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Abstract

Transport costs in address models of differentiation are usually modeled
as separable of the consumption commodity and with a parametric price.
However, there are many sectors in an economy where such modeling is not
satisfactory either because transportation is supplied under oligopolistic con-
ditions or because there is a difference (loss) between the amount delivered
at the point of production and the amount received at the point of consump-
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1 Introduction.

Transportation is an essential element in the modeling of address models of differ-

entiation. Two common assumptions in this regard are (i) the separability between

the demand of the consumption good and of transportation services, and (ii) a con-

stant transport cost function.

Such an approach can be challenged on two grounds. On the one hand, in

many sectors of an economy we find an oligopolistic structure in the market of

transportation services; on the other hand, there are sectors in the economy where

transport costs are dependent on the demand (i.e. price) of the consumption good

transported. Such is the case for instance, in the supply of electricity and of water.

In both cases, there is a difference (loss) between the amount delivered at the point

of production and the amount received at the point of consumption. Such loss de-

pends (among other factors) of the geographical distance between producers and

consumers. Several interpretations can be put forward. We can think of this phe-

nomenon as a loss of quality, or, in a temporal interpretation, as a lag between the

buying of the commodity and its consumption.

The approach we propose to tackle this issue has been extensively used in

other domains of research, such as urban economics (see e.g. Fujita, 1995, Abdel-

Raman, 1994, Abdel-Rahman and Anas, 2004) or in general equilibrium mod-

els of international trade (see e.g. Krugman, 1991a,b, 1992, Helpman and Krug-

man, 1988). Curiously enough, in those areas the way to cope with the difference

between the amount of good delivered and consumed has been different. There,

transport costs are formulated in terms of the transported commodity. This model-

ing was formalized by Samuelson (1954, 1983) as “iceberg transport costs” taking

up an idea originated in von Thünen (1930). Excellent surveys of this literature

(known under the heading of the new economic geography) are Fujita and Krug-

man (2004), Fujita et al. (2000), Neary (2001), Ottaviano and Thisse (2004) and

Schmutzler (1999). A usual interpretation of the iceberg transport cost in the so-

called New Economic Geography, is that it embodies information costs, institu-
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tional and trade barriers, quality standards, and cultural and linguistic differences1,

in addition to the pure transport costs (Ottaviano and Thisse, 2004; Fujita et al.,

1999).

A common technical feature of the iceberg and traditional transport technolo-

gies is that both give rise to a delivered price function convex with distance. How-

ever, empirical evidence points towards concave delivered price schemes rather

than convex with distance. This leads McCann (2005) to raise a warning against the

use of such transport costs functions to provide real-world insights as the properties

of such transport costs are largely implausible when compared with the available

empirical evidence. In this respect de Frutos et al. (2002) show that for any convex

transport cost function there exists a concave one such that the location-then-price

games induced by these functions are strategically equivalent. Our proposal also

overcomes McCann’s criticism as it is robust to concave and convex transport cost

functions.

A different approach to the use of iceberg transport cost functions follows

Krugman (1998) where the spatial iceberg assumption is considered as a pure tech-

nical device for avoiding the need to model a two-sector economy with a consump-

tion good industry and a transport industry. Following this line of reasoning, it can

be argued that the iceberg approach vis-a-vis the Hotelling approach in the mod-

eling of transport costs allows for an endogenous determination of the provision

of transportation services. Also, as the price of transportation per unit of distance

is assumed constant, implicitly it amounts to assume that the transport sector is

perfectly competitive. No empirical evidence supports such assumption. However,

as we will see, the technical simplicity of Hotelling analysis contrasts with the

complexity that the iceberg formulation introduces in the analysis.

We aim at providing a direct comparison of the “costs” and “benefits” of us-

ing both approaches in a common framework. Thus, we propose to study price

and location equilibria in a duopoly model à la Hotelling where transport costs are
1This interpretation of the iceberg formulation of transport costs may not be very rigorous. The

iceberg formulation implies that transport cost are dependent of the price of the transported com-
modity. It is not always easy to establish the link between some of those arguments and the price of
the transported good.
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modeled in the iceberg tradition. In this sense we want to contribute to the debate

between the modeling of transport costs in the spatial location and price competi-

tion models and in the new economic geography tradition.

Section 2 introduces the concepts of melting function and melting rate associ-

ated with the iceberg transport technology. It also clarifies the difference induced

in demand as compared to the traditional modeling of transport costs.

To illustrate our point, in section 3 we propose a monopoly and a general melt-

ing function. By assuming away competition, we can concentrate in the conse-

quences of modeling transports costs in the iceberg fashion. Next, we apply our

analysis to particular specifications of the melting function. The driving force be-

hind the results is that under the iceberg formulation, transportation is done by

oligopolistic producers. Accordingly, transport costs represent a transfer of re-

sources to the firms, thus inducing a more elastic demand. Should producers be

perfectly competitive, under the iceberg formulation each unit would be sold at a

price equal to the marginal cost of production. The transport cost would be equal

to the production costs of the units of commodity lost in transportation (i.e. melted

away). Thus, there would not be any transfer of resources to the firms.

Section 4 extends the analysis with an illustration of the effects of the melting

function approach in a competitive framework defined by a symmetric duopoly. In

section 5 we perform a welfare analysis where we take into account the role of the

resources devoted to transportation in the agents’ optimization behavior. A section

with conclusion closes the paper.

2 Melting vs. Transport Costs.

Let δ be the distance between consumer x and a firm and let µ ∈ (0, 1) be a

constant positively linked to the melting rate per unit of distance.2 We denote by

M(δ;µ) the rate at which the commodity melts away per unit of distance. Given

M(δ ;µ) we have to distinguish between the demand an individual addresses to

2A detailed analysis of the properties of the iceberg transport cost functions is found in McCann
(2005).
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a firm from his consumption. Denote by q(δ;µ) the quantity of the commodity a

consumer located at a distance δ of the firm needs to buy to consume exactly one

unit of the good. With this notation, we can formally define the melting rate M as,

M(δ;µ) =
∂q

∂δ

1
q
.

Definition 1 (Generalized melting function). A generalized melting function, h(δ;µ),

specifies the additional demand addressed by an individual located at a distance δ

from the firm to be able to consume one unit of the commodity. It is given by,

h(δ;µ) = q(δ;µ)− 1, (1)

where

h(δ;µ) > 0,
∂h

∂δ
> 0,

∂h

∂µ
> 0,

∂2h

∂δ2
≥ 0,

∂2h

∂µ2
≥ 0. (2)

Thus, the melting rate is given by,

M(δ;µ) =
∂h

∂δ

1
1 + h(δ;µ)

.

We could also think of specifying the melting as a function of the distance and the

amount of commodity transported. In this case we would have q(δ;µ)f(δ;µ)) =

q(δ;µ) − 1. However, we can rewrite this latter additional demand as the former

with h(δ;µ) =
f(δ;µ)

1− f(δ;µ)
. Therefore, both cases are formally equivalent.

To ease a proper understanding of the role of the melting in the modeling,

Figure 1 illustrates the standard transportation cost and the melting function ap-

proaches.

Consider the standard spatial model with convex transport costs. The unit price

at distance δ of the firm is given by P (δ; t, p) = p+ tδα, where p denotes the unit

f.o.b. price and α > 1. Note that in this case an increase in p translates in exactly

the same way to all consumers, i.e. the impact is positive but independent of δ. This

situation is depicted in part (a) of Figure 1 for a firm located in a and consumers

located between 0 and L.

The price paid by a consumer located at a distance δ of the firm is given, ac-

cording to the proposed general melting function, by P (δ;µ, p) = p(1 + h(δ;µ)).
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Figure 1: Delivered prices in a spatial model.

We observe that the impact on P (δ;µ, p) of an increase in p now is a positive

function of δ. That is,
∂2P (δ;µ, p)

∂p∂δ
> 0. Also, P (δ;µ, p) is increasing with δ.

Generically, this situation is presented in part (b) of Figure 1.

In the standard spatial model, a decrease in price increases demand because

the demand is downward sloping with respect to price. When transport costs are

modeled in the iceberg fashion, a decrease in price has an additional effect on

demand. Demand increases not only because it is negatively related to the price but

because the extra quantity demanded (“transport cost”) is also cheaper. Although

both approaches are not directly comparable, we can illustrate one difference by

saying that the iceberg transport technology induces a more elastic demand system

than the traditional Hotelling model.

Note that production and transportation are two different activities with differ-

ent technologies. Although independent, they are linked through consumers’ gross

demand. Firms use the same technology to produce all units of the good. However,

the additional demand due to melting depends on the transport technology and not

on the production technology.

3 Analysis of Monopoly.

Consider a spatial market described by a line segment of length L. Consumers are

evenly distributed on the market with unit density. They are identical in all respects
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but for their location. A consumer is denoted by x ∈ [0, L]. All consumers have a

common reservation price p. Consumers adjust their demands so that, if positive,

they consume exactly one unit of the commodity.

There is a monopolist in the market located at a distance a from the left end

of the market. It produces a homogeneous product with a constant returns to scale

technology represented by a constant marginal cost c. Assume, without loss of

generality a ≤ L/2.

The assumptions on h(δ;µ) given by (2), imply that the demand addressed by

consumer x given by (1), is a symmetric and increasing function around the firm’s

location and convex in both δ and µ.

The consumers indifferent between buying one unit from the monopolist or

stay out of the market (denote them by z ∈ [0, a] and y ∈ [a, L]) are given by the

solution of the following equations:

p
(
1 + h(a− z;µ)

)
= p = p

(
1 + h(y − a;µ)

)
. (3)

A direct inspection of (3), tells us that since
∂h

∂δ
> 0

a− z = y − a. (4)

In equilibrium, the consumers located at the extremes of the interval describing

the market covered by the monopolist must obtain no surplus.

If the monopolist charges a f.o.b. price p = p, it obtains zero demand re-

gardless of its location. For prices p < p, we can identify prices so that all the

market is covered, but it is also possible to identify prices leaving some consumers

unattended. In this case, for each of those prices there is a continuum of locations

yielding the same demand. Among them, there is always one such that the indiffer-

ent consumer x is located at zero. We can, thus, characterize the demand captured

by the monopolist by the set of consumers with its left bound at zero.

Demand addressed to the monopolist is given by,

D(p) =
∫ a

z

(
1 + h(a− w;µ)

)
dw +

∫ y

a

(
1 + h(w − a;µ)

)
dw

= 2(a− z) +H(a− z;µ) +H(y − a;µ)− 2H(0;µ),
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where we have made use of (4) and H(δ;µ) =
∫
h(δ;µ)dδ. From (4) it follows

H(a− x;µ) = H(y − a;µ) so that

D(p) = 2(a− z +H(a− z;µ)−H(0;µ)). (5)

The price that makes the consumer located at zero indifferent between buying

the commodity or staying out of the market is,

p̃(a) =
p

1 + h(a;µ)
=

p

q(δ, µ)
. (6)

Evaluating firm’s profits at p̃(a), we obtain,

Π(a) = 2(p̃(a)− c)
(
a+H(a;µ)−H(0;µ)

)
. (7)

Proposition 1. (i) The monopoly profit maximizing price is,

p̃(a) =
p

1 + h(a;µ)
.

(ii) A monopolist will cover all the market if, for all a ≤ L/2,(
1 + h(a;µ)

)2(1− c

p
(1 + h(a;µ))

)
≥ ∂h

∂δ
(a;µ)

(
a+H(a;µ)−H(0;µ)

)
.

Among all these locations, profits are maximum at a = L/2.

Proof. From (7) we derive

∂Π(a)
∂a

= 2p

(
1−

∂h

∂δ
(a;µ)(a+H(a;µ)−H(0;µ))

(1 + h(a;µ))2

)
− 2c(1 + h(a;µ)), (8)

This first order condition (8) is strictly positive for all a < L/2, and is equal to

zero at a = L/2

As particular cases of melting functions consider the following:

Definition 2 (Melting with Quantity and Distance: MQD). We say that melting is

MQD when it is proportional to the product of the quantity bought and the distance

traveled. Formally:

q(δ;µ)− µδq(δ;µ) = 1 (9)

and h(δ;µ) = µδ
1−µδ .
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Definition 3 (Melting with Distance: MD). We refer to MD melting as the situation

where the melting is proportional to a power (α) of the distance. Formally:

q(δ;µ)− µδα = 1 (10)

and h(δ;µ) = µδα.

Definition 4 (Krugman-Samuelson Melting: KSM). KSM is obtained wen the

melting rate is constant with h(δ;µ) = eµδ − 1 and

q(δ;µ) = eµδ (11)

As it is shown in Proposition 1 the greater p/c, the more likely will the mo-

nopolist locate at a = L
2 and cover all the market. In the following Corollary we

analyze the intensity of the preference of the monopolist for covering the market

when c = 0 in the particular melting functions introduced in definitions 2 to 4.3

Corollary 1. (i) Under MQD, the monopolist covers the whole market4 and

locates at its center iff
L

2
≤ e− 1

eµ

(ii) Under MD, the monopolist locates at the center and covers all the market if

α ≤ 2.

(iii) Under KSM, the monopolist locates at the center and covers all the market.

Proof. See appendix

4 Melting in oligopolistic markets

We now extend our analysis to the case of oligopolistic markets. We intend to

illustrate the effect of the iceberg transport approach in the study of oligopoly. We

retain the same model as in the monopoly case, but now we introduce competition

between two identical firms. We characterize transport costs by a MD-type melting
3Note that under MQD we have p̃(L

2
) > 0 ⇔ µL < 2. Hence, when µL > 2 coverage of

the whole market is not feasible. However, under MD or under Samuelson melting coverage of the
whole market is always feasible.

4Note that µL < 2 is a necessary condition to obtain full market coverage by the monopolist.
Note also that µL ≤ 2(e− 1)/e ≈ 1.264 is a more stringent condition for full market coverage.
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function. We assume that first firms decide simultaneously their locations and then,

they compete in prices by selecting simultaneously their mill prices.

To be precise, we introduce first the necessary notation.

Let L = 1 without loss of generality. Two firms a, and b are located at points

a and b where a ∈ [0, b). Let pa and pb denote their respective prices, and p̄ the

common reservation price for consumers. We assume p̄ to be high enough (but

finite) so that all consumers can afford purchasing from one of the firms (in other

words, the market is fully covered). Let α = 1 in the MD melting function5 and

µ > 0. Under the MD regime, the price paid by a consumer located at a distance δ

from firm i is given by pi(1 + µδ).

4.1 Indifferent consumers

To construct the contingent demand system, we will distinguish three regions in

the market and define their corresponding indifferent consumers. A first region is

given by the segment [0, a]. Denote an indifferent consumer in that region as x1.

The second region is the segment [a, b], ant the corresponding indifferent consumer

will be denoted as x2. Finally, the interval [b, 1] describes the third region and x3

denotes its indifferent consumer.

Indifferent consumer x1. A consumer in [0, a] is indifferent between patronizing

either firm if

pa(1 + µ(a− x)) = pb(1 + µ(b− x))

or

x1(pa, pb; a, b) =
pb(1 + µb)− pa(1 + µa)

µ(pb − pa)
∈ [0, a] (12)

Note that firm b may only capture consumers in firm a’s hinterland if pb <

pa. In turn, this implies that the denominator of (12) is negative. Therefore,

x1 is well-defined only if the numerator is also negative.
5We can develop the analysis for a concave transport function taking for instance α = 1/2

with analogous results. Namely, the firm quoting the lower price would be able to capture a non-
connected market share. In this respect our analysis is robust to McCann (2005) criticisms. Note
also that α = 1/2 corresponds to the transport cost function proposed in McCann (1993, 1998).
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Indifferent consumer x2. A consumer in [a, b] is indifferent between patronizing

either firm if

pa(1 + µ(x− a)) = pb(1 + µ(b− x))

or

x2(pa, pb; a, b) =
pb(1 + µb)− pa(1− µa)

µ(pb + pa)
∈ [a, b] (13)

Indifferent consumer x3. A consumer in [b, 1] is indifferent between patronizing

either firm if

pa(1 + µ(x− a)) = pb(1 + µ(x− b))

or

x3(pa, pb; a, b) =
−pb(1− µb) + pa(1− µa)

µ(pb − pa)
∈ [b, 1] (14)

Note that firm a may only capture consumers in firm b’s hinterland if pa <

pb.

To easy notation we will refer to the indifferent consumers as x1, x2, x3 when

such notation will not induce confusion.

Remark 1. Note that indifferent consumer functions are continuous at a and b.

That is,

x1|a = x2|a and x2|b = x3|b.

4.2 Firm a’s contingent demand

Before computing the contingent demand captured by firm a, let us identify four

critical prices.

Firm a will capture no demand at all when, given a certain price pb of firm b,

firm a calls a price pa such that x1 = a. Naturally, for even higher prices firm a

will remain inactive in the market. Let us denote such price as pmaxa . Its expression

is given by the solution of x1 = a, i.e.

pmaxa = pb(1 + µ(b− a)). (15)

Figure 2 illustrates this scenario.
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pb

pmax
a

0 1ba

Figure 2: Firm a captures no demand.

pb

p̂a

0 1ba x2

Figure 3: Firm a captures its hinterland.

As firm a lowers the price, it starts capturing consumers in the neighborhood of

its location a. Firm a captures all consumers in its hinterland when, given a certain

price pb of firm b, firm a calls a price pa such that x1 = 0. Let us denote such price

as p̂a. It is given by,

p̂a = pb
1 + µb

1 + µa
. (16)

Note that p̂a > pb. Figure 3 illustrates.

Further reductions of the price, allows to increase demand from consumers

located to the right to a. Also, at a price p̃a (given pb), firm a will start to capture

consumers in the hinterland of firm b. This price is given by the solution of x3 = 1,

and its expression is,

p̃a = pb
1 + µ(1− b)
1 + µ(1− a)

. (17)
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pb

p̃a

0 1ba x2

Figure 4: Firm a’s demand at p̃a.

pb

0 1ba

pmin
a

Figure 5: Firm a captures all the market.

Note that, p̃a < pb. Figure 4 illustrates.

Finally, firm a captures all consumers in the market when, given a certain price

pb of firm b, firm a calls a price pa such that x3 = b. Naturally, for even lower

prices firm a’s demand will not expand as all consumers are already patronizing it.

Let us denote such price as pmina . Its expression is given by the solution of x3 = 1,

i.e.

pmina = pb
1

1 + µ(b− a)
. (18)

Figure 5 illustrates.

To construct the (contingent) demand of firm a, lets us start by assuming that

it quotes a price pa ≥ pmaxa . Then,

Da(pa, pb) = 0, if pa ≥ pmaxa
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pb

pmax
a

p̂a

p̃a

0 1bax1 x2 x3

pmin
a

Figure 6: Constructing firm a’s contingent demand.

For prices below pmaxa , firm a starts capturing consumers on both sides. At p̂a,

it will capture all consumers in [0, a] (and, of course some more consumers to its

right). Therefore, the demand function in this domain of prices will be,

Da(pa, pb) =
∫ a

x1

(1 + µ(a− s))ds+
∫ x2

a
(1 + µ(s− a))ds, if pmaxa ≥ pa ≥ p̂a.

As firm a quotes prices lower than p̂a its demand expands from its right hand

side in [a, b] only up to the price p̃a. Therefore, for prices until p̃a demand is given

by,

Da(pa, pb) =
∫ a

0
(1 + µ(a− s))ds+

∫ x2

a
(1 + µ(s− a))ds, if p̂a ≥ pa ≥ p̃a.

From this point, lower prices allows firm a to start stealing consumers in firm b’s

hinterland, so that its demand will be given by

Da(pa, pb) =
∫ a

0
(1+µ(a−s))ds+

∫ x2

a
(1+µ(s−a))ds+

∫ 1

x3

(1+µ(s−a))ds, if p̃a ≥ pa ≥ pmina .

At pmina firm a captures all the market, so that further reductions of its price does

not contribute any revenues. Thus,

Da(pa, pb) =
∫ a

0
(1 + µ(a− s))ds+

∫ 1

a
(1 + µ(s− a))ds, if pa ≤ pmina

Figure 6 summarizes the discussion.
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Formally, the contingent demand of firm a is,

Da(pa, pb) =



0, if pa ≥ pmaxa∫ a
x1

(1 + µ(a− s))ds+
∫ x2

a (1 + µ(s− a))ds, if pmaxa ≥ pa ≥ p̂a∫ a
0 (1 + µ(a− s))ds+

∫ x2

a (1 + µ(s− a))ds, if p̂a ≥ pa ≥ p̃a∫ a
0 (1 + µ(a− s))ds+

∫ x2

a (1 + µ(s− a))ds
+
∫ x3

b (1 + µ(s− a))ds, if p̃a ≥ pa ≥ pmina∫ a
0 (1 + µ(a− s))ds+

∫ 1
a (1 + µ(s− a))ds, if pmina ≥ pa

(19)

It is straightforward to verify the continuity of this contingent demand from the

continuity of the indifferent consumer functions (see remark 1).

5 Characterizing a symmetric price equilibrium

Given the demand function just identified, if a symmetric equilibrium exists, it

must lie in the domain of prices (p̂a, p̃a). In this domain, the relevant piece of the

demand function is,

Da(pa, pb) =
∫ a

0
(1 + µ(a− s))ds+

∫ x2

a
(1 + µ(s− a))ds, if p̂a ≥ pa ≥ p̃a.

or

Da(pa, pb) = a+
a2µ

2
− (pa + (−1 + aµ− bµ)pb)(pa + (3− aµ+ bµ)pb)

2µ(pa + pb)2
(20)

Assuming without loss of generality that marginal production costs are constant

and denoted by c > 0 for both firms, firm a’s profits in the domain of prices

relevant to the analysis are

Πa(pa, pb) = (pa − c)Da(pa, pb)

= (pa − c)
(
a+

a2µ

2
− (pa + (−1 + aµ− bµ)pb)(pa + (3− aµ+ bµ)pb)

2µ(pa + pb)2
)

The first order condition is given by

∂Πa

∂pa
=

1
2µ(pa + pb)3

(
(p3
a + 3p2

apb)(a
2µ2 + 2aµ− 1)

+ pap
2
b(2a

2µ2 + 2aµ(5 + bµ)− b2µ2 − 4bµ− 7)

+ p2
b(2− aµ+ bµ)2c+ p3

b(2a
2µ2 − 2aµ(1 + bµ) + b2µ2 + 4bµ+ 3)

)
(21)
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Let us characterize a symmetric equilibrium in prices, pb = pa. Then, expres-

sion (21) simplifies to

∂Πa

∂pa

∣∣∣
pb=pa

=
c(2− aµ+ bµ)2

8paµ
+
a2µ2 + 2aµ− 1

2µ
,

so that the (candidate) equilibrium price is

p∗ = c
(2− aµ+ bµ)2

4(1− 2aµ− a2µ2)
(22)

Remark 2. The (candidate) symmetric equilibrium price is above the marginal

cost c.

Note that

(2− aµ+ bµ)2

4(1− 2aµ− a2µ2)
> 1⇐⇒ 4µ(a+ b) + 4a2µ2 + µ2(b− a)2 > 0

that is always verified.

Also, the symmetric candidate equilibrium price is well-defined if the denomi-

nator of (22) is positive.

Remark 3.

1− 2aµ− a2µ2 > 0 ⇐⇒ aµ <
√

2− 1 (23)

A sufficient condition to satisfy the condition in (23) for all values of a ∈ [0, 1]

is

µ <
√

2− 1.

Summarizing the discussion, we can state the following result,

Proposition 2. Let µ <
√

2 − 1. Then, there exists a unique symmetric price

equilibrium. It is given by

p∗ = c
(2− aµ+ bµ)2

4(1− 2aµ− a2µ2)
.

Note incidentally, that p∗ is increasing in µ.
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6 Location

We now tackle the first stage of the overall game dealing with the location choice of

the firms. By substituting the symmetric equilibrium price (22), into the profit func-

tions, we can express profits in terms of the location parameters a and b. Firm a’s

demand evaluated at the equilibrium price, using (5) becomes

Da(a, b) =
5a2µ+ 2a(2− bµ) + b(4 + bµ)

8
.

Also,

p− c = cµ
(5a2µ+ 2a(2− bµ) + b(4 + bµ)

4(1− 2aµ− a2µ2)

)
, (24)

so that firm a’s profits in the location (sub)game are given by

Πa(a, b) =
cµ(5a2µ+ 2a(2− bµ) + b(4 + bµ))2

32(1− 2aµ− a2µ2)
(25)

The first order condition after some simplifications can be written as

∂Πa

∂a
=
cµ(5a2µ+ 2a(2− bµ) + b(4 + bµ))Λ(a, b)

16(1− 2aµ+ a2µ2)2

where

Λ(a, b) = 4 + 2bµ+ b2µ2 − 15a2µ2 − 5a3µ3 + aµ(6 + 6bµ+ b2µ2)

Note that Λ(a, b) > 0, because given the restrictions on a and µ it follows that

6aµ > 5a3µ3, and

4 + 2bµ+ b2µ2 + aµ(6bµ+ b2µ2) > 15a2µ2

Using (24), we can write the first order condition as

∂Πa

∂a
=

(p− c)Λ(a, b)
4(1− 2aµ+ a2µ2)

.

The sign of this derivative is always positive. Therefore,

Proposition 3. The symmetric equilibrium price induces a symmetric location

around the center of the market.
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7 Conclusion

Address models of differentiation are characterized by the exogeneity of the trans-

port cost function. Implicitly, this amounts to assume that transport services are

delivered under perfectly competitive conditions. However, the market of trans-

portation often is oligopolistic. Also there are markets where transport costs are

dependent on demand such as the supply of electricity, or water. We propose to

approach this issue by using an iceberg transport cost technology. We show that

the iceberg transport technology induces a more elastic demand system than the

traditional Hotelling model. We propose to study price and location equilibria in

a duopoly model à la Hotelling where transport costs are modeled in the iceberg

fashion. In this sense we want to contribute to the debate between the modeling

of transport costs in the spatial location and price competition models and in the

new economic geography tradition. We characterize a symmetric price equilibrium

when melting is proportional to a power of distance. Then we show that a symmet-

ric equilibrium price induces a symmetric location around the center of the market,

thus reproducing the principle of minimum differentiation.

We argue that our analysis is robust to both concave and convex transport cost

functions. Also, it is easy to extend our analysis considering melting and traditional

transport cost functions together. In this sense, we could capture a competitive

transport market and a quality dimension by which higher quality products convey

higher transport costs. In other words, we would model the delivered price as

the combination of an ad valorem and a per unit component. An example of this

modeling could be p(1+µδα)+tδ. Note that this formulation implies that the slope

of the delivered price function increases in an amount equal to the transport cost

per unit of distance. Accordingly, our qualitative results would remain unchanged.
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Appendix

Proof of Corollary 1

i) Under MQD melting we have:

∂h(δ, µ)
∂δ

=
µ

(1− µδ)2

and

H(δ, µ) =
1
µ

(−µδ − ln(1− µδ)).

Hence,

(1 + h(a, µ))2 =
1

(1− µa)2

and
∂h(a, µ)
∂δ

(a+H(a, µ)−H(0, µ)) =
− ln(1− µa)

(1− µa)2
.

As ln(1− µa) < 0 and
d ln(1− µa)

da
< 0, if expression (8) in Proposition 1

holds for a = L
2 , it will also hold for a < L

2 .

Given that

1
(1− µL2 )2

>
− ln(1− µL2 )

(1− µL2 )2
⇔ e >

1
1− µL2

⇔ 2
e− 1
eµ

> L,

we obtain, from Proposition 1, the result.

ii) Under MD melting we have:

∂h(δ, µ)
∂δ

= µαδα−1

and

H(δ, µ) =
µδα+1

α+ 1
.

Hence, as

(1 + h(a, µ))2 = 1 + 2µaα + µ2a2α

and

∂h(a, µ)
∂δ

(a+H(a, µ)−H(0, µ)) = αµaα +
α

α+ 1
µ2a2α,

the inequality (8) in Proposition 1 holds for α ≤ 2. Accordingly, for α ≤ 2

the monopolist locates at the center and covers all the market.
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iii) Under Samuelson melting we have:

∂h(δ, µ)
∂δ

= µeµδ

and

H(δ, µ) =
eµδ

µ
− δ.

Hence, given that

(1 + h(a, µ))2 = e2µa

and
∂h(a, µ)
∂δ

.(a+H(a, µ)−H(0, µ)) = e2µa − eµa,

from Proposition 1 we obtain that the monopolist locates at the center and

covers all the market. �
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