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ON NONSINGULAR P-INJECTIVE RINGS
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Abstract

A ring R is said to be left p-injective if, for any principal left ideal
I of R, any left R-homomorphism I into R extends to one of R
into itself. In this note left nonsingular left p-injective rings are
characterized using their maximal left rings of quotients and the
structure of semiprime left p-injective rings of bounded index is
investigated.

A left R-module M is said to be p-injective if given any principal
left ideal I and any R-homomorphism o : I — M, there exists an
R-homomorphism & : R — M that extends ¢. This notion was first
introduced by Ikeda and Nakayama [8]. They proved that a ring R is
left p-injective if and only if every principal right ideal of R is a right
annihilator. In [11, Proposition 1], it was proved that a ring R without
nonzero nilpotent elements is von Neumann regular if and only if R is
left p-injective. However, in general, a semiprime left p-injective ring R
need not be von Neumann regular. In this note, we give a character-
ization of a left nonsingular left p-injective ring using its maximal left
ring of quotients and consider the structure of semiprime left p-injective
rings of bounded index. We also construct a semiprime left and right
p-injective PI-ring which is not von Neumann regular and a semiprime
left p-injective PI-ring which is not right p-injective.

For a subset F' of a ring R, rg(F) (resp. [gr(F)) denote the right
(resp. left) annihilator of F in R. To state our theorem, we need the
following definition.

Definition 1. Let R be a ring, and M a left R-module. A submodule
P of M is said to be R-pure if aM [P = aP for all a € R.
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Theorem 1. Let R be a left nonsingular ring and let Q denote the
mazimal left quotient ring of R. Then the following statements are eqi-
valent:

1) R is left p-injective.
2) rR is R-pure in rQ.

Proof: 1) = 2). Let a € R. By [4, Corollary 2.31], @ is a von Neumann
regular ring. Hence, there exists an idempotent e € @ such that aQ =
eQ. Then Ig(a) = lg(a) R = lg(eQ)NR = Q(1 —e)NR. By [8,
Theorem 1], the p-injectivity of rR implies that every principal right
ideal of R is a right annihilator ideal. Hence aR = rglg(a) = rr(Q(1 -
e)(NR) 2 eQR = aQR 2 aR. This proves aQ[ )R = aR for all
a€R.

2) = 1). Let @ € R. Then there exists an idempotent e € @ such that
aQ = eQ. First we claim that rg(Q(1 — e) (| R) = eQ [\ R. Clearly we
have that rr(Q(1 — ) R) 2 eQ( R. To prove the converse inclusion,
let b € rr(Q(1 — e)[\R). Since @ is the maximal left ring of quotients
of R, there exists an essential left ideal I of R such that I(1 —¢) C R.
Then I(1 — e)b = 0. Since rQ is nonsingular by [4, Proposition 2.32],
this implies (1 — e)b = 0. Therefore the converse inclusion also holds.
Then rglr(a) = rr(Q(1 —e)R) = eQ R = aQ[) R = aR, because
rR is R-pure in r@. By [8, Theorem 1], this implies the p-injectivity of
rE. 1R

A ring R is said to be of bounded index (of nilpotence) if there is a
positive integer n such that ¢ = 0 for each nilpotent element a of R.
If n is the least such integer we say R has index n. For example, it
is well known that any semiprime ring satisfying a polynomial identity
is of bounded index ([9, Theorem 10.8.2]). Recall that R is said to be
w-regular if for each element a of R, there exists a positive integer m
and an element z of R such that a™ = a™za™. On the other hand, R
is said to be strongly m-regular if for each element a of R, there exists
a positive integer k such that a*R = o**'R. By [2, Théoréme 1] this
definition is left-right symmetric, and hence such a ring is m-regular.
In particular, every nonnil one-sided ideal of a strongly w-regular ring
contains a nonzero idempotent.

Proposition 1. Let R be a semiprime p-injective ring of bounded
index. Then we have:

(1) R is a strongly m-regular ring.
(2) The mazimal left quotient ring Q of R is a finite direct product of
matriz rings over strongly regular self-injective rings.
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Proof: Let R is of index n and let a € R. Then Ig(a") = lg(a™*?)
by [5, Proposition 2]. Hence we have a"R = rglg(a™) = rglg(a™*?) =
a™t1R. This proves that R is a strongly m-regular ring. Since R is a
semiprime ring of bounded index, by virtue of [6, Lemma 1.1], every
nonzero one-sided ideal of R contains a nonzero idempotent. Hence, the
assertion (2) follows from [5, Theorem 9 and (2) in Remarks]. B

Assume that R is a left p-injective ring without nonzero nilpotent
elements. Then, by Proposition 1, R is a strongly w-regular ring of
index 1, that is, R is a strongly regular ring. Hence we obtain [11,
Proposition 1]. Also we have the following

Corollary 1. Let R be a semiprime p-injective ring of bounded indez.
Then R is von Neumann regular if and only if the union of any chain of
semiprime ideals of R is a semiprime ideal. In consequence, a semiprime
p-injective ring R which is finitely generated as a module over its center
1is von Neumann regular.

Proof: By Proposition 1, R is strongly w-regular, and so every prime
factor ring of R is regular by (7, Proposition 2]. Now the result follows
from [3, Theorem 1.1]. If R is finitely genereted over its center, then R
satisfies a polynomial identity, and hence R is of bounded index. Also,
by the proof of [1, Theorem 1], we know that the union of any chain of
semiprime ideals of R is a semiprime ideal of R. W

Now we shall generalize the construction technique of semiprime rings
used in [10].

Definition 2. Let S be a ring and let 7" be a subring of §. For an
infinite set I, (S|T')! denotes the subring of the direct product S of I'’s
copies of S consisting of all s = (s;), for which s; € T for all but a finite
number of i € I. (S|T)) denotes the subring of S’ consisting of all
s = (s;), for which s; = ¢t for some ¢t € T for all but a finite number of
i€l

Lemma 1. Let S be a semisimple Artinian ring, and let I be an
infinite set. Let R be a subring of ST containing S, the direct sum of
I'’s copies of S. Then R is a nonsingular semiprime ring and its mazimal
left quotient ring Q is ST.

Proof: Let a = S). Clearly a is an ideal of both R and ST. It is
easy to see that bab # 0 for any nonzero b € R. Hence R is a semiprime
ring. Clearly R is of bounded index. Hence, by [5, Proposition 4], the
semiprime ring R of bounded index is a left (and right) nonsingular ring.
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Let K be a nonzero submodule of pS?. Then we can easily see that
0# aK C KNR. Hence ST is an essential extension of gR. Clearly S*
is a regular, left self-injective ring. Hence, by [4, Proposition 2.11 and
Corollary 2.31], we conclude that @ = S7. m

Proposition 2. Let S be a semisimple Artinian ring, let T be a sub-
ring of S and let I be an infinite set. Then the following statements are
equivalent:

1) (S|T)! is a left p-injective ring.
2) (SIT)D) is a left p-injective ring.
3) rT is T-pure in 7S.

Proof: 1) < 3). Let R = (S|T)!. By Lemma 1, the maximal left
ring Q of quotients of R is S7. Assume first that 77 is T-pure in 75.
Let (a;) € R and let (¢;) € (a;)Q(R. Then (¢;) = (a;)(b;) for some
(b;) € Q. By the definition of R, there exist %1,12,... ,%, € I such that
a;,c; € T for all 1 € I — {iy,%2,...,in}. Since ¢T is T-pure in 75,
we have ¢; € ;ST = ;T for all i € I — {iy,43,... ,i,}. Hence we
can write ¢; = a;d; with some d; € T for each i € I — {iy,i2,... ,in}.
Now define (z;) by z; = b; for ¢ = 41,142,... ,in and z; = d; for each
i€ I—{i1,ig,... ,in}. Then (z;) € R, and hence (¢;) = (a:)(z:) € (a;)R.
This proves that pR is R-pure in gQ. Hence R is left p-injective by
Theorem 1.

Conversely, assume that R is left p-injective. Take an arbitrary a € T
and set a; = a for all i. Then, by Theorem 1, we have (a;)QNR = (a;)R.
Now, let as € aSNT where s € S, and set s; = s for all . Then
(@:)(s:i) € (a;))Q N R = (a;)R. Hence there exists (¢;) € R such that
(ai)(s:i) = (a;)(¢;). By the definition of R, ¢; € T for almost all 7. So,
let ay € T. Then as = aay € aT. This proves that aSNT = aT for all
a € T. Therefore vT is T-pure in 75.

The proof of 2) <= 3) is quite similar to that of 1) <= 3), and so we
omit it. M

The following example shows that a semiprime right and left p-injective
ring satisfying a polynomial identity need not be von Neumann regular.

Example 1. Let K be a field and let T" be the subring of the n x n
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full matrix ring M, (K') over K consisting of all matrices of the form

a a2 ... ... Qp

(5] ag

a
O a1

with ay,a2,...,a, € K. Then 7T is T-pure in 7 M, (K). In fact, let

A be the matrix in (0.1) and assume that a; = a3 = -+ = ap,; = 0
Cc1 ... Cn
and a,, # 0. Suppose that AB = ..+ | €T for some B €
C1
M,(K). Then we can write
1

Qm ... Gn\ Cm ... Cp dyn ... dy

0o o) lo o) lo s

in My _my1(K) with dp, ... ,d, € K. Therefore if we set

dn ... dn 0

dm
X = - .. dn ’

0 o

then X € T 'and AB = AX. Thus 7T is T-pure in 7 M,,(K). Similarly we
can prove that Tr is T-pure in M,(K)7. By Proposition 2, (M, (K)|T)N
and (M, (K)|T)™) are semiprime right and left p-injective rings satisfy-
ing a polynomial identity. However, we can easily see that these are not
von Neumann regular for n > 2.

The following example shows that a semiprime left p-injective ring
satisfying a polynomial identity need not be right p-injective.

Example 2. Let K be a field and consider the subring

T={ | a,b,c€ K}

o oQ
o8 o
82 OO
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0 00
of M3(K). Let A = and B= |0 1 0]. Thenitis
0 00
easy to see that BA € TN M3(K)A, but BA ¢ TA. Hence Tr is not
T-pure in M3(K)r. Next, suppose that AX = B € T with A € T
and X € M3(K). If det(A) # 0, then X = A~'B € T. So, assume that
det(A) = 0 and let & be the (1,1)-component of X. Then we can easily see
that B = A(zE) € AT, where E denotes the identity matrix in M3(K).
Thus, AM3(K)NT = AT. This implies vT is T-pure in +M3(K). By
Proposition 2, semiprime Pl-rings (M3(K)|T)N and (M3(K)|T)™) are
left p-injective, but not right p-injective.
The following shows that there are semiprime 7-regular PI-rings which
are neither right nor left p-injective.

Example 3. Let K be a field and let T be the algebra of upper
triangular n X n matrices over K, where n > 1. Then 1T is not T-pure
in 7 M,(K). In fact, if {e;;} denotes the set of matrix units of M,(K),
then e1, M (K)NT = Key; + --- + Keyn # Keyn = e1,T. Hence,
by Proposition 2, (M, (K)|T)N and (M, (K)|T)™) are neither right p-
injective nor left p-injective. However we can easily see that these are
semiprime m-regular rings.
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