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PIERROT'S THEOREM
FOR SINGULAR RIEMANIAN FOLIATIONS

ROBERT A . WOLAK

Abstract	
Let .T be a singular Riemannian foliation on a compact connecte d
Riemannian manifold M . We demonstrate that global foliate d
vector fields generate a distribution tangent to the strata defined
by the closures of leaves of .~ and which, in each stratum, is trans-
verse to these closures of leaves .

The aim of this short note is to prove M. Pierrot's theorem for singular
Riemanian foliations, cf. [5], namely.

Theorem 1. Let F be an SRF on a compact manifold M . Then the
vector space of global foliated vector fields is transitive to the closures of
leaves in each closure stratum .

1. Preliminaries

First we recall some and prove other results about SRF -s (singular
Riemannian foliations), cf . [3] and [4] .

Assume that the manifold M is compact and connected (or the metri c
is complete) . Then the closure of any leaf is a submanifold .

Let k be any number between o and n. Define

Ek ={xEM :xEdimL, = k} .

The leaves of ,1 ' is Ek are of the same dimension, however they can
have holonomy . P. Molino demonstrated that the sets Ek or rather thei r
connected components are submanifolds of M and C U i<k Ei . Note
that for some i the sets Ei can be empty. Moreover, let ko be the
maximum dimension of leaves of F. Then the set Eh is open and dense
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in M. It is the principal stratum . In fact, the partition {Ek }ó is an
abstract stratification .

Let W be a compact submanifold of M. The geodesics define the
exponential mapping exp : N(W) ~ M. Denote by Sr (W) = {v E
N(W) : il v il = r} (resp . Dr(W) _ {v E N(W) : Ç r}) and by
S (W, r ) (resp . D (W, r )} its image by exp . If W is a closed leaf or
the closure of a stratum then it is not difficult to notice that leaves of
the foliation F live on S(W, r), cf . [3], [4] . Moreover, the homotethie s
(along the geodesics) ha : D(W, r) --~ D(W, I a i r ), ha(exp(v)} = exp(ñv)
preserve the foliation . The leaf passing through exp(v) has the same
dimension and holonomy as the leaf passing through exp(av) .

Connected components of Ei are submanifolds of M. They can be of
different codimension and it can happen that some connected component
of Ei is a compact submanifold . Since the foliation is Riemannian the
closure of a leaf from a stratum Ei remains in it . In fact, let OEi = VI U
• • • U 14 where Us—, V$ _ Ei — E i, each VS being a connected submanifold
of M . I n 1 tubular neighbourhood of Vs leaves of live on the sphere
bundies 5(V5, r) . Thus if L C S (Vs , r) , so does .its closure 1. Therefore
for all our purposes the foliation FIEi behaves like a RF on a compac t
manifold . Therefore we can define the subspaces

Eii = {xEE i :xELE .~, dimL= j} .

Each Ei.7 is a submanifold of ~i and OE i3o C U5<z Es U<0 E . The
closures of leaves of F induce a regular RF

	

of compact leaves on
Ei3 . The leaves of have finite holonomy. Using the exponential
mapping restricted to the normal bundle of a leaf one easily learns that
the holonomy of a leaf is conjugated to the linear holonomy of this leaf.
The linear holonomy is a finite subgroup of the linear orthogonal group .
The linear holonomy groups h(L, x) at different points x of a given leaf L
are conjugated ; let us denote this conjugacy class by h (L ) . If a denotes
a conjugacy class of a subgroup of the linear orthogonal group then let
E i_jrx = {x E E ii :xE L Eh(L) =a} .

In [5] M. Pierrot uses a slightly rougher stratification for regular RFs,
namely

EPik ={xELEF :dimL= j,#h(L,x) =k}

where p = dim .~, and the holonomy is considered in the stratum Ej .
However, in a tubular neighbourhood of a compact leaf L, the foliation
by the closures of leaves, is conjugated to the natural foliation of the fiat
bundle L xG R s where G is the lipear holonomy group of the leaf L and
s = codimEi L . It is not difficult to notice that in these tubular neigh-

bourhoods leaves of ,J ' have their linear holonomy groups conjugated to
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a subgroup of G. It means that for any a, G E a, #G = k Epio, c Epik

and the submanifolds Epik are separated. If Epia and Epo are two such
sets then the lemma concerning the homotethies, cf. [3], [4], ensures
that Epia n E po = O . Therefore connected components of Epic, are also
connected components of Ep ik . Thus connected components of these sets
define the same stratification {E.} . The stratification {E} possesses a
natural partial arder

Ey Ç

	

iff El, c ~.~~ .

The strata defined aboye we call the closure strata of the foliation .F to
distinguish them from the strata defined by the dimension of leaves .

In [3], [4] P. Molino describes a way of desingularization of SRFs .
Let E be a minimal stratum . E is a closed submanifold . Let N(E)
be the normal bundle of E . Leaves of .~ also live on sphere bundles
5 (E, r) over E. Take M° = (M — E) x {0}, M 1 = (M — E) x {1} and
S = S (E, r ) x (—1, 1) for some r ~ 0 . Then M° , mi and S glue together
to become a compact manifold M1 , i .e . 5 (E, r) x {t} is identified wit h
5 (E,i t ir ) x {0} CM° ift C OandwithS(E,itlr) x {1} CM 1 ift~ 0 .
M1 pro jects onto M, p : M1 --} M. Over M — E p is a double covering
and p' (E) = 5 (E, r) .

P. Molino proves that on M1 there exists an SRF

	

which does no t
have leaves of the type encountered in E, and including the old foliation

on M° and M 1 . After a finite number of steps we get a regular
Riemannian foliation on a compact manifold 1% .

Using the exponential mapping it is quite easy to prove a following
lemma.

Lemma 1 . For any 0 < S1 < 62 < E there exists a basic smooth
function

a(5 1 , s 2 ) : D(E, E) -> [0 = 1]

such that supp )i(6 1 , S2 ) c D (E, 62) and a(61 , S2) 1 D (E, S1} = 1 .

In our future considerations we shall need the following relations be-
tween basic functions on the foliated manifolds (M, ,F) and

Lemma 2. Let f be a basic function on (M1 , .F1 ) . Then for any point
x E M° there exists a foliated neighbourhood U of x in M° and a basic
function fu on (M, ,F) such that fuplU = f¡U .

Proof: The set D(E, E) — E = D°(E, e) can be considered as (via p )
an open subset of m° . Therefore we have to consider two cases : (a)
x D°(E, E) and (b) x E D°(E, E) .
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In the case (a) as U we can take M --- D(E, 62), 0 < 62 C E and as fu
the function

f (z)

	

z D° (E, E)

(1 --- (61,62))f(z) z E D° (E , E), o C S 1 < 62

1 f(z) = o

	

z E E .

In the case (b) let x E S (E, r), o < r Ç E . Then we take U =
M — D(E, r/2) and define the function as in the case (a) taking o < S1 <

52 C r/2 . ■

Lemma 3. Let f be a basic function on the foliated manifold (M ,

Then for any point x ofM---E there exists an open foliated neighbourhood

U of x in M — E and a basic function fu on (M1 , .F1 ) such that f i Up =

fuI M° rlp-1 (U) .

Proof: It is analogous to that of Lemma 2 . Using this construction

we obtain a basic function fu with compact support on (M°, Y'i ) ; we
extend it to M1 putting 0 on E and W . ■

Let us recail the definition of the `musical ' isomorphism, for example
cf . [1} .

b :TM —1 T*M

is given by : for X E TMxXI' is the only 1-form such that

g(X, Y) = Xb (Y) for any Y E TM~ .

# :T *M ---+ TM

for any w E T*Ms w ~ is the only vector for such that

g(w# , Y) = w(Y) far any Y E TM~ .

Therefore to any function f on M we associate a vector field xf by the
formula

g(Xf , Y) = df(Y) for any Y E TM or X(x) _ (df) .

Now we shall study the properties of vector fields associated to basi c
functions. First let us notice that for any basic function f the vector
field Xf is orthogonal to the leaves of the foliation. Moreover if the
function f is global the vector field X f is orthogonal to the closures of
leaves .

Lemma 4. If f is a basic function then the vector fLeld Xf is an
infinitesimal automorphism of the foliation .

The proof is a straightforward calculation .
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2. Regular case

Let .F be an RF . We shall look at the existence of global basic func-
tions . Denote XO (M, .F) the vector space of global vector fields of the
form x f for some global basic function f on (M, .F} .

The closures of leaves form an SRF and we can consider strata for
this foliation, cf. [5] . These strata are just our closure strata for .F as .F
being regular we have just the principal stratum for this foliation . It is
obvious that global infinitesimal automorphisms must be tangent to the
closure strata. Let E be one of these strata .

Lemma 5. For any vector X E TE S orthogonal to the closure S of

the leaf L in E passing through x, there exists a global basic function f
such that df (X) 0 .

Proof: There exists e > o such that the mapping exps : BE (X) –~ M
is an embedding . Then there is a leaf L' , with the closure S' , of the same
stratum E on the geodesic with the initial condition X at the distance
less than E such that the mapping exps, : B(8') ~ M is an embedding ,
cf. [2] . Then the function fs► (y) -= d (y, S')' is a smooth basic function
on exps► (BE (S' } } for which dfS ► (X) O . f s, can be easily extended to
a global basic function . ■

Combining Lemmas 4 and 5 we get the following proposition which ,
in fact, is a variant of the theorem due to M. Pierrot, cf. [5] .

Proposition 1 . Let (M, .F) be a compact foliated manifold with F
being a regular RF. Then the vector space X # (M, .F) is transitive to the

closures of leaves in each closure stratum .

3. Singular case

Now let ,F be an SRF on M. First we prove the singular version o f
Lemma 5 .

Lemma 6 . Let (M, .F) be a compact foliated manifold with ,F being
an SRF. Let E be a closure stratum of .F . For any vector X E TEx
orthogonal to the closure S of the leaf L passing through x there exists a

basic function f such that df(X) O.

Proof: Using the blowing up procedure and Lemma 2 we can reduce
our considerations to the case where the point x belongs to the singular
stratum Eo of the foliation F. Thus E is a submanifold of Eo and a
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closure stratum of (Eo, .~} which is compact RM. Therefore according to
Lemma 5 there exists a basic function fe on Eo such that dfo (X) O .
According to the next lemma this basic function can be easily extended
to a global basic function on (M, F) . ■

Lemma 7 . Any basic function on a stratum E can be extended to a
global basic function on M .

Proof: Since the pro jection p : B (E, E) -4 E maps leaves onto leaves ,
for any basic function f on E, the function f p is basic on B (E, 6) . Then
using a function A(6 1 ,62) we can extend f p to a global basic function on
(M,F). m

Far vectors which are not tangent to strata we have the followin g
lemma .

Lemma S . Let .~ be an SRF on a compact manifold M . If a vector
field X is not tangent to the closure of a leaf L at a point x, then there
exists a global basic function f such that the germ at x of the functio n
df (X) is not O .

Proa. Let S be the closure of the leaf L. It is a compact submanifol d
of M. Let N(S) be its normal bundle . Far some E > o the exponential
mapping defined by the geodesics starting from vectors of N(S) is a
diffeomorphisms of B,(S) {v E N(S) : C E} onto the image
B(S, E), cf. [4] . Using a similar method as in Lemma 2 we can extend
any basic function on B(S, E) to a global one. Therefore we have reduce d
our problem to a local one . Then t he function

My } = d(L, y ) 2
satisfies the conditions of the lemma . ■

4. Proof of Theorem 1

Let x be any point of a closure stratum E . Let V be the subspace
of TxE orthogonal to TsS, S = L s . We know that for any global basic
function fXl E V. Lemma 6 ensures that there does not exist a vector in
V which is orthogonal to all Xle . It means precisely that SPAN{XD =
V. Therefore we have proved the following theorem :

Theorem 2 . Let M be a compact connected manifold and .~ be an
SRF on M . Then the vector space XO (M, ..1'} is transitive to the closure s
of leaves in each closure stratum of (1V1,

	

.

Of course Theorem 2 is just a more detailed version of Theorem 1 .
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