖c22[[ z ]]‖2
0,γx

+ ‖c11[[ p ]]‖2
0,γx

.

We also define the norm for all r ≥ 0

(49) ‖|(E,Φ)‖|2r+1,I := ‖E‖2
r+1,I + ‖Φ‖2

r+2,I ∀ (E,Φ) ∈ Hr+1(I)×Hr+2(I).

We next describe the specific choices of the methods we consider (by specifying
the parameters in (46)). We restrict ourselves to k ≥ 1, k being the order of
approximation used for fh.

(i) Local Discontinuous Galerkin (LDG) method: we take r = k + 1 so
the spaces are Vrh = V k+1

h and we set c22 = 0 and c11 = ch−1 with c a strictly
positive constant. This method was first introduced in [27] for a time dependent
convection diffusion problem (with c11 = O(1)). In this paper we take c11 = ch−1

with c a positive constant, and |c12| = 1/2; that is:

(50)

{
(Êh)i−1/2 = {Eh}i−1/2 − c12[[Eh ]]i−1/2 + ch−1[[ Φh ]]i−1/2 ,

(Φ̂h)i−1/2 = {Φh}i−1/2 + c12[[ Φh ]]i−1/2

|c12| =
1

2
.
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For the approximation of linear problems, it has been proved (see [27],[18])
convergence of order r + 1 and r for Φh and Eh, respectively.

(ii) Minimal dissipation LDG and DG methods (MD-LDG and MD-
DG): we set r = k and the spaces are taken as Vrh = V k

h . For the MD-LDG
method, the numerical fluxes are defined by taking in (46) c22 = 0, c12 = 1/2 and
c11 = 0 except at a boundary node, that is,

(51)

{
(̂Φh)i−1/2 = (Φh)

−
i−1/2

(̂Eh)i−1/2 = (Eh)
+
i−1/2 + c11[[ Φh ]]i−1/2,

c11 =

{
0 i ≤ Nx − 1,
crh−1 i = Nx .

For the MD-DG method the same choice applies except for (̂Φh)i−1/2 = (Φh)
−
i−1/2+

c22[[Eh ]]i−1/2 with c22 = ch/r. For the approximation of linear problems, the
MD-LDG method was first introduced for the 2D case in [23] but with c11 = O(1)
rather than O(h−1) at the boundary. The analysis in the one-dimensional case
for both the MD-LDG and the MD-DG can be found in [19], where the authors
show that the approximation to E, with both methods, superconverges with order
r + 1.

(iii) General DG & Hybridized LDG method: we set r = k so that the
spaces are taken as Vrh = V k

h , and we take the numerical fluxes as in (46) with:

c11 , c22 , > 0 |c12| bounded c11 ∼
1

c22

.

Superconvergence results are proved in [22] (for dimension d ≥ 2) for the approxi-
mation of linear problems. Another option which also provides superconvergence
and could be efficiently implemented, is the Hybridized LDG method (see [22])
in which the numerical fluxes can be recast in the form (46) by setting: (Êh)i−1/2 =

(
τ−

τ++τ−

)
(Eh)

+
i−1/2 +

(
τ+

τ++τ−

)
(Eh)

−
i−1/2 +

(
τ−τ+

τ++τ−

)
[[ Φh ]]i−1/2 ,

(Φ̂h)i−1/2 =
(

τ+

τ++τ−

)
(Φh)

+
i−1/2 +

(
τ−

τ++τ−

)
(Φh)

−
i−1/2 +

(
1

τ++τ−

)
[[Eh ]]i−1/2 ,

where τ± are non-negative constants. To achieve superconvergence, it is enough
to take in each interval Ii one τ 6= 0 at one end and at the other end we set τ = 0.
Superconvergence can be shown by following the analysis in [22] but using the
special projections defined through (17)-(18).

As it happened with RTk approximation, our poisson problem is nonlinear and
therefore the estimates shown in [18],[19] and [22] are not directly applicable.
However, we have the following result, whose proof can be found in Appendix A.

Lemma 3.4. Let k ≥ 1 and let (Eh,Φh) ∈ C0([0, T ];V r
h ×V r

h ) be the DG approx-
imation to the Poisson problem (40) solution of (44)-(45)-(46), with any of the
three choices (i), (ii) or (iii). Then, the following estimate hold for all t ∈ [0, T ],

(52) ‖E(t)− Eh(t)‖2
0,Ih
≤ Ch2(k+1)‖|(E(t),Φ(t))‖|2r+1,I + 2L‖f(t)− fh(t)‖2

0,Th
,
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where r is the order of polynomials of Vrh as given in (i), (ii), (iii). Furthermore,
it also holds

|(E(t)−Eh(t),Φ(t)−Φh(t))|2A ≤ Ch2(k+1)‖|(E(t),Φ(t))‖|2r+1,I+2L‖f(t)−fh(t)‖2
0,Th

.

where r = k + 1 for (i) and r = k for (ii) and the H-LDG in (iii).

Remark 3.5. Since k ≥ 1, one might consider any of the (consistent and stable)
DG methods that fit in the framework given in [4] for approximating the Poisson
problem (2). Most of the results shown in this paper for the general LDG dis-
cretization (with general c12), hold (with minor changes in the proofs) for any of
the resulting methods. For the sake of conciseness, the details are omitted.

4. Error Analysis

We start by showing a cell-entropy inequality [43] for the proposed DG schemes
(23), which guarantees their L2-stability. We then derive the error equation and
give some auxiliary results that are used in the proofs of the main results, which
are given at the end of the section.

4.1. Stability. Next Proposition shows that the above selection of the numerical
fluxes is enough to preserve the L2-stability of numerical solution of (23)-(24),
for all k ≥ 0.

Proposition 4.1 (L2-stability). Let k ≥ 0 and let fh ∈ Zkh be the approximation
of problem (1), solution of (23)-(24), with the numerical fluxes as in (25). Then

(53) ‖fh(t)‖0,Th
≤ ‖fh(0)‖0,Th

∀ t ∈ [0, T ].

Proof. By setting ϕh = fh in (24) we have

Bhi,j(Eh; fh, fh) =
1

2

∫
Ii

∫
Jj

∂(f 2
h)

∂t
dv dx− 1

2

∫
Jj

∫
Ii

v
∂(f 2

h)

∂x
dv dx

+
1

2

∫
Ii

∫
Jj

Ei
h

∂(f 2
h)

∂v
dv dx+

∫
Jj

[
(v̂fhf

−
h )i+1/2,v−(v̂fhf

+
h )i−1/2,v

]
dv

−
∫
Ii

[(
Êi
hfhf

−
h

)
x,j+1/2

−
(
Êi
hfhf

+
h

)
x,j−1/2

]
dx .

Taking into account that Eh depends only on x (through fh) while v is indepen-
dent of x, integration of the second and third volume terms leads to

Bhi,j(Eh; fh, fh) =
1

2

d

dt
‖fh‖2

0,Tij
+
[
F̂i+1/2,j − F̂i−1/2,j

]
+ ΘF

i−1/2,j

+
[
Ĝi,j+1/2 − Ĝi,j−1/2

]
+ ΘG

i,j−1/2 ,(54)
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where F̂i+1/2,j, Ĝi,j+1/2 are defined for all i, j, as

F̂i+1/2,j = −
∫
Jj

[v
2

(f 2
h)− − v̂fhf−h

]
i+1/2,v

dv

Ĝi,j+1/2 =

∫
Ii

[
Ei
h

2
(f 2
h)− − Êi

hfhf
−
h

]
x,j+1/2

dx,

and

ΘF
i−1/2,j = −

∫
Jj

[v
2

(f 2
h)− − v̂fhf−h

]
i−1/2,v

dv +

∫
Jj

[v
2

(f 2
h)+ − v̂fhf+

h

]
i−1/2,v

dv,

ΘG
i,j−1/2 =

∫
Ii

[
Ei
h

2
(f 2
h)− − Êi

hfhf
−
h

]
x,j−1/2

dx−
∫
Ii

[
Ei
h

2
(f 2
h)+ − Êi

hfhf
+
h

]
x,j−1/2

dx.

We next show that the choice (25) ensures that both ΘF
i−1/2,j and ΘG

i,j−1/2, for all

i and j, are non-negative. By rewriting our choice of the numerical fluxes (25) as:

(55) (̂vfh) = v{fh} −
|v|
2

[[ fh ]], [̂Ei
hfh] = Ei

h{fh}+
|Ei

h|
2

[[ fh ]],

and using that [[ f 2
h ]] = 2{fh}[[ fh ]], it can be easily seen that ΘF

i−1/2,j and ΘG
i,j−1/2

become

ΘF
i−1/2,j =

∫
Jj

[v
2

[[ f 2
h ]]− v̂fh[[ fh ]]

]
i−1/2,v

dv =

∫
Jj

|v|
2

[[ fh ]]2i−1/2,vdv,(56)

ΘG
i,j−1/2 =

∫
Ii

[
Êi
hfh[[ fh ]]− Ei

h

2
[[ f 2

h ]]

]
x,j−1/2

dx =

∫
Ii

|Ei
h|

2
[[ fh ]]2x,j−1/2dx.(57)

Therefore, ΘF
i−1/2,j ≥ 0 and ΘG

i,j−1/2 ≥ 0 for all i and j and so substitution in (54)
leads to

1

2

d

dt

∫
Ti,j

f 2
h dv dx+

[
F̂i+1/2,j − F̂i−1/2,j

]
+
[
Ĝi,j+1/2 − Ĝi,j−1/2

]
≤ 0,

By summing in the above inequality over i and j, the flux terms telescope and
there is no boundary term left because of the periodic (for i) and compactly
supported (for j) boundary conditions. Hence,

(58)
1

2

d

dt

∑
i,j

∫
Ti,j

f 2
h dv dx =

1

2

d

dt
‖fh‖2

0.Th
≤ 0,

and therefore, integration in time of the above inequality yields to (53). �

Remark 4.2. By carefully revising the proof one realise that in fact inequality
(58) is replaced by the identity

(59)
1

2

(
d

dt
‖fh‖2

0,Th
+ ‖ |v|1/2[[ fh ]]‖2

0,Γx
+ ‖ |Eh|1/2[[ fh ]]‖2

0,Γv

)
= 0.
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Therefore, by defining the norm
(60)

‖|fh(t)‖|2 := ‖fh(t)‖2
0,Th

+

∫ t

0

‖|v|1/2[[ fh(s) ]]‖2
0,Γx

ds+

∫ t

0

‖ |Eh|1/2[[ fh(s) ]]‖2
0,Γv

ds ,

the thesis of Proposition 4.1 can be reformulated as:

‖|fh(t)‖|2 = ‖fh(0)‖2
0,Th
≤ ‖|fh(0)|‖2 for all t ∈ [0, T ].

Finally, we note that for the convergence and error analysis of numerical
schemes for non-linear problems, one usually needs to assume/prove that some
a-priori estimate on the approximate solution holds for all time. In fact, what is
generally done is to assume that there exists some Cκ > 0 such that,

‖f − fh‖∗,Th
≤ Cκ, ∀ t ∈ [0, T ],

where ‖ · ‖∗,Th
usually refer to a stronger norm than the one for which the error

analysis is carried out. For instance ‖ · ‖∗,Th
= ‖ · ‖0,∞,Th

if the error analysis is
carried out in the L2 or energy norm, see [48]. We wish to stress that in the present
work, due to the structure of the continuous problem, such type of assumption
is not required. The main reason is that although our L2-error analysis requires
a bound on ‖Eh‖0,∞,I , such an estimate would depend ultimately on ρh (zero
order moment of fh), which in general in more regular than fh itself. In the
end, this fact allows for getting a bound for ‖Eh‖0,∞,I depending on the L2-error
‖f −fh‖0,Th

, for which we can easily guarantee that there exists cκ > 0 such that,

(61) ‖f − fh‖0,Th
≤ cκ, ∀ t ∈ [0, T ].

Estimate (61) follows from the L2–conservation property of the continuous solu-
tion (11) and the L2-stability of its approximation fh given in Proposition 4.1, to-
gether with triangle inequality and the L2-stability of the standard L2–projection,
(22) with p = 2,

‖|f(t)− fh(t)‖|20,Th
≤ 2(‖f(t)‖2

0,Th
+ ‖|fh(t)‖|20,Th

) ≤ 2‖f0‖2
0,Ω + 2‖|Pkh(f0)‖|20,Th

)

≤ 2(1 + C)‖f0‖2
0,Th

= cκ .

Let us point out that this result allows us to obtain error estimates that hold for
every h and not only in the asymptotic regime.

4.2. Error Equation and Special Projection. To derive the error equation
the weak formulation (10) is of little use, since we should take the test function
in Zh. Hence, by allowing the test function to be discontinuous we find that the
true solution satisfies the variational formulation:

(62)
Nx∑
i=1

Nv∑
j=1

Bi,j(E; f, ϕh) = 0 ∀ϕh ∈ Zkh ,
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where

Bi,j(E; f, ϕh) =

∫
Ti,j

∂f

∂t
φh dv dx−

∫
Ti,j

vf
∂φh
∂x

dv dx+

∫
Ti,j

Eif
∂φh
∂v

dv dx

(63)

+

∫
Jj

[
(vfϕh)

−
i+1/2,v − (vfϕh)

+
i−1/2,v

]
dv−

∫
Ii

[(
Eifϕh

)−
x,j+1/2

−
(
Eifϕh

)+

x,j−1/2

]
dx,

Ei being the restriction of the electrostatic field E to Ii; i.e., Ei = E|Ii
. Sub-

tracting (23) from (62) we obtain the error equation,

0 =
∑
i,j

Bi,j(E; f, ϕh)− Bhi,j(Ei
h; fh, ϕh)

(64)

=
∑
i,j

ai,j(f − fh, ϕh) +
∑
i,j

Ni,j(E; f, ϕh)−N h
i,j(Eh; fh, ϕh) ∀ϕh ∈ Zh .

where the bilinear form a(·, ·) =
∑

i,j ai,j(·, ·) gathers all linear terms:

ai,j(fh, ϕh) =

∫
Jj

∫
Ii

[
∂fh
∂t

ϕh − vfh
∂ϕh
∂x

]
dv dx

+

∫
Jj

[
(v̂fhϕ

−
h )i+1/2,v − (v̂fhϕ

+
h )i−1/2,v

]
dv

and N h
i,j(Eh; ·, ·) (resp. Ni,j(E; ·, ·)) carries the nonlinear part;

N h
i,j(E

i
h; fh, ϕh) =

∫
Ii

∫
Jj

Ei
hfh

∂ϕh
∂v

dv dx

−
∫
Ii

[(
Êi
hfhϕ

−
h

)
x,j+1/2

−
(
Êi
hfhϕ

+
h

)
x,j−1/2

]
dx.

Notice that due to the nonlinearity, the true solution f does not satisfy the
equations defining the numerical scheme (23)–(24). In fact we have a consistency
error: N h(E; f, ϕh) − N (E; f, ϕh) for all ϕh ∈ Zh, which is ”hidden” in the
nonlinear error N (E; f, ϕh)−N h(Eh; fh, ϕh).

Special Projection: We next introduce the 2-dimensional projection operator
Πh : C0(Ω) −→ Zkh which is defined in the following way. Let Ti,j = Ii× Jj be an
arbitrary element of Th and let w ∈ C0(Ti,j). The restriction of Πh(w) to Ti,j is
defined by

(65) Πh(w) =

{
π̃x ⊗ π̃v(w), if sign(Ei) = constant,

P k ⊗ π̃v(w), if sign(Ei) 6= constant,
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where P k
x denotes the standard L2-projection onto Pk(Ii) defined in (15) and

π̃x , π̃v are defined by

(66) π̃x(w) =

{
π+
x (w) if Ei > 0,
π−x (w) if Ei < 0,

π̃v(w) =

{
π−v (w) if v > 0,
π+
v (w) if v < 0,

with π±x : C0(Ii) −→ V k
h and π±v : C0(Jj) −→ V k

h being the special projection
operators in the x and v direction respectively, defined as in (17)-(18). The
definition of projection Πh is inspired in those considered in [47, 23] and that
introduced in [62] for the analysis of Runge-Kutta methods for conservation laws,
see Remark 4.4. Note that taking into account (65)-(66) together with (17)-(18),
it is straightforward to see that Πh(w) is uniquely defined. Next Lemma although
elementary provides the several approximation results needed for our analysis.

Lemma 4.3. Let w ∈ Hs+2(Ti,j), s ≥ 0 and let Πh be the projection operator
defined through (65)-(66). Then,

(67)
‖w − Πh(w)‖0,Tij

≤ Chmin (s+2,k+1)‖w‖s+1,Tij
,

‖w − Πh(w)‖0,e ≤ Chmin (s+ 3
2
,k+ 1

2
)‖w‖s+1,Tij

, ∀ e = Ii , Jj ⊂ ∂Tij .

Proof. From the definition (65) we distinguish two cases. If Tij is an element such
that sign(Ei(x)) is constant ∀x ∈ Tij, the proof is the same as [18, Lemma 3.2].
If on the contrary, Tij is such that ∃x ∈ Tij for which Ei(x) = 0, we have
Πh(w) = P k ⊗ π̃v(w). But still, since Πh is a polynomial preserving and linear
operator, estimates (67) follow also in this case from Bramble-Hilbert lemma,
trace Theorem and standard scaling arguments. Details are omitted for the sake
of conciseness. �

Summing estimates (67) from Lemma 4.3, over elements of the partition Th,
(68)
‖w − Πh(w)‖0,Ω + h−1/2‖w − Πh(w)‖0,Γ ≤ Chk+1‖w‖k+1,Ω ∀w ∈ Hk+1(Ω).

Now, denoting by

(69) ωh = Πh(f)− fh, ωe = Πh(f)− f,

we can write

(70) f − fh = [Πh(f)− fh]− [Πh(f)− f ] = ωh − ωe.

Then, by taking as test function ϕh = ωh ∈ Zkh , the error equation (64) becomes

(71)
∑
i,j

[
a(ωh − ωe, ωh) +Ni,j(Ei; f, ωh)−N h

i,j(E
i
h; fh, ω

h)
]

= 0.

We next define

(72) K1(v, f, ωh) =
∑
i,j

K1
i,j(v, ω

e, ωh) , K2(Eh, f, ω
h) =

∑
i,j

K2
i,j(Eh, f, ω

h) ,
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where

K1
i,j(v, f, ω

h) =

∫
Ti,j

vωeωhx dv dx

−
∫
Jj

[
(v̂ωe(ωh)−)i+1/2,v − (v̂ωe(ωh)+)i−1/2,v

]
dv ,(73)

K2
i,j(Eh, f, ω

h) =

∫
Ti,j

Ehω
eωhv dv dx

−
∫
Ii

[
(Êhωe(ω

h)−)x,j+1/2 − (Êhωe(ω
h)+)x,j−1/2

]
dx .(74)

Next two Lemmas provide estimates for the terms defined in (72). Both lemmas
extend and generalize [23, Lemma 3.6] to the case of variable coefficients and
nonlinear problems, respectively. To keep the readability flow of the paper, the
proofs of these thecnical Lemmas are postponed till Appendix B.

Remark 4.4. We wish to note that the definition (65) of Πh is done in terms
of E (and v), while the definition of the numerical fluxes is done in terms of Eh
(and v). This is due to the non-linearity of the problem and it is inspired in the
ideas used in [62]. By defining Πh in terms of E rather than Eh and using the
regularity of the solution, we will be able to estimate optimally the expression K2

without any further assumption on the mesh partition Th.

Lemma 4.5. Let Th be a cartesian mesh of Ω, k ≥ 1 and let fh ∈ Zkh be the ap-
proximate distribution function satisfying (23)-(24). Let f ∈ C0([0, T ];Hk+2(Ω))
and let K1 be defined as in (72). Assume that the partition Th is constructed so
that v = 0 corresponds to a node of the partition. Then, the following estimate
holds true

(75) |K1(v, f, ωh)| ≤ Chk+1(‖f‖k+1,Ω + CL‖f‖k+2,Ω)‖ωh‖0,Th
.

Lemma 4.6. Let Th be a cartesian mesh of Ω, k ≥ 1 and let (Eh, fh) ∈ Wh×Zkh
be the solution to (23)-(24) with Wh a finite element space, conforming or non-
conforming, of at least first order (Wh = W k+1

h or Wh = V r
h ). Let (E, f) ∈

C0([0, T ];W 1,∞(I) × Hk+2(Ω)) and let K2 be defined as in (72). Then, the fol-
lowing estimate holds

|K2(Eh, f, ω
h)| ≤Chk‖E − Eh‖0,∞,I‖f‖k+1,Ω‖ωh‖0,Th

(76)

+ Chk+1(‖f‖k+2,Ω‖E‖0,∞ + ‖f‖k+1,Ω|E|1,∞,I)‖ωh‖0,Th
.

4.3. Auxiliary Results. We next prove two Lemmas that are needed for the
proofs of the main Theorems 4.9, 4.13, and 4.11. The first one reduces the
expression for the linear part of the error equation (71):
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Lemma 4.7. Let f ∈ C0(Ω) and let fh ∈ Zkh with k ≥ 1. Then, the following
equality holds

a(f − fh, ωh) =
∑
i,j

∫
Ti,j

(
ωht − ωet

)
ωhdxdv +

∑
i,j

∫
Jj

|v|
2

[[ωh ]]2i−1/2,vdv +K1(v, f, ωh).

Proof. From (70) we get a(f − fh, ωh) = a(ωh, ωh) − a(ωe, ωh). Arguing as for
(56) in the proof of Proposition 4.1 (note that ωh ∈ Zh), we have for the first
term

a(ωh, ωh) =
∑
i,j

∫
Ii

∫
Jj

ωht ω
hdxdv +

∑
i,j

∫
Jj

|v|
2

[[ωh ]]2i−1/2,vdv.(77)

The definition (73) of K1, the continuity of f and the numerical fluxes (25) imply

a(ωe, ωh) =
∑
i,j

∫
Ii

∫
Jj

ωetω
hdxdv−

∫
Jj

∫
Ii

vωeωhxdxdv−
∑
i,j

∫
Jj

[
v̂ωe[[ωh ]]

]
i−1/2,v

dv

=
∑
i,j

∫
Ii

∫
Jj

ωetω
hdxdv −K1(v, f, ωh).

which together with (77) completes the proof. �

The other auxiliary Lemma deals with the error coming from the nonlinear
term:

Lemma 4.8. Let E ∈ C0(I), f ∈ C0(Ω) and fh ∈ Zkh with k ≥ 1. Then, the
following identity holds

∑
i,j

[Ni,j(E; f ;ωh)−N h
i,j(Eh; fh, ω

h)] =

(78)

=
∑
i,j

∫
Ii

|Ei
h|

2
[[ωh ]]2x,j−1/2 dx−

∑
i,j

∫
Ti,j

[Ei − Ei
h]
∂f

∂v
ωh dv dx−K2(Eh, f, ω

h).

Proof. Subtracting the nonlinear terms in (63) and (24) we have

Ni,j(E; f ;ωh)−N h
i,j(Eh; fh, ω

h) = −
∫
Ii

∫
Jj

[Eif − Ei
hfh]

∂ωh

∂v
dv dx

−
∫
Ii

[
([Eif − Êi

hfh]ω
h)−x,j−1/2 − ([Eif − Êi

hfh]ω
h)+
x,j−1/2

]
dx.(79)

Notice that the integrand of the volume part above, can be decomposed as

(80)
[
Eif − Ei

hfh
]
± Ei

hf = [Ei − Ei
h]f + Ei

h(f − fh),
and so substituting into (79) we find

(81) Ni,j(E; f ;ωh)−N h
i,j(Eh; fh, ω

h) = T1 + T2 + T3,
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where

T1 =

∫
Ii

∫
Jj

[Ei − Ei
h]fω

h
v dv dx, T2 =

∫
Ii

∫
Jj

Ei
h[f − fh]ωhv dv dx,

T3 =

∫
Ii

[
([(Eif)+ − Êi

hfh](ω
h)+)x,j−1/2 − ([(Eif)− − Êi

hfh](ω
h)−)x,j+1/2

]
dx.

Since neither E nor Eh depend on v, integration by parts of T1 gives T1 = T1a+T1b:

T1 =−
∫
Ii

∫
Jj

[Ei − Ei
h]
∂f

∂v
ωh dv dx+

∫
Ii

(Ei − Ei
h)[(fω

h)−x,j+1/2 − (fωh)+
x,j−1/2]dx .

Summing now over j and taking into account the continuity of f we find for T1b,

(82)
∑
j

T1b = −
∑
j

∫
Ii

(Ei − Ei
h)(f [[ωh ]])x,j−1/2dx.

We next deal with T2. From the splitting (70) we have

T2 =

∫
Ii

Ei
h

∫
Jj

ωhωhv dv dx−
∫
Ii

Ei
h

∫
Jj

ωeωhv dv dx = T2a + T2b ,

and so, integrating the first term and summing over j we easily get∑
j

T2a =
∑
j

1

2

∫
Ii

Ei
h

∫
Jj

∂(ωh)2

∂v
dv dx = −

∑
j

∫
Ii

Ei
h

2
[[ (ωh)2 ]]x,j−1/2 dx.(83)

We finally deal with the boundary terms collected in T3. Summation over j and
the continuity of E and f gives∑

j

T3 =
∑
j

∫
Ii

[Eif − Êi
hfh]x,j−1/2[[ωhh ]]x,j−1/2dx .

Then, reasoning as in (80), we deduce for all i that(
Eif− Êi

hfh

)
±Ei

hf= (Ei−Ei
h)f+

(
Ei
hf− Êi

hfh

)
= (Ei−Ei

h)f+Ê
i
h(ω

h)−Êi
h(ω

e) ,

where in the last step we have used the continuity of f together with the consis-

tency of the numerical flux Êi
hfh. Thus, substituting back into T3, we infer∑

j

T3 =
∑
j

∫
Ii

(
(Ei − Ei

h)f [[ωh ]] + Êi
hω

h[[ωh ]]− Êi
hω

e[[ωh ]]
)
x,j−1/2

dx

=
∑
j

T3a +
∑
j

T3b +
∑
j

T3c .

Then, for the first term, T3a, recalling the expression (82), we get

(84)
∑
j

[T1b + T3a] = 0.
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Next, summing T3b and T2a from (83) and arguing as for (57) in the proof of
Proposition 4.1, we find

(85)
∑
j

[T2a + T3b] =
∑
j

|Ei
h|

2
[[ωh ]]2x,j−1/2dx .

Finally, recalling the definition (74) of K2 and adding up T3c with T2b we get∑
j

[T2b + T3c] = −K2(Eh, f, ω
h).

Thus, substituting the above identity together (85) and the expression for T1a

into the equation (81) we reach (78) and so the proof is complete. �

4.4. Approximation. We next show the main convergence results of this work
proving a-priori error estimates for the electron distribution f , for all the proposed
methods. In each case, as a byproduct result, we also get the corresponding
convergence results for the electrostatic field E. The section is closed with some
remarks about the comparison with the convergence of other methods. We start
with the result for the Conforming-DG method:

Theorem 4.9 (Conforming-DG method). Let k ≥ 1 and consider the unique
compactly supported solution of the Vlasov-Poisson system (1)-(2) given by Theo-
rem 2.1 with f ∈ C1([0, T ];Hk+2(Ω)) and E ∈ C0([0, T ];W 1,∞(I)). Let (Eh, fh) ∈
C0([0, T ];W k+1

h ) × C1([0, T ];Zkh) be the conforming-DG approximation, solution
of (23), (24) and (34). Then,

‖f(t)− fh(t)‖0,Th
≤ C0h

k+1 ∀ t ∈ [0, T ],

where C0 depends on the time t, the polynomial degree k, the shape regularity of
the partition and depends also on f and on E through the norms

C0 = C0(‖f(t)‖k+2,Ω, ‖ft(t)‖k+1,Ω, L, ‖E(t)‖1,∞,I) .

Proof. Recalling the error equation (71)

a(ωh − ωe, ωh) +N (Ei; f, ωh)−N h(Ei
h; fh, ω

h) = 0,

and using Lemmas 4.7 and 4.8, we have∑
i,j

∫
Ti,j

ωht ω
h dv dx+

∑
i,j

∫
Jj

|v|
2

[[ωh ]]2i+1/2,v dv +
∑
i,j

∫
Ii

|Ei
h|

2
[[ωh ]]2x,j+1/2 dx

=
∑
i,j

∫
Ti,j

ωetω
h dv dx+

∑
i,j

∫
Ti,j

[Ei − Ei
h]
∂f

∂v
ωh dv dx−K1(v, f, ωh) +K2(Eh, f, ω

h)

= T1 + T2 −K1 +K2 .

(86)

Notice that the left hand side of the above equation, is exactly what results after
summation over i and j in (54) from Proposition (4.1), see also (59). Then, it
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is enough to estimate the terms on the right hand side of the above equation.
The first term is directly estimated by using Cauchy-Schwarz and the arithmetic-
geometric inequalities together with the interpolation property (68)

(87) |T1| ≤
C

2
(‖ωet ‖2

0,Th
+ ‖ωh‖2

0,Th
) ≤ Ch2k+2‖ft‖Hk+1(Ω) + C‖ωh‖2

0,Th
.

The second term on the rhs of (86), is readily estimated by using Hölder inequality
together with estimate (38) from Lemma 3.2, the splitting (70), the arithmetic-
geometric inequality and the interpolation estimate (68),

|T2| ≤ C‖E − Eh‖0,∞,I‖fv‖0,Ω‖ωh‖0,Th
≤ CC2‖f − fh‖0,Th

‖fv‖0,Ω‖ωh‖0,Th

≤ CC2(‖ωe‖0,Th
+ ‖ωh‖0,Th

)‖fv‖0,Ω‖ωh‖0,Th

≤ CC2h
2k+2‖f‖2

k+1,Ω‖fv‖0,Ω + C2‖fv‖0,Ω‖ωh‖2
0,Ω ,(88)

where C2 ≈ L1/2 is the constant in Lemma 3.2. Estimate (75) from Lemma 4.5
and the arithmetic-geometric inequality give for the third term,

(89) |K1| ≤ Ch2k+2L2‖f‖2
k+2,Ω + C‖ωh‖2

0,Th
.

Last term is bounded by using estimate (76) from Lemma 4.6 and arguing sim-
ilarly as for T2; using estimate (38) from Lemma 3.2, the splitting (70), the
arithmetic-geometric inequality and the interpolation estimate (68),

|K2|≤Chk‖f‖k+1,Ω(‖ωe‖0,Th
+‖ωh‖0,Th

)‖ωh‖0,Th
+ Chk+1‖f‖k+2,Ω‖E‖1,∞,I‖ωh‖0,Th

≤ Ch2k+2(‖f‖2
k+2,Ω‖E‖2

1,∞,I + C2h
k‖f‖3

k+1,Ω) + C(1 + hk‖f‖k+1,Ω)‖ωh‖2
0,Th

.

Then, by substituting the above estimate together with (87), (88) and (89) into
the error equation (86), we conclude

d

dt
‖ωh(t)‖2

0,Th
≤ A(t) ‖ωh(t)‖2

0,Th
+ h2k+2B(t)

with A(t) = (C + L1/2‖fv‖0,Ω + CL1/2hk‖f‖k+1,Ω) and

B(t)=C‖f‖2
k+2,Ω(L2+‖E‖2

1,∞,I)+‖ft‖2
k+1,Ω+CL1/2‖f‖2

k+1,Ω(‖fv‖2
0,Ω+hk‖f‖k+1,Ω).

Therefore, integration in time of the above inequality and a standard application
of Gronwall’s inequality gives the error estimate,

(90) ‖ωh(t)‖2
0,Th
≤ C2

0h
2k+2,

where C0 is as stated in the claim. Hence, Theorem 4.9 follows from the triangle
inequality and the interpolation property (68). �

As a direct consequence of Theorem 4.9 together with estimates (37) and (38)
of Lemma 3.2, we obtain the following result on the error of the electrostatic field.
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Corollary 4.10. Under the hypothesis of Theorem 4.9, the following error esti-
mates hold

‖E(t)− Eh(t)‖0,I ≤ C0C1h
k+1 ∀ t ∈ [0, T ],

‖E(t)− Eh(t)‖∞,I ≤ C0C2h
k+1 ∀ t ∈ [0, T ],

where C1 and C2 are given in (37) and (38), respectively and C0 in Theorem 4.9.

Next result establishes the convergence for the RTk-DG method:

Theorem 4.11 (RTk-DG method). Let k ≥ 1 and consider the unique compactly
supported solution of the Vlasov-Poisson system (1)-(2) given by Theorem 2.1
with f ∈ C1([0, T ];Hk+2(Ω)) and E ∈ C0([0, T ];Hk+1(I)). Let ((Eh,Φh), fh) ∈
C0([0, T ]; (W k+1

h ×V k
h ))×C1([0, T ];Zkh) be the RTk-DG approximation solution of

(23), (24), (41), and (42). Then,

‖f(t)− fh(t)‖0,Ω ≤ C4h
k+1 ∀ t ∈ [0, T ],

where C4 depends on the time t, the polynomial degree k, the shape regularity of
the partition and depends also on f and on E through the norms

C4 = C4(‖f(t)‖k+2,Ω, ‖ft(t)‖k+1,Ω, L, ‖E(t)‖k+1,I) ,
Proof. The proof follows exactly the same lines as the proof of Theorem 4.9. In
this case, to bound the error ‖E − Eh‖0,∞,I that appears in the estimates for T2

and K2 one has to use estimate (43) from Lemma 3.3. We omit the details for
the sake of conciseness. �

Corollary 4.12. Under the hypothesis of Theorem 4.11, the following error es-
timates hold

‖E(t)− Eh(t)‖0,I + |E(t)− Eh(t)|1,I ≤ 2C4L
1/2hk+1 + Chk+1‖E‖k+1,I

‖E(t)− Eh(t)‖0,∞,I ≤ C4L
1/2hk+1 + Chk+1‖E‖k+1,I

for all t ∈ [0, T ], where C4 is the constant of Theorem 4.11.

Finally, we show the convergence for the full DG approximation:

Theorem 4.13 (DG-DG method). Let r ≥ k ≥ 1 and consider the unique com-
pactly supported solution of the Vlasov-Poisson system (1)-(2) given by
Theorem 2.1 with f ∈ C1([0, T ];Hk+2(Ω)) and E ∈ C0([0, T ];Hr+1(I)). Let
((Eh,Φh), fh) ∈ C0([0, T ];Vrh × Vrh)× C1([0, T ];Zkh) be the DG-DG approximation
that satisfies (23), (24), (44), and (45) with any of the three choices (i), (ii) or
(iii). Then,

‖f(t)− fh(t)‖0,Ω ≤ C4h
k+1 ∀ t ∈ [0, T ],

where C5 depends on time t, the polynomials degrees k and r, the shape regularity
of the partition and depends also on f and on (E,Φ) through the norms

C5 = C5(‖f(t)‖k+2,Ω, ‖ft(t)‖k+1,Ω, L, ‖|(E,Φ)‖|r+1,I) .
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Proof. The proof follows essentially the same lines as the proof of Theorems 4.9
and 4.11, but dealing with T2 we use estimate (52) from Lemma 3.4;

|T2| ≤C‖E − Eh‖0,I‖fv‖0,∞,Ω‖ωh‖0,Th

≤
[
Chk+1‖|(E,Φ)|‖r+1,I + (2L)1/2‖f − fh‖0,Th

]
‖fv‖0,∞,Ω‖ωh‖0,Th

≤Ch2k+2(‖|(E,Φ)|‖2
r+1,I + 2L‖f‖2

k+1,Ω)‖fv‖0,∞,Ω

+ (C + (2L)1/2‖fv‖0,∞,Ω)‖ωh‖2
0,Ω.(91)

Also, to bound for K2 we first note that Eh = P k+1(Eh) since Eh ∈ V r
h (and

r = k+1 or r = k), so that inverse inequality, estimate (20) and the L∞-stability
of the L2-projection give

‖E − Eh‖0,∞,Ih
≤ ‖E − P k+1(E)‖0,∞,Ih

+ Ch−1/2‖P k+1(E)− Eh‖0,Ih

≤ Chk+1‖E‖k+1,∞,I + Ch−1/2‖E − Eh‖0,Ih
.(92)

Then, using estimate (76) from Lemma 4.6 together with the above estimate and
the L2-bound for the error E − Eh given in Lemma 3.4, we get

|K2| ≤ C(1 + L1/2hk−1/2‖f‖k+1,Ω)‖ωh‖2
0,Th

+ Ch2k+2(‖E‖2
1,∞,I‖f‖2

k+2,Ω + ‖|(E,Φ)‖|2r+1,I‖f‖2
k+1,Ω + hk−1/2‖f‖3

k+1,Ω) ,

where we have neglected high order terms of order O(h4k−1/4). Noting that k ≥ 1,
the proof can now be completed by arguing as in the proof of Theorem 4.9. We
omit the details for the sake of brevity. �

Remark 4.14. Taking into account the definition (60) of the norm ‖| · ‖| (see
Remark 4.2), observe that in the proof of Theorems 4.9, 4.11 and 4.13, similarly
as how it is obtained the error estimate (90), we also get

(93) ‖|ωh(t)‖|2 ≤ C2
sh

2k+2 s = 0, 4, 5.

As a direct consequence of Theorem 4.13 and Lemma 3.4 we have the following
Corollary whose proof is omitted.

Corollary 4.15. Under the hypothesis of Theorem 4.13, the following error es-
timates hold for all t ∈ [0, T ]

‖E(t)− Eh(t)‖2
0,I ≤ Ch2k+2‖|(E(t),Φ(t))|‖2

r+1,I + C2
5Lh

2k+2

where C5 is the constant of Theorem 4.13, and

‖E(t)− Eh(t)‖2
0,I + c11‖[[ Φh(t) ]]‖2

0,γx
+ c22‖[[Eh(t) ]]‖2

0,γx
≤ C6h

2k+2 ,

with C6 = C2
5L+C‖|(E(t),Φ(t))|‖2

r+1,I where r = k+ 1 for (i) and r = k for (ii)
and the H-LDG in (iii).
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Remark 4.16 (Order of convergence attained by other methods). As noted
in the introduction, there are very few works dealing with the convergence and
error analysis of eulerian solvers for the (periodic) Vlasov-Poisson system. High
order schemes have been only analyzed in the context of semi-lagrangian meth-
ods [7, 8, 10]. Although, it is difficult to compare their results with ours, since
these analysis deal with fully discrete schemes, we just mention briefly what one
can expect to achieve with these methods in the case of a constant Courant-
Friederichs-Levy CFL (ν = dt/h =constant) and in the case where the time
step dt were taken the largest possible. In [7], error estimates in L∞ of first order
(for CFL=constant) and slightly better than first order (at most of order 4/3 for
the largest possible time step), are shown assuming the initial data is of class C2.
High order schemes, by using polynomials of degree k in the reconstruction, are
considered in [8, 10]. There, the authors prove error bounds for the distribution
function and the electrostatic field in L2 and L∞, respectively, of at most order k
(if CFL=constant) and of order 2(k+1)/3 if the largest possible time step wants to
be used. These works typically require the technical assumption f ∈ W k+1,∞(Ω).

5. Energy conservation

In this section we discuss the issue of energy conservation (12) for the proposed
numerical schemes. We start by showing that for a particular choice of the LDG
approximation to the Poisson-problem (2), the resulting LDG-DG method for the
Vlasov system possess such conservation property, under a technical restriction
the on the degree of the polynomial spaces; namely we require k ≥ 2. However,
we wish to note that such restriction is rather natural since we want to use v2 as
test function, as it is done in the proof of (12) for the continuous problem. We
close the section with two results that provide (under the same restriction) an
energy inequality for others full DG methods considered in this paper.

Theorem 5.1 (Energy conservation). Let k ≥ 2 and let ((Eh,Φh), fh) be the
LDG-DG approximation belonging to C1([0, T ]; (V k

h × V k
h ) × Zkh) of the Vlasov-

Poisson system (1)-(2), solution of (23), (24), (44), and (45), with the numerical
fluxes (25) for the approximate electron distribution. Let (Eh,Φh) ∈ V k

h × V k
h be

the corresponding LDG approximation to the associated Poisson problem, solution
of (44)-(45) with numerical fluxes:

(94)

 (Êh)i−1/2 = {Eh}i−1/2 − sign(v)

2
[[Eh ]]i−1/2 + c11[[ Φh ]]i−1/2 ,

(Φ̂h)i−1/2 = {Φh}i−1/2 +
sign(v)

2
[[ Φh ]]i−1/2 ,

where c11 > 0 and c22 = 0 at all nodes. Then, the following identity holds true

(95)
d

dt

(∑
i,j

∫
Tij

v2 fh(t) dv dz +
∑
i

∫
Ii

Eh(t)
2 dx+ c11

∑
i

[[ Φh(t) ]]2i−1/2

)
= 0 .
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Remark 5.2. Prior to give the proof of the above Proposition, we wish to point
out that we are making an abuse of notation by saying that (Eh,Φh) ∈ V k

h × V k
h

is the solution with numerical fluxes (94). Actually, we should talk about two
solutions, one for each sign of v. Such two solutions (one for v > 0 the other for
v < 0) enter in the Vlasov equation, when it comes to evaluate the fluxes in the

v-direction (i.e., (̂Ei
hfh)).

Proof. To simplify the notation, throughout the proof, we drop the sub/super in-
dexes h from the finite element functions. The proof is carried out in several steps.

First step:

We start by noting that since f ∈ Zkh , for each fixed v ∈ J , f(·, v) ∈ V k
h (as a

polynomial in x). Hence, we can set z = f in (44)∫
Ii

Efdx = −
∫
Ii

Φfx dx+ [(Φ̂f−)i+1/2 − (Φ̂f+)i−1/2].

Then, multiplying the above equation by v and integrating over J , we find∫
J

∫
Ii

vEf dv dx = −
∫
J

∫
Ii

vΦfx dv dx+

∫
J
v[(Φ̂f−)i+1/2 − (Φ̂f+)i−1/2] dv .

Integration by parts of the volume term on the right hand side above, gives
(96)∫
J

∫
Ii

vEf dv dx=

∫
J

∫
Ii

vfΦx dv dx+

∫
J
v[(Φ̂f − fΦ)−i+1/2 − (Φ̂f − fΦ)+

i−1/2] dv.

Next, we set ϕh = Φ ∈ V k
h ⊂ Zkh in (24) (Φ as a polynomial in Zkh is constant in

v)∑
i,j

∫
Tij

ftΦ dv dx−
∫
Tij

vf(Φ)x dv dx+

∫
Jj

[
((̂vf)Φ−)i+1/2,v − ((̂vf)Φ+)i−1/2,v

]
dv

+

∫
Tij

Ef(Φ)v dv dx−
∫
Ii

Φ
[
(Êi

hf)x,j+1/2−(Êi
hf)x,j−1/2

]
dx = 0.

Then, note that last two terms in the above equation vanish; the volume part
cancels since Φ does not depend on v, and the sum of the boundary terms tele-

scope, due to the consistency of the numerical flux Êi
hf , and no boundary term

is left due to the zero boundary conditions in v. Thus we have,
(97)∑

i,j

∫
Tij

ftΦ dv dx=
∑
i,j

∫
Tij

vfΦx dv dx−
∫
Jj

[
(v̂fΦ−)i+1/2,v − (v̂fΦ+)i−1/2,v

]
dv.
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Combining then the above equation with (96) and using the periodicity of the
boundary conditions in x we get,
(98)∑

i,j

∫
Tij

ftΦ dv dx=
∑
i,j

[∫
Jj

(
v̂f [[ Φ ]] + v(Φ̂[[ f ]]− [[ fΦ ]])

)
i−1/2,v

dv+

∫
Tij

vEf dv dx

]
.

Second step:
Now, we differentiate with respect to time the first order system (40) and consider
its DG approximation. The second equation (45) reads,∫

Ii

Etpxdx−
[
(Êtp

−)i+1/2 − (Êtp
+)i−1/2

]
=

∫
Ii

ρtp dx ∀ p ∈ V k
h ,

where the definition for Êt corresponds to that chosen for Ê but with (E,Φ)
replaced by (Et,Φt). By setting p = Φ and replacing ρt by its definition (26), we
have

(99)

∫
Ii

EtΦxdx−
[
(ÊtΦ

−)i+1/2 − (ÊtΦ
+)i−1/2

]
=

∫
Ii

∫
J
ftΦ dv dx ∀ p ∈ V k

h .

Now, taking z = Et in (44) and integrating by parts the volume term on the right
hand side of that equation, we find∫
Ii

EEt dx=

∫
Ii

ΦxEt dx−[(ΦEt)
−
i+1/2−(ΦEt)

+
i−1/2]+[(Φ̂(Et)

−)i+1/2−(Φ̂(Et)
+)i−1/2].

Then, combining (99) with the above equation, summing over i, and using the
periodic boundary conditions for the Poisson problem, we get
(100)∑

i

∫
Ii

EEtdx =
∑
i

∫
Ii

∫
J
ftΦ dv dx+

∑
i

[[[ ΦEt ]]− (Φ̂[[Et ]] + Êt[[ Φ ]])]i−1/2.

Third step:
We now proceed as in the proof for the continuous case, for instance see [34], and

we take ϕ = v2

2
in (23)-(24),

∑
i,j

(∫
Tij

ft
v2

2
dv dx−

∫
Tij

vf(
v2

2
)x dv dx+

∫
Jj

v2

2

[
(v̂f)i+1/2,v − (v̂f)i−1/2,v

]
dv

)

+
∑
i,j

(∫
Tij

Efv dv dx−
∫
Ii

v2

2

[
(Êi

hf)x,j+1/2 − (Êi
hf)x,j−1/2

]
dx

)
= 0.

Then, using the consistency of the numerical fluxes (̂vf) and (̂Ei
hf), the boundary

terms telescope and no boundary term is left due to the periodic in x and zero
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in v boundary conditions. Hence, we simply get

(101)
∑
i,j

(∫
Tij

ft
v2

2
dv dx+

∫
Tij

Efv dv dx

)
= 0.

Next, we use equation (98) to substitute the last term in (101),

0 =
∑
i,j

(∫
Tij

ft
v2

2
dv dx+

∫
Tij

ftΦ dv dx−
∫
Jj

(
v̂f [[ Φ ]]−v[[ Φf ]]+vΦ̂[[ f ]]

)
i−1/2,v

dv

)
.

Finally, we substitute the second volume term above by means of (100),

0 =
∑
i,j

∫
Tij

ft
v2

2
dv dx +

∑
i

∫
Ii

EEtdx−
∑
i

[
[[ ΦEt ]]− (Φ̂[[Et ]] + Êt[[ Φ ]])

]
i−1/2

−
∑
i,j

∫
Jj

(
v̂f [[ Φ ]]− v[[ Φf ]] + vΦ̂[[ f ]]

)
i−1/2,v

dv.(102)

We next define for all i,

(103)
ΘH
i−1/2 = Φ̂[[Et ]]− [[ ΦEt ]] + Êt[[ Φ ]] ,

ΘF
i−1/2,v = −v̂f [[ Φ ]] + v[[ Φf ]]− vΦ̂[[ f ]] ,

so that (102) can be rewritten as

(104)
∑
i,j

∫
Tij

ft
v2

2
dv dx+

∑
i

∫
Ii

EEtdx+
∑
i

ΘH
i−1/2 +

∑
i,j

∫
Jj

ΘF
i−1/2,vdv = 0 .

Thus, we only need to show that ΘH
i−1/2 and ΘF

i−1/2,v are, for all i, either zero
or the time derivative of a non-negative function. From the definition of the
numerical fluxes (94), and using that

(105) [[ ab ]] = a+b+ − a−b− = {a}[[ b ]] + [[ a ]]{b}, ∀ a, b ∈ V k
h ,

we find

ΘH
i−1/2 = {Et}[[ Φ ]] + {Φ}[[Et ]] + c11[[ Φt ]][[ Φ ]]− [[ ΦEt ]] = c11[[ Φt ]][[ Φ ]] .

Therefore since (E,Φ) is C1 in time,

(106) ΘH
i−1/2 = c11[[ Φt ]][[ Φ ]] =

1

2

d

dt

(
c11[[ Φ ]]2

)
.

Similarly from (25) and (105), we get

ΘF
i−1/2,v = −v{f}[[ Φ ]]− v{Φ}[[ f ]] +

|v|
2

[[ f ]][[ Φ ]] + v · c12[[ f ]][[ Φ ]] + v[[ Φf ]]

=
|v|
2

[[ f ]][[ Φ ]] + v · c12[[ f ]][[ Φ ]] .
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Now, recalling that c12 = −sign(v)/2 and noting that v · sign(v) = |v|, we also
have that ΘF

i−1/2,v = 0 for all i and so substituting the above result together with

(106) into (104) we reach (95). �

5.1. Energy inequalities. The energy conservation property given in last The-
orem heavily relies on the choice of the approximation for the Poisson problem
and more precisely on the definition of the numerical fluxes, which somehow
accounts for the coupling of the transport equation with the Poisson problem.
Nevertheless, for full DG approximation of the Vlasov-Poisson system with other
choices of numerical fluxes as given in Section 3.3, we can prove some energy
inequality measuring the error in energy committed in terms of h at time t. For
all t ∈ [0, T ], we define the discrete energy as

Eh(t) :=
∑
i,j

∫
Tij

fh(t)v
2 dv dx +

∑
i

∫
Ii

|Eh(t)|2 dx

+
∑
i

(
c11[[ Φh(t) ]]2i+1/2 + c22[[Eh(t) ]]2i+1/2

)
.(107)

We next state two results: the former, Proposition 5.3, requires smoothness of
the solution; the latter, Proposition 5.4, establishes a decay of order O(h) for
the energy, provided h < L, without any further regularity assumption on the
solution. The proof of both Propositions can be found in Appendix C.

Proposition 5.3. Let m ≥ k ≥ 2 and consider the unique compactly sup-
ported solution of the Vlasov-Poisson system (1)-(2) given by Theorem 2.1 with
f ∈ C1([0, T ];Hk+1(Ω)) and E ∈ C0([0, T ];Hm+1(I)). Let the DG-DG ap-
proximation of the Vlasov-Poisson problem (1)-(2) be ((Eh,Φh), fh) ∈ C1([0, T ];
(V k

h × V k
h ) × Zkh), solution of (23), (24), (44), and (45), with the numerical

fluxes (25) for the approximate density and (46) for the DG approximation of
the Poisson problem. Then,

|Eh(t)− Eh(0)| ≤ h2 min (k+1,m)K0 + hmin (2k+1,2m)(c22 + c−1
11 )K1 ,

where m = k for any LDG (50) and the general DG (46); and m = k+ 1 for the
Hybridized LDG method (iii). The constants K0 and K1 depend on

K0 = K0(

∫ t

0

(‖Eh(s)‖m+1,I + ‖Φh(s)‖m+2,I)
2ds, C5),

K1 = K1(L

∫ t

0

‖f(s)‖2
k+1,Ωds, C5).

Proposition 5.4. Let m ≥ k ≥ 2 and consider the unique compactly sup-
ported solution of the Vlasov-Poisson system (1)-(2) given by Theorem 2.1 with
f ∈ C1([0, T ];Hk+1(Ω)) and E ∈ C0([0, T ]; Hm+1(I)). Let the LDG-DG ap-
proximation of the Vlasov-Poisson problem (1)-(2) be ((Eh,Φh), fh) ∈ C1([0, T ];
(V k

h ×V k
h )×Zkh), solution of (23), (24), (44), and (45), with the numerical fluxes
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(25) for the approximate density and (46), with c11 = ch−1 and c22 = 0 for the
LDG approximation of the Poisson problem. Then, for h < 1/L,

|Eh(t)− Eh(0)| ≤ chL

[∑
i

c11[[ Φh(t) ]]2i+1/2 + chLtF0

]
,

where F0 is defined as

F0 := ‖[Ph(f0)]1/2|v|‖2
0,Th

+ ‖Ph(f0)‖2
0,Th

+ ‖Ei
0‖2

0,Th
+ ‖c1/2

11 [[ Φ0 ]]‖2
0,Γx

.

Appendix A. Proofs of the Error Estimates of the Electrostatic
field

In this appendix we provide the proofs of all the Lemmas stated in section 3
related to the consistency error in the approximation to the Electrostatic field.

A.1. Conforming approximation to the Electrostatic Potential.

Proof of Lemma 3.2. We first show (37). Since both E and Eh have zero average
over I, we deduce ‖E − Eh‖L2

0(I) = ‖E − Eh‖0,I . From the definitions (9) and

(35) of the electric field E and its approximation Eh, we find for all x ∈ Ii

|E(x)−Ei
h(x)|2 ≤ 2|E(x1/2)−E0

h(x1/2)|2 +2

∣∣∣∣∣
∫ x

x1/2

[ρh(s)− ρ(s)]ds

∣∣∣∣∣
2

= 2(T0 +T1) .

The term T0 can be readily estimated from (8) and (33) and Hölder inequality

T0 = |E(x1/2)−E0
h(x1/2)|2 = |CE−Ch

E|2 =

∣∣∣∣∫ 1

0

∫ z

0

[ρh(s)− ρ(s)] ds dz

∣∣∣∣2≤ ‖ρh−ρ‖2
0,I .

Holder’s inequality yields T1 ≤ ‖ρh − ρ‖2
0,I . Hence, integration over Ii and sum-

mation over i and Cauchy-Schwarz inequality, gives ‖E−Eh‖2
0,I ≤ 4‖ρh− ρ‖2

0,I ,
and so by using (27), estimate (37) follows.

To prove (38), from the conformity of the approximation (Eh ∈ W k+1
h ), Sobolev

imbeddings together with triangle inequality, we find

‖E − Eh‖0,∞,I ≤ ‖E − Eh‖1,I ≤
√

2(‖Eh − E‖0,I + |Eh − E|1,I).
The first term above has been already estimated. For the second, note that

∂

∂x
[E − Eh] = ρh(x, t)− ρ(x, t), ∀x ∈ (xi−1/2, xi+1/2) ∀ i ,

and so,

|Eh−E|21,I=
∑
i

∫
Ii

∣∣∣∣ ∂∂x [E − Eh]
∣∣∣∣2 dx=

∑
i

∫
Ii

|ρh(x, t)−ρ(x, t)|2 dx=‖ρ−ρh‖2
0,Ih

.

Hence, from (27) and (37) and substituting above we reach (39). The proof for
the uniform estimate (39) follows immediately.
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A.2. Mixed Finite Element Approximation for the Poisson Problem.

Proof of Lemma 3.3. The proof of estimate (43) would follow from the a-priori
estimate for linear problems together with an “aplication ” of a version of Strang’s
Lemma for mixed methods. We briefly sketch it for the sake of completeness. In
one dimension, we only need to show (43) due to Sobolev’s imbbeding H1(I) ⊂
L∞(I). Using (41)-(42), we get

−
∫
I

(E − Eh)z dx+

∫
I

(Φ− Φh)zx dx = 0 ∀ z ∈ W k+1
h ,(108) ∫

I

(E − Eh)xp dx =

∫
I

(ρ− ρh)p dx ∀ p ∈ V k
h .(109)

being (E,Φ) the continous solution to the Poisson problem. The term on the
right hand side of equation (109) is the consistency error. Next, let Rh :
H1(I) −→ W k+1

h be the projection operator defined by:
∫
Ii

(z −Rh(z))q dx = 0, ∀ q ∈ Pk−1(Ii) ,

Rh(z)(xi−1/2) = z(xi−1/2), Rh(z)(xi+1/2) = z(xi+1/2),

∀ i.

For k = 0 the definition of Rh reduces to that of the standard conforming inter-
polant. It is easy to verify that Rh corresponds to the one-dimensional Raviart-
Thomas projection. In particular it satisfies the approximation property

(110) ‖z −Rh(z)‖0,I ≤ Chk+1‖z‖k+1,I ∀ z ∈ Hk+1(I).

From the definition of Rh it is straightforward to verify that

(111)

∫
I
z −Rh(z))xp dx = 0, ∀ z ∈ H1(I), ∀ p ∈ V k

h ,

which express the the commuting property of the projection Rh:
d
dx

(Rh(z)) =

P k(zx), for all z ∈ W k+1
h , P k being the L2-standard projection. Combining (111)

with z = E and equation (109), this last equation becomes

(112)

∫
I

[Rh(E)− Eh]xp dx =

∫
I

(ρ− ρh)p dx ∀ p ∈ V k
h ,

and so, by setting in p = (Rh(E)− Eh)x ∈ d
dx
W k+1
h = V k

h , we have

(113)

∫
I

|(Rh(E)− Eh)x|2 dx =

∫
I

(ρ− ρh)[Rh(E)− Eh]x dx .

Hence, denoting by ηE = Rh(E)− Eh, Cauchy Schwarz gives

(114) |ηE|1,I = |Rh(E)− Eh|1,I ≤ C‖ρ− ρh‖0,I .

We next get the L2-error estimate. We take z = ηE in (108) and decompose
Φ−Φh = [Φ−P k(Φ)] + [P k(Φ)−Φh] and E−Eh = [E−Rh(E)] + [Rh(E)−Eh].
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Then, from the definition of the standard L2-projection P k, we find

‖ηE‖2
0,I =

∫
I

|Rh(E)−Eh|2 dx = −
∫
I

[E−Rh(E)]ηE dx+

∫
I

[P k(Φ)−Φh][ηE]x dx .

Note that from (108) and the definition of the L2-projection, we have∫
I

(Φh − P k(Φ))zx dx = −
∫
I

(E − Eh)z dx ∀ z ∈ W k+1
h ,

and thus, we can apply this to z = ηE. By setting p = (P k(Φ)−Φh) in (112) and
substituting the result above we get,

(115)

∫
I

|ηE|2 dx =

∫
I

[Rh(E)− E]ηE dx+

∫
I

(ρh − ρ)(P k(Φ)− Φh) dx .

Then, summing (113) to the above equation and using Cauchy-Schwarz together
with the intepolation estimate (110), we find

‖ηE‖2
0,I+|ηE|21,I≤‖E −Rh(E)‖0,I‖ηE‖0,I+‖ρ− ρh‖0,I(|ηE|1,I+‖P k(Φ)−Φh‖0,I)

≤Chk+1‖E‖k+1,I‖ηE‖0,I+‖ρ− ρh‖0,I(|ηE|1,I+‖P k(Φ)− Φh‖0,I).

To conclude we need a bound for ‖P k(Φ)− Φh‖0,I . Now, taking z ∈ W k+1
h such

that zx = Φh − P k(Φ) we obtain

‖P k(Φ)− Φh‖2
0,I ≤ C‖E − Eh‖0,I‖P k(Φ)− Φh‖0,I

where in the last step we have used Poincarè’s inequality (‖z‖0,I ≤ C‖zx‖0,I).
Hence, plugging it into the previous estimate, we get

‖ηE‖2
0,I + |ηE|21,I ≤ (Chk+1‖E‖k+1,I + ‖ρ− ρh‖0,I)‖ηE‖0,I

+ ‖ρ− ρh‖0,I(Ch
k+1‖E‖k+1,I + |ηE|1,I)

≤Ch2k+2‖E‖2
k+1,I + C ′‖ρ− ρh‖2

0,I +
1

4
(‖ηE‖2

0,I + |ηE|21,I)

+ C‖ρ− ρh‖0,Ih
k+1‖E‖k+1,I ,

from which by a “kick-back” argument we get,

‖ηE‖2
0,I + |ηE|21,I ≤

4

3
(Chk+1‖E‖k+1,I + C ′‖ρ− ρh‖0,I)

2 ,

that together with the interpolation estimate (110) and estimate (27) yields (43).

A.3. DG approximation for the Poisson problem.
Proof of Lemma 3.4. The result follows by adapting the proofs in [18, 23] and
[19, 22] for the cases (i); (ii); (iii), respectively, so that they account for the
consistency error. Notice also that for (i),(ii) estimate (52) follows from (3.4).
Hence, for the sake of completeness, we sketch the proof of this last estimate in
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some detail for the LDG method (i) and the general DG (iii). Using (47) and
that (E, f) is the continuous solution, we get the following error equation:

(116) A((E−Eh,Φ−Φh); (z, p)) =
∑
i

∫
Ii

(ρ− ρh)p dx, ∀ (z, p) ∈ V r
h ×V r

h .

The term on the right hand side is the consistency error, which is the only
novelty in the proof w.r.t those in the above-mentioned works. We decompose
E −Eh = ηh− ηe where ηe = P r(E)−E and ηh = P r(E)−Eh, and analogously
Φ − Φh = ξh − ξe where ξe = P r(Φ) − Φ and ξh = P r(Φ) − Φh. Then, [18,
Lemma 3.3] gives

|(E − Eh,Φ− Φh)|A ≤ |(η
e, ξe)|A + |(ηh, ξh)|A

≤Ka0h
r+1/2‖|(E,Φ)‖|r,I + |(ηh, ξh)|A ,(117)

where ‖| · ‖|A is the semi-norm defined in (48) and K2
a0 ≈ C(h + c22 + c11).

To estimate the second term by setting (z, p) = (ηh, ξh) in the error equation
(116) and using the definition of A(·, ·), that of the semi-norm (48) and the
approximation properties of the standard L2-projection (19), we find

|(ηh, ξh)|2A =A((ηh, ξh), (ηh, ξh)) ≤ ‖ρ− ρh‖0,Ih
‖ξh‖0,Ih

+
∣∣A((ηe, ξe), (ηh, ξh))

∣∣
≤‖ρ− ρh‖0,Ih

(‖ξe‖0,Ih
+ ‖Φ− Φh‖0,Ih

) +
∣∣A((−ηh, ξh), (−ηe, ξe))

∣∣
≤‖ρ− ρh‖0,Ih

(Chr+1‖Φ‖r+1,I + ‖Φ− Φh‖0,Ih
)

+
∣∣(ηh, ξh)∣∣ACKb0

hr+1/2|‖(E,Φ)‖|r,I ,(118)

where in the last step we have used [18, Lemma 3.6] together with [18,
assumption (2.21)] and K2

b0 ≈ C(c−1
11 +c22+c11). To conclude we need an estimate

for ‖Φ−Φh‖0,Ih
that will be obtained by duality. Let u ∈ H2(I) be the solution

of the dual problem, −uxx = Φ− Φh in I with u(0) = u(1) = 0, and let q = ux.
Then, it is easy to verify

(119) A((q, u); (z, p)) = (Φ− Φh, p), ∀ (z, p) ∈ H1(Ih)×H1(Ih).

Thus by setting (z, p) = (Eh−E,Φ−Φh) in the above equation, using the defini-
tion of A(·, ·) together with (116), the H1-stability of the standard
L2-projection [13] and denoting by θq := q = P r(q) and θu := u− P r(u) we get

‖Φ− Φh‖2
0,Ih

= A((−q, u); (Eh − E,Φ− Φh)) = A((E − Eh,Φ− Φh); (q, u))

=A((E−Eh,Φ− Φh); (q−P r(q), u−P r(u)))+

∫
I
(ρ−ρh)P r(u) dx

≤
∣∣A((ηh, ξh); (θq, θu))

∣∣+|A((ηe, ξe); (θq, θu))|+‖ρ−ρh‖−1,Ih
|P r(u)|1,Ih

≤Ch1/2‖|(q, u)‖|0,I +Kb1

(
|(ηh, ξh)|A +Ka1h

r+1/2‖|(E,Φ)‖|r,I
)

+ C‖ρ− ρh‖−1,Ih
|u|1,I .
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where the first two terms have been estimated by using Lemmas 3.6 and 3.3 from
[18], respectively, and the constants are defined by:

K2
b1 ≈ C(c−1

11 + c22 + h2c11), K2
a1 ≈ C(c22 + h+ c11h

2)(1 + h+ c22 + c11)

Appealing now to the a-priori estimates for the dual problem (119)

‖u‖m+2,I + ‖q‖m+1,I ≤ C‖Φ− Φh‖m,I m = −1, 0,

together with the inclusion L2(I) ⊂ H−1(I), we finally get

‖Φ− Φh‖0,Ih
≤ Ch1/2

[
Kb1|(ηh, ξh)|A + hr+1/2Ka1‖|(E,Φ)‖|r,I

]
+ ‖ρ− ρh‖0,Ih

.

Substituting the above estimate in (118) and using the Young’s inequality,

|(ηh, ξh)|2A ≤ ‖ρ− ρh‖2
0,Ih

(1 + 4K2
b1h) +

1

2

∣∣(ηh, ξh)∣∣2A + Ch2r+2‖Φ‖2
r+1,I

+ Ch2r+1|‖(E,Φ)‖|2r,I(K2
b0 +K2

a1h),

and so by a “kick-back argument” and taking square roots we get

1

2
|(ηh, ξh)|A ≤ C‖ρ−ρh‖0,Ih

+(K2
b0+K2

a1h)1/2hr+1/2‖|(E,Φ)‖|r,I+Chr+1‖Φ‖r+1,I .

Substituting this estimate in (117), and taking into account the values of the
parameters c11 and c22 selected, we reach (3.4) which in particular implies (52).

For the MD-LDG (ii) one adapts easily this proof taking into account the
values for c11 and c22 and replaces the L2-projection by the special projection
defined through (17)-(18). For the H-LDG (considered in (iii), the easiest way
to prove (52) is to introduce an auxiliary approximation, say (E∗h,Φ

∗
h), to the

continuous Poisson problem. The error estimates in the L2 norm for E −Eh are
decomposed in two parts: the error E−E∗h estimated in [22] and the consistency
error E∗h−Eh dealt with the ideas in this proof. We omit the details for the sake
of conciseness.

Appendix B. Proofs of Lemmas 4.5 and 4.6

Proof of Lemma 4.5. We shall first estimate each term K1
i,j(v, f, ω

h) for fixed
i, j and then sum over i, j. So let i, j be fixed and denote T = Ti,j , I = Ii
and J = Jj. The boundary of the element T consist of two vertical and two
horizontal edges; ∂T = J i−1/2∪J i−1/2∪ Ij−1/2∪ Ij+1/2 where we have denoted by
J i+1/2 := {xi+1/2} × J and Ij+1/2 := I × {vj+1/2}. Notice that the definitions of
both, the numerical fluxes (25) and the projection Πh, depend on the sign of v.
However, since v = 0 is a node of the partition, v as a function does not change
sign inside any element Ti,j ∈ Th. Hence, denoting by v± = max{±v, 0} the
positive and negative parts of v, the term K1 can be rewritten as K1(v, f, ωh) =
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K1,+(v, f, ωh)−K1,−(v, f, ωh) with

K1,±(v, f, ωh) =
∑
i,j

K1
i,j(v±, f, ω

h) .

We can reduce ourselves to show the result for the case of v+ since in the case
v− is treated analogously. Since v > 0 on T , from the definition of the numerical
fluxes (25), the definition of Πh (65) and noting that Πh

∣∣
J

= π̃v, this term reads

K1,+
i,j (v, f, ωh) =

∫
T

vωe(ωh)xdxdv −
∫
Ji+1/2

v(f − π−v f)−(ωh)−dv

+

∫
Ji−1/2

v(f − π−v f)−(ωh)+dv .(120)

Observe (120) is independent of the sign(v). Let v̄ := P 0(v) denote the local
projection of v onto the constants on J . Then, summing and substracting v̄ in
K1,+
i,j , we have

K1,+
i,j (v, f, ωh) = K1,+

i,j (v − v̄, f, ωh) +K1,+
i,j (v̄, f, ωh) .

The last term is estimated exactly as in [18, Lemma 3.6] (see also [47]), giving

(121) |K1,+
i,j (v̄, f, ωh)| ≤ Chk+1

T |v|‖f‖k+2,Ti,j
‖ωh‖0,Ti,j

where we have also used the stability of the L2-projection (16). We wish to stress
that the properties of the special projections Πh and π±v are essential for the proof
of the above estimate. We next estimate the remaining term in the expression for
K1,+. From the definition in (120), using Hölder inequality, trace inequality [2]
and inverse inequality [21] together with with the error estimates (20) and (67),
we find

|Ki,j1,+(v − v̄, f, ωh)|≤
∣∣∣∣∫
T

(v−v̄)

∫
I

ωeωhx dv dx

∣∣∣∣+∣∣∣∣∫
Ji±1/2

[v−v̄](f−π−v f)−(ωh)∓dv

∣∣∣∣
≤ C‖v − v̄‖0,∞,J‖ωe‖0,T‖(ωh)x‖0,T +C

∑
m=i±1/2

‖v − v̄‖0,∞,Jm‖ωe‖0,Jm‖ωh‖0,Jm

≤ Chvh
k+1
T ‖f‖k+1,Th

−1
v ‖ωh‖0,T + Chvh

k+1/2
T ‖f‖k+1,Th

−1/2
v ‖ωh‖0,T

≤ Chk+1‖f‖k+1,T‖ωh‖0,T .

Then, using the above estimate together with (121) and summing over i and j
we get

|K1,+(v, f, ωh)| ≤ Chk+1‖ωh‖0,T (‖f‖k+1,T + L‖f‖k+2,T ) ,

giving the desired estimate (75).

Proof of Lemma 4.6. We follow the notation of the previous proof. We start by
noting that we cannot directly argue as in the proof of Lemma 4.5 since now the
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definition of the numerical fluxes depend on the sign of Eh while the definition
of the projection depend on the sign of E. We first write

(122) K2
i,j(E

i
h, f, ω

h) = K2a
i,j(E

i
h, f, ω

h) +K2b
i,j(E

i
h, f, ω

h)

with

K2a
i,j(Eh, f, ω

h) =

∫
Ti,j

Ehω
eωhv dv dx

K2b
i,j(Eh, f, ω

h) = −
∫
Ii

[
(Êhωe(ω

h)−)x,j+1/2 − (Êhωe(ω
h)+)x,j−1/2

]
dx ,

and we shall consider a further splitting of each of the above expressions. For the
first one, we set

(123) K2a
i,j(Eh, f, ω

h) = K2a
i,j(Eh − E, f, ωh) +K2a

i,j(E, f, ω
h) .

Then, Hölder inequality together with inverse inequality and estimate (67) give∣∣K2a
i,j(Eh − E, f, ωh)

∣∣ ≤ ‖Eh − E‖0,∞,Ii‖f − Πh(f)‖0,Ti,j
‖(ωh)v‖0,Ti,j

≤ Chk+1h−1
v ‖Eh − E‖0,∞,Ii‖f‖k+1,Ti,j

‖ωh‖0,Ti,j
.(124)

Now, we deal with the boundary term K2b
i,j in (122). Since the definition of the

numerical flux (25) on Γv depends on the sign of Eh at (x, vj±1/2),

(̂Ei
hω

e)x,j−1/2 = (Ei
h(x))+[f−Πh(f)]+x,j−1/2−(Ei

h(x))−[f−Πh(f)]−x,j−1/2 , ∀x ∈ Ii

where (Ei
h(x))± = max (±Ei

h(x), 0) denotes respectively, the positive and nega-
tive parts of Ei

h(x). Hence, the above splitting induces a further decomposition
of K2b:

K2b
i,j(Eh, f, ω

h) = A+
i,j((Eh)

i
+, f, ω

h) +A−i,j((Ei
h)−, f, ω

h) ,

where ± in A± refers to the side (from the left or from the right in the v-direction)
from which the term f − Πh(f) is evaluated, that is:

A±i,j((Ei
h)±, f, ω

h) = −
∫
Ii∩{x:±Ei

h>0}
Ei
h

{(
[f − Πh(f)]±(ωh)−

)
x,j+1/2

−
(
[f − Πh(f)]±(ωh)+

)
x,j−1/2

}
dx .

Notice now that Πh(f)
∣∣
Ij±1/2 is a projection on the x-direction, and so indepen-

dent on v. Thus, this observation together the continuity of f implies that,

[f−Πh(f)]−x,j+1/2 =[f−Πh(f)]−∣∣
Ij+1/2

=[f−Πh(f)]+∣∣
Ij+1/2

=[f−Πh(f)]+x,j+1/2 , ∀x ∈ Ii , ∀ j.

Hence, K2b
i,j(Eh, f, ω

h) can be rewritten as

K2b
i,j = −

∫
Ii

Ei
h

{(
[f − Πh(f)]∗(ωh)−

)
x,j+1/2

−
(
[f − Πh(f)]∗(ωh)+

)
x,j−1/2

}
dx ,
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where ∗ can be taken either as + or −, without changing the final result. Note
that the above expression does not depend any more on the sign of Ei

h. Hence,
adding and substracting Ei to the above expressions, K2b

i,j(Eh, f, ω
h) becomes,

(125) K2b
i,j(Eh, f, ω

h) = K2b
i,j(Eh − E, f, ωh) +K2b

i,j(E, f, ω
h) .

The first term is easily bounded by using Hölder inequality together with trace
and inverse inequalities and the approximation result (67),∣∣K2b

i,j(Eh − E, f, ωh)
∣∣ ≤ ∑

m=j±1/2

‖Ei
h − Ei‖0,∞,Im‖f − Πh(f)‖0,Im‖ωh‖0,Im

≤ Chk‖Ei
h − Ei‖0,∞,Ii‖f‖k+1,Ti,j

‖ωh‖0,Ti,j
.(126)

To estimate the last term in (125), recalling the splitting in (123), we define

(127) K3(Ei, f, ωh) =
∑
i,j

(
K2a
i,j(E

i, f, ωh) +K2b
i,j(E, f, ω

h)
)
.

Observe now that K3
i,j(E

i, f, ωh) is a term “similar” to K1 from (73), in the sense

that the definition of the projection Πh depends of the sign of Ei on each Ii.
Therefore, we argue similarly as in Lemma 4.5 to rewrite the term K3 as

(128) K3(Ei, f, ωh) =
∑
i,j

K3,+
i,j (Ei, f, ωh) +K3,−

i,j (Ei, f, ωh) +K3,0
i,j (Ei, f, ωh)

where K3,±
i,j (Ei, f, ωh) are the contributions coming from those elements where Ei

is either positive or negative in the whole Ii and the term K3,0(Ei, f, ωh) corre-
sponds to the contribution of those elements where E restricted to Ii changes sign.
Therefore, the estimates forK3,±

i,j (Ei, f, ωh) are done similarly as forK1,±(v, f, ωh),

so we just sketch the procedure. Adding and subtracting P 0(E) we have

K3,±
i,j (Ei, f, ωh) = K3,±

i,j (Ei − P 0(Ei), f, ωh) +K3,±
i,j (P 0(Ei), f, ωh) .

The last term is bounded as in [18, Lemma 3.6]. As for estimate (121), the special
properties of the projections Πh and π±x are heavily used in this proof. Using the
stability of the L2-projection (16),

(129) |K3,±
i,j (P 0(E), f, ωh)| ≤ Chk+1

T ‖E
i‖0,∞,Ii‖f‖k+2,Ti,j

‖ωh‖0,Ti,j
.

To estimate the first term K3,+
i,j := K3,+

i,j (E − P 0(E), f, ωh) notice that Πh

∣∣
Ii

=

π+
x

∣∣
Ii

and since f is continuous [π+
x (f)]+ = [π+

x (f)]−. Then, using the L∞-

estimate for the L2-projection (20), Hölder inequality, trace and inverse inequal-
ities together with the approximation estimate (67), we deduce
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|K3,+
i,j |≤

∣∣∣∣∫
T

[Eh− P 0(E)]ωe(ωh)vdxdv

∣∣∣∣+ ∑
m=j±1/2

∣∣∣∣∫
Im

[E− P 0(E)](f − π+
x f)(ωh)∓dx

∣∣∣∣
≤ C‖E − P 0(E)‖0,∞,Ii

‖ωe‖0,Tij
h−1
x ‖ωh‖0,Tij

+
∑

m=j±1/2

‖ωe‖0,Imh−1/2
x ‖ωh‖0,Tij


≤ Chk+1‖E‖1,∞,Ii‖f‖k+1,Tij

‖ωh‖0,Tij
.

(130)

We finally estimate the term K3,0
i,j := K3,0

i,j (E, f, ωh). Note that now Πh

∣∣
Ii

=

P k
∣∣
Ii

. Then, Hölder inequality, estimates (67) together with inverse and trace

inequalities gives

|K3,0
i,j | ≤ ‖Ei‖0,∞,Ii

(
‖f − Πh(f)‖0,Ti,j

‖(ωh)v‖0,Ti,j
+ ‖f − P k(f)‖0,Im‖ωh‖0,Im

)
≤ C‖Ei‖0,∞,Iih

k‖f‖k+1,Ti,j
‖ωh‖0,Ti,j

.

(131)

Thus, to conclude we only need to provide an estimate for ‖Ei‖0,∞,Ii . Note that
since E changes sign inside Ii there exists some x∗ ∈ Ii such that E(x∗) = 0.
Using mean value theorem together with the regularity of E we have

(132) ‖Ei‖0,∞,Ii = sup
x∈Ii
|E(x)− E(x∗)| = sup

x∈Ii

∣∣∣∣∫ x

x∗
Ex(s)ds

∣∣∣∣ ≤ Chx|E|1,∞,Ii .

Substituting it into the bound for K3,0
i,j and summing over elements, we finally get

|K3,0(E, f, ωh)| ≤ Chk+1|E|1,∞,I‖f‖k+1,Ω‖ωh‖0,Th
,

Then, summing over all the elements of the partition estimates (124), (126), (129)
and (130) concludes the proof of the Lemma.

Appendix C. Proofs of the Energy inequalities

Proof of Proposition 5.3. The first part of the proof follows exactly the same
steps as the proof of Proposition 5.1, till one reaches equation (104), which we
can write as
(133)

1

2

d

dt

(∑
i,j

∫
Tij

fhv
2dvdx+

∑
i

∫
Ii

(Eh)
2dx

)
+
∑
i

ΘH
i−1/2 +

∑
i,j

∫
Jj

ΘF
i−1/2,vdv = 0,

with ΘH
i−1/2 and ΘF

i−1/2,v as defined in (103):

ΘH
i−1/2 = Φ̂[[ (Eh)t ]]− [[ Φh(Eh)t ]] + Êt[[ Φh ]] ,

ΘF
i−1/2,v = −v̂f [[ Φh ]] + v[[ Φhfh ]]− vΦ̂[[ fh ]] .
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Then, using (105) and the definition of the numerical fluxes (46), we get for ΘH
i−1/2

ΘH
i−1/2 = {(Eh)t}[[ Φh ]] + {Φh}[[ (Eh)t ]] + c11[[ (Φh)t ]][[ Φh ]]

+ c22[[Eh ]][[ (Eh)t ]]− [[ Φh(Eh)t ]] = c11[[ (Φh)t ]][[ Φh ]] + c22[[Eh ]][[ (Eh)t ]]

=
1

2

d

dt

(
c11[[ Φh ]]2 + c22[[Eh ]]2

)
,

where in last step we have used that (Eh,Φh) is C1 in time. Arguing similarly,
and one easily gets for ΘF

i−1/2,v ;

ΘF
i−1/2,v = −v{fh}[[ Φh ]] +

|v|
2

[[ fh ]][[ Φh ]]− v{Φh}[[ fh ]] + vc12[[ fh ]][[ Φh ]]

− vc22[[ fh ]][[Eh ]] + v[[ Φhfh ]]

=

(
|v|
2

+ vc12

)
[[ fh ]][[ Φh ]]−vc22[[ fh ]][[Eh ]]= ṽ[[ fh ]][[ Φh ]]−vc22[[ fh ]][[Eh ]],

where we have denoted by ṽ = (|v|/2 + vc12). Then, substituting into (133) we
have

1

2

d

dt

∑
i,j

(∫
Ti,j

fh
v2

2
dvdx+

∫
Ii

(Eh)
2dx+ c22[[Eh ]]2i−1/2 + c11[[ Φh ]]2i−1/2

)
=

=
∑
i,j

c22[[Eh ]]i−1/2

∫
Jj

v[[ fh ]]i−1/2,vdv −
∑
i,j

[[ Φh ]]i−1/2

∫
Jj

ṽ[[ fh ]]i−1/2,vdv ,

and therefore integrating in time from 0 up to time t both sides, taking the
absolute value and using triangle inequality, we get

1

2

∣∣∣∣∣
∫ t

0

d

dt

∑
i,j

(∫
Ti,j

fh
v2

2
dvdx+

∫
Ii

(Eh)
2dx+ c22[[Eh ]]2i−1/2 + c11[[ Φh ]]2i−1/2

)
ds

∣∣∣∣∣
≤

∣∣∣∣∣
∫ t

0

∑
i,j

c22[[Eh ]]i−1/2

∫
Jj

v[[ fh ]]i−1/2,vdvds

∣∣∣∣∣
+

∣∣∣∣∣
∫ t

0

∑
i,j

[[ Φh ]]i−1/2

∫
Jj

ṽ[[ fh ]]i−1/2,vdvds

∣∣∣∣∣ .
(134)

We next bound the last two terms. For the first term, from the arithmetic-
geometric inequality we get

2

∣∣∣∣∣
∫ t

0

∑
i,j

c22[[Eh ]]i−1/2

∫
Jj

v[[ f ]]i−1/2,vdvds

∣∣∣∣∣ ≤
≤ L

∫ t

0

∥∥∥c1/2
22 [[Eh(s) ]]

∥∥∥2

0,γx

ds+

∫ t

0

c22

∥∥|v|1/2[[ fh(s) ]]
∥∥2

0,Γx
ds .
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For the other term, using that c12 is bounded (|c12| ≤ c) we can simply use the
bound |ṽ| ≤ c|v|. Then, from the arithmetic-geometric inequality, we have

2

∣∣∣∣∣∑
i,j

[[ Φh ]]i−1/2

∫
Jj

ṽ[[ fh ]]i−1/2,vdv

∣∣∣∣∣ ≤
≤ cL

∫ t

0

∥∥∥c1/2
11 [[ Φh(s) ]]

∥∥∥2

0,γx

ds+ Cc−1
11

∫ t

0

∥∥|v|1/2[[ fh(s) ]]
∥∥2

0,Γx
ds .

Therefore, substituting back into (134) and taking into account the definition
(107) of the discrete energy we have

(135)

|Eh(t)− Eh(0)| ≤ L

∫ t

0

(∥∥∥c1/2
11 [[ Φh(s) ]]

∥∥∥2

0,γx

+
∥∥∥c1/2

22 [[Eh(s) ]]
∥∥∥2

0,γx

)
ds

+ C(c22 + c−1
11 )

∫ t

0

∥∥|v|1/2[[ fh(s) ]]
∥∥2

0,Γx
ds .

Now we observe that the first sum on the right hand side is part of the energy
norm of the DG approximation (Eh,Φh). Thus, from Corollary 4.15 and taking
into account the regularity of the continuous solution we have

(136)

∫ t

0

∑
i

(
c11[[ Φh(s) ]]2i−1/2 + c22[[Eh(s) ]]2i−1/2

)
ds ≤

≤ h2 min (k+1,m)

(
C5 +

∫ t

0

‖|(Eh(s),Φh(s))|‖2
k,Ids

)
.

We next bound the second term in (135). Observe that since f ∈ C0(Ω),

[[ fh ]] = [[ fh − f ]] = [[ fh − Πh(f) ]] + [[ Πh(f)− f ]].

Thus, in view of the definition of the norm (60) and remark 4.14 we have for the
first term above
(137)∫ t

0

‖|v|[[ fh(s)− Πh(f(s)) ]]‖2
Γx
ds ≤ ‖|fh(t)− Πh(f(t))‖|2 ≤ C2

5h
2(min (k+1,m)) .

For the other term, using the interpolation estimate (68) together with a trace
inequality [2], we get∫ t

0

‖|v|[[ Πh(f(s))− f(s) ]]‖2
Γx
ds ≤ CLh2k+1

∫ t

0

‖f(s)‖2
k+1,Ωds .

Hence, this estimate together with (137) finally give∫ t

0

∥∥|v|1/2[[ fh(s) ]]
∥∥2

0,Γx
ds ≤ (C5h

2(min (k+1,m)) + CLh2k+1

∫ t

0

‖f(s)‖2
k+1,Ωds)

and so by substituting the above estimate and estimate (136) into (135), the
proof is complete.
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Proof of Proposition 5.4. The first part of the proof follows exactly the same
steps as the proof of Proposition 5.1, till one reaches equation (104),

(104)
∑
i,j

∫
Ti,j

ft
v2

2
dvdx+

∑
i

∫
Ii

EEtdx+
∑
i

ΘH
i−1/2 +

∑
i,j

∫
Jj

ΘF
i−1/2,vdv = 0,

with ΘH
i−1/2 and ΘF

i−1/2,v as defined in (103):

ΘH
i−1/2 = Φ̂[[Et ]]− [[ ΦEt ]] + Êt[[ Φ ]] ,

ΘF
i−1/2,v = −v̂f [[ Φ ]] + v[[ Φf ]]− vΦ̂[[ f ]] .

Then, using the definition of the numerical fluxes and (105) it is easy to verify
that while ΘH

i−1/2 is still given by (106), for ΘF
i−1/2,v one gets a term for that might

change sing
(138)

ΘF
i−1/2,v=−v{f}[[ Φ ]]−v{Φ}[[ f ]]+

|v|
2

[[ f ]][[ Φ ]]−v
2

[[ f ]][[ Φ ]]+v[[ Φf ]]=−v−[[ Φ ]][[ f ]] .

Then, substituting the above result together with (106) into (104) we have

1

2

d

dt

∑
i,j

(∫
Ti,j

f
v2

2
dvdx+

∫
Ii

(E)2dx+ c22[[E ]]2i−1/2 + c11[[ Φ ]]2i−1/2

)

−
∑
i,j

[[ Φ ]]i−1/2

∫
Jj

v−[[ f ]]i−1/2,vdv = 0.

Next, we add equation (59) (resulting from the L2-stability; Proposition 4.1) to
the above equation, to get

1

2

d

dt

[∑
i,j

(∫
Ti,j

fv2dvdx+

∫
Ti,j

f 2dxdv

)
+
∑
i

∫
Ii

(E)2dx+
∑
i

c11[[ Φ ]]2i−1/2

]

+
∑
i,j

∫
Ii

|E|
2

[[ f ]]2x,j−1/2dx+
∑
i,j

∫
Jj

|v|
2

[[ f ]]2i−1/2,vdv

(139)

−
∑
i,j

[[ Φ ]]i−1/2

∫
Jj

v−[[ f ]]i−1/2,vdv = 0.

(140)

Then, from the obvious inequality ab ≥ −|ab| and the arithmetic-geometric in-
equality, we have∑

i,j

[[ Φ ]]i−1/2

∫
Jj

v+[[ f ]]i−1/2,vdv ≥ −
L

2

∑
i

[[ Φ ]]2i−1/2 −
1

2

∑
i,j

∫
Jj

|v|[[ f ]]2i−1/2,vdv
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and so substituting back into (140) and neglecting the strictly non-negative terms,
we find

d

dt

[∑
i,j

(∫
Ti,j

[fv2 + f 2]dxdv+

∫
Ii

(E)2dx+
∑
i

c11[[ Φ ]]2i−1/2

)]
−L
∑
i

[[ Φ ]]2i−1/2≤0.

or equivalently
(141)

1

2

d

dt

∑
i,j

(∫
Ti,j

[fv2+f 2]dxdv+

∫
Ii

(E)2dx+c11[[ Φ ]]2i−1/2

)
≤ L

2

∑
i

[[ Φ ]]2i−1/2 ,

Now, let us define

F0 :=
∑
i,j

(∫
Ti,j

[Ph(f0)v2 + (Ph(f0))2]dxdv +

∫
Ii

(E0)2 + c11[[ Φ0 ]]2i−1/2

)
= ‖[Ph(f0)]1/2|v|‖2

0,Th
+ ‖Ph(f0)‖2

0,Th
+ ‖E0‖2

0,Th
+ ‖c1/2

11 [[ Φ0 ]]‖2
0,Γx

.(142)

Then integration in time from time 0 up to time t in (141), yields to

∑
i,j

(∫
Ti,j

[f(t)v2 + f 2(t)]dxdv +

∫
Ii

(E(t))2dx+ c11[[ Φ(t) ]]2i−1/2

)

≤ F0 +
L

2

∫ t

0

∑
i

[[ Φ(z) ]]2i−1/2dz,

which in particular implies,

0 ≤
∑
i

c11[[ Φ(t) ]]2i−1/2 ≤ F0 +
Lc−1

11

2

∫ t

0

∑
i

c11[[ Φ(z) ]]2i−1/2dz ,

and therefore, standard application of Gronwall’s inequality (see [42]) gives,

d

dt

[∑
i

c11[[ Φ(t) ]]2i−1/2

]
≤ F0e

L
2c11

t
.

which implies the a-priori estimate

∑
i

c11[[ Φ(t) ]]2i−1/2 ≤

[∑
i

c11[[ Φ(0) ]]2i−1/2

]
+ F0

(
e

L
2c11

t − 1
)
.

Then, substitution of the above estimate into (141), leads to the thesis of the
Proposition.
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discontinuous Galerkin method for elliptic problems on Cartesian grids. SIAM J. Numer.
Anal., 39(1):264–285 (electronic), 2001.

[24] B. Cockburn, G. E. Karniadakis, and C.-W. Shu. The development of discontinuous
Galerkin methods. In Discontinuous Galerkin methods (Newport, RI, 1999), volume 11
of Lect. Notes Comput. Sci. Eng., pages 3–50. Springer, Berlin, 2000.

[25] B. Cockburn and C.-W. Shu. TVB Runge-Kutta local projection discontinuous Galerkin
finite element method for conservation laws. II. General framework. Math. Comp.,
52(186):411–435, 1989.

[26] B. Cockburn and C.-W. Shu. The Runge-Kutta local projection P 1-discontinuous-Galerkin
finite element method for scalar conservation laws. RAIRO Modél. Math. Anal. Numér.,
25(3):337–361, 1991.

[27] B. Cockburn and C.-W. Shu. The local discontinuous Galerkin method for time-dependent
convection-diffusion systems. SIAM J. Numer. Anal., 35(6):2440–2463 (electronic), 1998.

[28] B. Cockburn and C.-W. Shu. The Runge-Kutta discontinuous Galerkin method for con-
servation laws. V. Multidimensional systems. J. Comput. Phys., 141(2):199–224, 1998.

[29] J. Cooper and A. Klimas. Boundary value problems for the Vlasov-Maxwell equation in
one dimension. J. Math. Anal. Appl., 75(2):306–329, 1980.

[30] G.-H. Cottet and P.-A. Raviart. Particle methods for the one-dimensional Vlasov-Poisson
equations. SIAM J. Numer. Anal., 21(1):52–76, 1984.

[31] N. Crouseilles, G. Latu, and E. Sonnendrücker. A parallel Vlasov solver based on local
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