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EXISTENCE AND UNIQUENES S
OF SOLUTIONS FOR A DEGENERATE
QUASILINEAR PARABOLIC PROBLE M

MAURIZIO BADI I

Abstract
We consider the following quasilinear parabolic equation of degen-
erate type with convection term ut = cp(u)xx + b(u)x in (—L, O) x
(Q, T) . We solve the associate initial-boundary data problem, wit h
nonlinear flux conditions . This problem, describes the evaporatio n
of an incompressible fluid from a homogeneous porous media. The
nonlinear condition in x = O, means that the flow of fluid leaving
the porous media depends on variable meteorological conditions
and in a nonlinear manner on u. In x = —L, we have an imper-
vious boundary . Far a sufficiently smooth initial data, one proves
the existence and uniqueness of the global strong solution in th e
class of bounded variation functions .

1 . IntroduGtion

In this paper we study the existence and uniqueness of solutions fo r
the following degenerate quasilinear parabolic proble m

(1) ut = cp(u)xx +b(u)m ,

	

in (—L, 0) x (O,T)

(2) cp(u(0, t)) x + b(u(O,t)) _ —v(u(0, t))q(t), for t E (O,T )

(3) cp(u(—L, t))x + b(u(—L, t)) = O,

	

for t E (O, T)

(4) u(x, O) = uo(x),

	

in (—L, O) .

Partially supported by G.N.A .F .A .-C .N .R. and M .U .R .S .T. 40% .
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Throughout the remainder of the paper we shall assume that the fol-
lowing hypothesis are satisfied

~pECI([0,1]}, {p(0) =cp'(0) =0andcp '(s) > 0fors ~0and

(H9)1 _1cp is Holder continuous of order 0 E (0,1 ) ;

(Ha) b E C°' 1 ([0, 1]), b(0) = 0 and IÇ pise ;

(Hv)
v : [0,1] --~ [0,1] is continuous, increasing with

v(0) = 0 and v(1) = 1 ;

(Hq ) d t E [0, T] , q(t) ~ 0 is continuous and nonincreasing ;

(Ho) uo E H 1 ( —L, 0), 0 ç uo(x) Ç 1, Vx E [ —L, 0] .

Problem (1)-(4) describes the evaporation of a homogeneous, incom-
pressible fluid from a homogeneous, isotropic and rigid soil, with variabl e
meteorological conditions . In x = 0 the nonlinear condition of Fourier-
Robin means that the flow of water leaving the soil, vanishes for u = 0
while assume its maximal value when u is maximal . Between these val-
ues, the flow of water depends in a nonlinear manner on u and with a
q(t) which represents variable meteorological conditions . Assumption (3)
means an impervious boundary.

Equation (1) is a useful model in many different applications as, for
instance, the flow of groundwater in a homogeneous, isotropic, rigid, and
unsaturated porous medium. If we choose the coordinate x to measure
the vertical height from ground level and pointing upward, the soil i s
represented by the vertical column (—L, O) .

If 9(x, t) denotes the moisture content, defined as the volume of wate r
present per unit volume of soil and v (x, t) is the seepage velocity of
the water, the law by which fluid flows through porous media can be
described, was found by Darcy experimentally and is given by

( 5 )

	

v = —k(B) .D s

and the continuity equation

(s) 0t +vs -0. °

In (5), k(0) is the hydraulic conductivity of soil and ~ is the total po-
tential . When absorption and chimical osmotic and thermal effect are
negligible, the total potential may be expressed as (I) = 0(B ) + x, where
0(0) is the hydrostatic potential due to capillary suction. Combining
both equations (5), (S), we obtain

(7 )

	

Bt = (k(0)'¿Po(8)Bs + k(0)}s = (D(0)05 + k(0)}s
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where D(9) := k(0)00 (9) denotes the soil moisture diffusivity .

By defining cp (s) := jó D(r) dr and b(s) :_ k(s), (7) yields (1) .

In problem (1)-(4), u denotes the saturation of soil, for this we require
the condition u > O .

In the present paper, we prove the existence and uniqueness of solu-
tion for (1)-(4), considering at first a quasilinear parabolic problem of
nondegenerate type, approximating problem (1)-(4) .

This nondegenerate problem is obtained adding a so called "artifi-
cial viscosity" term, substituting Sp with cp + 1/k, k E N in (1) . The
nondegenerate problem, is studied using a semi-discretization scheme in
the time . One proves the existence and uniqueness of solution for
the approximate problem . Existence of solution u for (1)-(4) is then
proved, going to the limit for k ~ oo. For this reason, we look for
estimates which are independent of k . With the assumption (u0 ) x +
b(uo) E BV(—L, O), we prove the existence of solution u far (1)-(4) in the
B V (0, Ti Ll ( —L, 0} } spaces . Finally, we prove the uniqueness of solution
for (1)-(4), with the further assumption that ó((,p W l } is Holder contin-
uous of order 1/2 draw our inspiration from [6] where is proved the
uniqueness of a bounded variational solution for a nonlinear degenerat e
diffusion-convection variational inequality connected to an oil engineer-
ing problem . In [2], [11] is studied a nonlinear parabolic problem, with

a nonlinear integro-differential term and with nonlinear boundary candi-

tions. This authors, prove the uniqueness of solution in the class of BV
functions . We remember also [1] and [7] .

Related work, although rather different, can be found in [5] and [10 ]
and references given therein .

2. Existence of solutions far an approximate problem

In the following, we denote with BV(O, T) the space of functions u such
that are locally integrable on (0, T) and whose generalized derivativa is an
integrable measure of Radon on (0, T) . Far more details on BV spaces ,
see [10] .

Let V := H1 (—L, O) and V' its dual space, we denote with ( ., .) both
the pairing of duality V', V and the usual inner product in L2(-L, 0) .
The inner product in V is defined by (u, v) 1 = (u, v) + (u, vx) .

By Sobolev's embedding Theorem, V c C( [--L, 0] ), with continuous
injection .

Definition 1 . For a strong solution of (1)-(4) on (0, T), we mean a
function u E BV(O, T ; Lx (—L, o)} f-1 L°°(QT) , 0 Ç u(x,t) Ç 1 a.a. on
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QT := (—L, 0) x (O, T), such that u t E L Z (O, T ; V' ), cp(u) E H 1 (QT ) n
L O °(QT ), u(x, 0) = uo(x), a .a . on (—L, 0) and

fo t

(u s ,v) ds + J t v(u(O,$))q(s)v(O,$) ds
0t o

o J -
L (t.p(u) x + b(u))vx dx ds = O ,

(8 )

for any v E L 2 (0, T ; V) and for all t E (0,T) .

To prove the existence of solutions far (1)-(4), we consider a semi-
discretized scheme . Divide [o, T] in steps of ugual length h = qt = T/N,

N
N E N (discretization time step) so, [0, T] = U [(n — 1)h, nh] .

?7,= 1

Now, we consider an approximation of u at time nh defining u n (x) :=

u(x, nh) . Set gn := (1/h) f1)h q(t) dt and 0 k (r) := (r)+r/k, dk E N .

Since

	

( • ) is an increasing function, there exists ç 1 ( . ) .

It is not a priori known that solution u is in [0,1], therefore we conside r
the continuations on all IR f), (,p, b, respectively of v, ço and b, defining
Ks) = b(s) .= p(s) o for s Ç o and v (s ) = v(1), b(s) = b(1), (,«s) =
ço(1 ) for s ~ 1 . Now, we can resolve the following

Problem (Pa) :

Let uo be given such that 0 Ç u 0 (x) Ç 1, a.a . in (----L, 0 ) . To find
uZ E V, d n ~ 1 solution of the nonlinear elliptic equatio n

0
(1/h)(uZ — uk—1 , v) + v~7dk(0 ))Q'nv(0 ) + f

	

(uvx dx
L

o

	

o
+(1 /k) f u~xvx dx~- f b(uZ)vx dx = 0, V v E V, n = 1, 2, . . . , N-- 1

L

	

L

o7.L k = uo .

The solution of (Pa ) is based oil the solution of the following nonline
equation

ar

Equation (Pa ) :
To find ,zk E V, such that

µ(zk , v) + v(zk (0))gkv(0) + J o cp(z k ) xvx dx -~ (l/k)
J

~ zkxvx dx
L

	

L
0/'

+ J b(zk )vx dx = (g, v), bv E V, µ > 0, g E LZ (—L,
—L

O) .
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Proposition 1 . If (H,p), (Hb), (H„) hold, there exists a solution z k E
V of equation (PS ) .

Proof: The existence of solution, is proved by Schauder's fixed poin t
Theorem . ■

Proposition 2. lf (H(p ) , (Hb ), (Ho ) hold, there exists a so lution u l E
V for problem (Pa ) .

Proof: Solved equation (Pa ), it is possible to resolve problem (Pa ) by
recurrence with respect to n . ■

We show some properties of solutions uZ .

Proposition 3 . Let uo be given with 0 < uo(x) < 1, a . a . in (—L, 0 )
and (H(p ), (Hb ), (H„) hold, then u¡~ are nonnegative on [—L, 0] .

Proof: We proceed by recurrence . We consider

¡0
(9) (1/h)('i4 — uo,v) + v(uk(0))g lv(0) + J cí«u lk )sv x dx

L

	

f0

	

¡0
+ (1/k) J uk x vx dx + J b(uk)vx dx = 0

	

L

	

L

and choose v = (ui)— , one has

(10) (1/h)(4 — uo,(u))) + Kuk(0))41(u '', ( 0 ) )
0

	

0

	

f 0+f

	

(u(u); C~x~-(1/k) f ukx(ullc)x C1~x+
J

	

(u)(u); dx = 0 .
L

	

L

	

L

Now, v(uk(0))gl(uk(0))—

	

0, thus (10) give s

(11) — (1/h)f24 2 dx — (i/k)f

	

lu~ x 1 2 dx
u~ <o~uk <o]

—(1/h)

	

uouk dx
< o ]

that is a contradiction . Hence, u~ > o and by recurrence one proves that
u~ > o in [—L, O] . ■

In the following Proposition, we use a Lipschitz increasing approxima--
tion of the function of Heaviside, which is well posed with respect to the
following assumption

(12)

	

I — 6(k- l ( s ))I < cIs — s 1 1 / 2 .



332

	

M. BADI I

Proposition 4 . With assumptions (Hy,), (14), (H„) and (12), prob-
lem (Pn ) has a unique solution.

Proof: It is sufficient to prove the uniqueness of 24 . Let uk, 111 b e
solutions of problem (PI ) . We define

0,

	

ifw<e< 1
(13)

	

s E (w)
= 1 — log w/ log e, if 0 < e < w

where w :_ O k (2Gk ) — Cpk(ú k ) •

(14) (1/h)(uk — uk~ se(w )) + (~(u(0)) — v Cú% (0)))91s,(w(0))

—(1/loge)f

	

(w 2 /w) dx
w>e ]

= (1/loge)f

	

(((u) —(ú))(wk/w) dx
w>E]

(—c/L/loge) f

	

(I w I 2 /w ) dx
w>e]

for (12) and the inequality of Holder .

Since, (— ú¡~, s E (w)) > 0 and (~(u(0)) — v(f4(0)))g 1 sE(w(0)) > 0
because of the monotonicity of v( . ), we have

(15) (_1/Ioge)f

	

( I w 2/)dx
w> e]

(—clL/ log (Iws I 2 /w) dxf
w>e ]

which implies

(16) (l w .I 2/w) < c2 L .fw>e]

Going to the limit as e —÷ o in (14), since s,(w) --} sgn+ w and because
of (16), one has

- 1 )+dx � O .
~L

Thus, the claim holds . ■

(17)
Vo
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Now we specialize the choice of uo, assuming tha t

uo E V, 0 < uo(x) 1, t/x E [–L, 0] : cp(up) E V

(18) satisfies the conditio n

0

	

¡0
0k(uo)x v x dx + J b(uo)vx dx > 0, dv E V

L

	

L

with v(x) > 0 in [–L, 0] .

Then we obtain :

Proposition 5. I,f (H,), (Hb ), (HU ) , (12) and (18) hold and g'
qi, i = 1,2, . . .,1V – 1, then

(19) ul(x) u kn—l (x)

	

uo(x), vx E [—L, o] .

Proof We proceed by recurrente .

(20) (1/h)(u) – uo,v) + v~~k(0))91v(0 )

+ f Ok (u~)xvx dx + J ~ b (u k )vx dx = 0.
L

	

L

Subtracting (18) by (20), we obtain for v = sf(w), s f (w) as in (13), and
w :_ 0k(u1) – 0k(u0)

(21) (1/h)(?4 uo, SE(w)) + v(ul(0))91SE(w (0 ) )

– (1/loge)f

	

( iwI2 /w) dx
w>e]

< (–1/ IogE) f

	

(((U) – (u))(w/w) dx .
w>e)

Arguing as in Proposition 4 and going to the límit for s -> 0, one has

(22) ulk (x) < uo(x), Vx E [–L,0] .

Now ,

(23) (l/h)(uk — uk, v) + V(uk(0))g2v (0)
¡0

	

¡0
+ J c~ft (uk)svy dx + J b(uk)vx dx = O .

L

	

L
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Subtracting (20) by (23), one ha s

(24) (1/h)(uk — 1d k — 21, k + 2Lp, 41) + (vluk(0))g2 — 1/(uk(0)W)v (0 )

	

¡0

	

f0
+ J (0k (u l ) ~ k (uk)) x v x dx +

	

(b(u 2k ) — b(uk))vx dx = 0 .

	

L

	

L

By (22), for v = = s e (w), w := 0k (u k2 ) --- 4(ukl-) , q 2 Ç g 1 and going to the
limit as E -> o in (24), we obtain

¡0
(25) (1/h)

f
L(u2k - )+ dx < 0

which implie s

(2G)

	

u2k (x) ç ul(x), V x E [-L,

By recurrence, (19) follows . ■

From 24, we construct functions

N-- 1
(27)

	

uh,k(x,t) := E uk(x)Xn (t)
n= n

where xn ( • ) is the characteristic function of [nh, (rt + 1)h], (nh,k is a step
approximation of u 1c} and

= (t - nh)((4(x) - uk-1(x))/h) t E [nh, (n + 1)h]

(28) o-n,,k(x , t )

	

+uk -i(x)

	

n = 1, . . . , N - 1

= uo(x),

	

t E [0, hl

(Cfh,k is a piecewise linear approximation of Uk, continuous in t) .

We can prove the following

Proposition 6. With the assumptions of Proposition 5, then Uh,k is
bounded with respect to h in L2 (o, T; V) n L°° (o, T ; L2(-L, o)} .

Proof: Choosing in (Pa ) v = uZ , one has

(29) (1/h)(u k — 2L k —1 ,tGk) +v(uk(0))4"uk(0) + (1/k)IIukx 2
0

	

¡ 0
+
f

Zdx + J b(u)udx = 0
r

	

-L

	

—L
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since ,

(30) (u_u_ 1 , u )

= (1/2)[(u,u )k — (Uk
ra --1 ra --11

	

¡ rz

	

ra
~ ~~ 1 + Iu ÏC —

un—1
,Uk — u]E )l 7

by (29) we obtain

(31) (1/2h)[Iuk 11z –

	

+

	

uk -1

	

+ v(uk (0))4nuk (0 )

+ (1/k)Iukx2 + I O

	

C~x +

J

o

b(uk~ukx C~x = O .
-L

Hence,

¡0
(32) (1/2h){Ilu k I 2 — Iluk -1 ~~2~ + (1/k)uII + J b(u rk' )uZx dx < O .

r

By the inequality of Young and multiplying by h, one has

( 1 /2)ft ukII2 – II u%-l Mz] + (hi le )

< hk 2
o

( l ) f L I b (uriD I 2dx +(h/2k )Il uk~ 11 1

(33) o

(p2hk/2)IL
1

	

2 (for (Hb ) )

(p2hk/ 2 )Iluo li z + (h/2k)Ilu%xII2 (for (19)) .

Thus,

I I u II 22 — Il uk-l llá + (h/k)It4 .II2 5 hCkll uoll z

where

Ck := p 2 k .

Adding up on n, we obtain

n

(34)

(35 )

	

II u Mz + (h/k ) 1 x ill

	

(TCk + 1)Iluolil, (hN = T) .

Hence ,

(36)

	

iiu¡~ 11z

	

(TCk + 1)iiuoiiz
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and

N- 1

(37 )

	

h E Il u k~~~2 ~ k((TCk + 1 )Ilu0li2) •
s=i

The (36) and (37) give

11 Uh,kIl1,2 (0,T ;V)nL'°(0,T ;L 2 (-L,0)) Ç ~~•

By (38), there exists a subsequence, that we denote again with uh , le ,

such that uh,k ~ uk as h —> 0 in L 2 (0, T; V) and in L°° (0, T ; L 2 (—L, 0))— *
weak .

Thus, u k E L2(0, T ; V) n LD ° (0, T; L2 (—L, 0)) . Now, we consider (28) .
Then,

■

(39)

	

(ah,k(x,t))t

= (u(x) — uk-1(x))/h, t E [nh, (n + 1)h] ,

n=1,2, . . .,N— 1

=O,

	

t E [O, fi] .

It is easy to prove that

(40)

	

Il ah,kllL 2 (O,T;V )

5 T~~ u0~~H 1 + (7/3)C ; 1Có,VO < 6 < T

where Qs :_ (—L, 0) x (S, T) and C6 is independent of h, k ; from the
problem (Pn) one has

(41 )

Set

(42)

	

W(0, T) :_ {v E L2 (0,T ; V) : vt E LZ(O,T;V')}

from a classic result, it is known that W(0, T) is compactly embedded in
L2(QT) . Since ah , k is in a fixed bounded set of W(0, T) and holds the
following estimate :

Ik7h,k — uh , k IIL 2 (QT) ç \/I IIu0IIL 2 (-L,0) 7

there exists a subsequence denoted by uh,k , such that when h —> 0+

ah,k - uk in L2(QT ) and a .a .

uh ,k —> uk in L2 (QT) and a .a .
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That is, because of (27), u~ —> uk in L 2 (QT ) and a.a . as n ----} oc .
By the Theorem of Lebesgue, b(4) ~ b(u k ) in-L2 (QT) and a .a. for
n --} oo . Also IKuh,k)xIIL2(QT) Ç Cl so, for a subsequence, we have that

ukx in L 2 ( QT ) . Therefore, (p ' eu rk')u 1% —> cp ' (uk )ukx in L 2 (QT ) as
n ---~ oo and by (41), for a subsequence, one has that (Crh,k)t ~ ukt in
L2 (Q,T ; V') and in L 2 (Qs) , b' S > 6 for (46), ash-3 0 .

Going to the limit in (Pa ) far n —+ oc, we obtain

(43) (ukt , v) + v(uk (4, t))q(t)v(0, t) +(l/k)eukx, vx }
o

	

o
+— (P(uk)xvx dx+

—
beuk)vx dx = 4, Vv(t) E V far a.e . t E(6, T) .

L

	

L

So, we have proved the

Theorem 7 . If assumptions of Proposition 5 hold then ther e
exists a unique strong solution u k of (43) such that u k E L 2 (0, T ; V) ,
Ukt E_ L 2 (0,T ; V') n L 2 (Q 6 )V6 > 0, uk E C([O,T] ; L2 (—L,0)) ,
uk(x , O ) = uo(x ), in [—L, 0], 0 c uk(x , t )

	

uo(x), zn QT, 0k(uk) E
L2 (6,T ; H2 (—L, 0)) .

Proa: The uniqueness follows as in Proposition 4 . ■

Moreover ,

Theorem 8. If assumption s of Theorem 7 hold, u k is nonincreasing
with respect to t .

Proof: Let u k , ük be the solutions of (43) corresponding to the initial
data uo , respectively, ito . Since Ukt E L2 (Qs) , w e have , for v = s,(w) ,
w := 4b k (uk) — Ok eak } , going to the limit for e ---> 0, that

o
(44) d/dt

	

~u kf

	

— úk} + dx = (Ukt -- úkt, sgn+ (Ok(uk) — 0k(ZGk)}} Ç V .
L

Integratin g (44) from s to t, one has, since u k E C([6, T] ; L2 (—L, o)} ,
o

(u k (x, t} — úk (x, t)} + dx
J --L

o
(45) Ç

—
(U k (X,S) — ick (x, s}} + dx

L
o

(uo(x)—~o(x))dx, do s t ç T .
— L

Now,if6ÇtCt+hÇT, (45)gives
o

	

o
(46) (uk(x,t+h)_uk(x,t)yFdx~

—
(uk(x,h)—uo(x))dx . ■

--L

	

L
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3 . Estimates on u k

Set -y(() := f( N/cp'(T) dr and B(() := jo b(r) dr, then

(47) — J t J ~ B(uk )x dxds < (pT/2)(uo(—L)2 +uo(0) 2 ) G pT .
0

	

L

If in (43) we choose v = uk and integrate from 0 to t, we have

(48) (1/2 ) fo l
J

~
lL

	

L
¡~t ¡0

	

/~t

	

0
+ (1/k)

J
J_ iukx i 2 dx ds +

J J
(p(u k ) xukx dx ds

0

	

L

	

0

	

L

=
— f t veuk(O , $ ))4 ( s )uk(0 , s) ds —

fo
t ~ b(uk)ukx dx ds ,

	

0

	

L

because uk E C([O,T] ; L 2 (—L,0)) .
Then by (48) one has

(49) (1/2) 1 T 1 0 iuk(x,t)dxdt

	

/~T

	

/'T
v(uo(x))q(s)ds dt

Jo ~ L

	

~o \Jo

	

+1T pT dt + (1/2) J T
J ~ l0

	

0

	

L

(QTv(uo(0)) + pT + (1/2)IIuo) T

< (QT + pT + (1/2)IIuo)T

(Q := maxq(t)), and (1/k) ff°L luk .1 2 dx dt QT + pT + (1/2) llu
oll2

i

[o ,Tl

thus ,

(51)

	

f f

T

	

(1/k)ffuk xI 2 dxdt < C

L

	

z,

which implie s

	

(52)

	

l ukIIL2(O,T ;V) <Ca

(here and through, C denotes various constants independent of k) .

Moreover, by (48) one obtains

	

(53)

	

l< TQ + pT + (1/2)Muo,
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and

(54)

T 0

	

\ 2
11 ?'(uk ) I1 i2(QT) —

	

fu k 	
~

p'(T) dT
I

I dxdt

(f'
cp'(T ) C~T

\
I uk (x, t) dx dt

Jo -L0 —L
0

cp(u k)u k (x, t) dx dt
JJ

fT
—L

(uo)ua(x) dx dt C.

JT

-Lr,-

Therefore ,

(55 )

and by (53) follows that

I C

T o(56 ) M(Uk)2(O ,T;V) =
o

	

(uk)2 dxdtfL cp

1

f

	

¡
cP'(u~uk ) 2 uk~ d dxx dt dt T J

~ o

	

0
~~~~2u~~

	

~

0 —L

	

— L
+ f

	

(u) 2 dx+Cill-y(uk)sil
(QT)

C

(Q' := IISp' (uk) IIL°°(QT), independent of k) .

Now, (52) and (56) give

(57) II 0k(uk) I1L 2 (O,T ;V) ~ 2 1I (P(uk )L2 (O,T ;v) + ( 2 / k )II UkII2(o,T ;v )

From (43) and (57) we have that

INktML 2 (O,T ;V I ) ç C .

Set lk := y(uk), by (55) k is bounded in L2(0, T; V) c L2 (0, T ;

Ws'2( —L, 0)}, 0 CsC1 .

Now, uk = 7—1 (k) and if we suppose that

(59)

	

-y -1 is Hólder continuous of order 9 E (0, 1) ,

for a classical result due to [3], one has

(60)

	

Il uk(
t
) II 1 'es,2/e (_L,o)

	

Mk (t )ii w'' 2 (- L , 0 ) M'Y ^1 II H'vder

C C .

(58)
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that integrate with respect to t, gives

( 61)

	

II uk I1 L2 ~~0(O,T,. W es, 2/e (_L ,0) } 5 IIkIIL2 (O,T ;W s, 2(—L,0) } II7 I IIHede r

Ç C, because of (55) .

Again by [3] ,

(62)

	

WBS ° 2/9 (—L 0) c LZ1B (—L 0 )

with compact injection, as

(63)

	

Wg 8 ,2 / 0 ( —L, o) c L 2 / 0 ( —L, o) c L 2 (-L, o) c

the set

(64) 147(0, T) := {v E L 2/0 (O,T;Wes,20 (_L,0)) : vt E L2(O,T;V') }

is compactly embedded in LZ/B(O,T ; L 2 / B (—L, 0)) (see [8]) .

By (Thm 7), (58) and (61), there exists a subsequence still denote d
by uk, such that when k ---> oc

(65) u k — u in L°°(O,T;LZ(—L, 0)) —* weak as consequence of (Thm 7) ;

(66) u k —> u in L 2 (QT) and a.a. because of (58) and (61) ;

(67) ukt —~ u t in LZ (O,T;V') by (58)

and

(68 )

u~ verifies the condition 0 Ç u k (x, t) Ç uo(x) in QT , hence it follows
that

	

(69)

	

IIUkMLOO(QT) <_ C.

(70)

	

cp(u k ) ~ ço(u) in L2(0,T; V )

because of (56) ; one verifies that the limit is (p(u) for (66) and the
Lebesgue's Theorem .

By (57) and (52) it follows that

(71) 0k(uk ) —~ (u) in LZ(O,T;V),
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since çb k (uk ) — cp(uk ) = (l/k)u k — 0 in L 2 (O,T;V) .

A classic result, implies that for subsequence ,

(72)

	

u k —> u in C([0, T] ; V ' )

because of (61) and (67) .

By (65) and (72) it follows that u E CS ([O,T] ; L2 (—L, 0)) where
CS ([O,T] ; L 2 (—L, 0)) is the space of functions u E L°°(O,T; L 2 (-L, 0) )
such that t —> (u(t), v) is continuous on [0, T], Vv E L 2 (—L, 0) . Finally,
since u k (0) —~ u(0) in V ' as k —> oo for (72), we have that u(0) = uo .

By the Lebesgue 's Theorem and (66) it follows that

(73)

	

b(uk ) —~ b(u) in L 2 (QT ) for k —> oo ,

because b(u k ) —+ b(u) a.a. when k —> oo .

4. 1, 1 estimates on U k

We are interested to obtain a better estimate on the time derivative
for uk and on 0k (uk ) . Now, if we consider assumption (18) which assure
the monotonicity with respect to t of Uk, we are able to show that there
exists a constant C > o such that Uk verifies

(74)

	

I u k (t)
I I L 1 (—L,o) Ç Cr , V r E (0, T), V t E [O,T—r J

and

(75)

	

k L ktML(o,T ;L1(_L,o)) ç C.

In fact, choosing v = 1, v E V, in (43) we have

t+T

	

t+r
(u k8 , 1)' ,V ds

+ t
v(u k (o, s))q(s) ds = o

which implies that

0I—26k(t)L1(—L,0)--Jluk(x,t+T) -2Gk(t)) l~xCT ,
L

since I

	

Ç C with C independent of s . For (75) see the
proof of the Proposition 11 .

Properties (74) and (75 ) hold also without reference to a class of mono-
tonic functions as we are going to show .

Let us recali some results that will be used in the following .

1
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Lemma 9. For any v E V, n 1 mo f[xE(—L,OI :Iv(x)I<I I vx l dx = 0 (see

	

=1,

	

x> o

	

=1,

	

x

	

sgn(x) = o,

	

x -= o

	

sgnn(x) = x/rj, I x I i , > 0

	

1=—1, xCo

	

=—1, x C

The function sgnn is a Lipschitz function on R.

Lemma 10. For any p, 1 Ç p oo, if v E Lp(—L, o), then sgnn (v) —>

sgn(v) in Lp ( —L, o), when rj ---} o(see [9]) .

To obtain an estimate on Ukt uniformly with respect to k, we assume
the following condition

(?6) 0 Ç uo Ç 1, a.a . in (—L, o), ;o(u 0 ) E V
and cp(uo)x + b(uo) E BV(—L, 0) .

We can prov e

Proposition 11 . If assumptions (H,p), (Hb), (H„), (Hq ) are satisfied
and (76) holds, there exists a constant C > 0 such that Uk verifies (74 )
and (75) .

Proof: For o C s C s+7 C T, E (o, T), d v(t) E V, for a.a . t E (o, T)
we consider

(77) (uk(s + T), 27) + (U k (O,5 +T))q(S +T)41(0, s )

+
J

~ Ok (uk (s + T)) 5 v x dx + J ~ b(u k (s + T))vx dx = 0
L

	

L

(78) (uk (s), v) + v(uk(O>S))q(s)v(0, s )
0

	

¡0
+ ~ ~k(uk(s))xvx dx + J b(u k (s))vx dx = 0 .

L

	

L

Subtracting (78) to (77), we obtain

(79) (uk8 (s+T) — 2Gks(s ), v )

+ (v(Uk(O, s +T))q(S +T))q(s +T) — v(u k (o, s))q(s))v(0, s )
0

+ J (çb(u(s + T)) — 0k(uk(s)))xvs d x
—L

f0
+

J
(b(uk (s + r)) — b(uk (s)))vx dx = 0

—L
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choosing v(s) := sgn,7 (0 k (uk (s + r)) — g5k(u/c(s))) E V in (79), one has

(80 ) (uk(S +T~ — 7dks(s), Sgn,ql0k(uk(s +T)) — 0k(uk(s))) )

+ (U(Uk(O, s +T))q(s +T~ — v(uk (o, s))q(s)) sgn,7 (0k (u k (o, s + r) )
0

— 0/c(uk(O , s))) + j (çbk (u k (s + T)) — 0k(uk(s)))xlSgnn(uk(s + T))
L

¡0

— 0k(uk(s))))x dx + J (b(uk(s + r)) — b(uk(s)))(sgn n (0k(uk(s + T) )
L

~kluk(s)ffix dx = O .

0

I,(b(uk`s
+ r)) — b(uk(s))) lSgrin(0klu/c (s +

— O k (uk(s))))x dx

(b(~'(zk(s+T)) )
fzk(S+T)—zk(s)l<r/ 1

— b l0k l (zk(s))))(1/77)( zk( s + T) — zk(s))xdx

(where zk (Q) := ~ k (uk (v)) )

	

Ç

	

J+ T} — zk (s)) x i dx
fH z k( s +,)—zk(s)l<n ]

(since b o

	

is Lipschitz continuous with constant é) .
Since zk (s + T } — zk (s) E V, Lemma 9 implies that

(82) 1m

	

l+ T) --- z k (s)}x ~ dx = o
n—>0+ [I z k( s+T) — zk(5)IcrT ]

hence, by the Lebesgue's Theorem we obtain

(83) ~1ó J t J L(b(u k (s + r) )

— b (uk(5)))( S ónn lY'k(uk(s +T)) — Y'k(uk(s))))x dx = 0 .

Novo,
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Moreover ,

(84) Lo
(OkeUk( S +T)) — Y'/c(uk(S)))xlSón,(0kluk(S -~

0

Ok(uk(s))))a C~x = yi j I,
1l0k( 2~k(3 + r)) — Y'kluk( S )))xl2l~x � O ;

by (II,) and (Hq )

(85) (V(U k (0, s + T))q(s + r)

— 7/(uk(O, s))q(s)) Sgn n (0k(uk(O, 3 + T )J —

	

(uk(O, 5) ) )~

	

C,

with C a constant independent of s .
Thus because of (84) and (85), equality (80) gives us

(86) (uks(s + r) - uks(s ), Sgnn (0k(Uk(s-t-T)) - 0k(uk(s)))) 5_ C

+ ~~ (b(uk (s + T) - b(uk(s)))(Sgn n(0k (u~ (s + T)) - ~k(n k (s))))s dx
L

Integrating (86) on [S, t], t E (S, T - T] and going to the límit as r~ -> 0 + ,
because of (83), one has

(87) L(Uk(t(Uk(t + r) - Uk ( t )) Sgn (0k(uk (t + T)) - 0k (Uk(t))))dx

0
< < L (2d k (6 +T~—2Lk(6)) S bri l0k(U k(5 +T)) — ~k1uk(8) JJJ dx+ C(T—6)

V6 > O, Vt E (6,T -TI.
Since Ok (•) is increasing, then sgn(0 k (uk (s + r)) - 0k(uk(s))) =

sgn(u k (s + T) - u k (s)), thus (87) gives u s

(88)J j, Iuk(t+T) -7b k (t)I dx
< J

L I2L k (S+T) -76k(b) I dx -I'C(T — S)

dS > 0, Vt E (8, T - 7] . But v, k E C([O,T] ; L2(-L,0)), hence when
S -> 0+ we have

(89) J
O Iuk(t+T) — 26k(t) dx < J O I — 2lpl dx+CT,

-L

	

-L
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We look for an uniform estimate with respect to k for f °L I26k(T) —

uol dx .

For this, we take v := sgnn (0k(uk)—Ok(uo)) E V in (78) and s E (5,'r) .
Then ,

(90 ) (U ks, sgn(ç5k(uk) — 0k (U0))) + v(uk(0, s))q(s) sbnn (0k(uk(O, s) )
0

— 0k (uo(0))) + f (ç5k(uk))x(sgn(q5 k (z k ) — ~k(uo)))x dx
L

o

+ J
L b ( uk)(sgn,lOk(uk) — 0 k (u0)))x dx = o ,

hence

(91) (u k , sgn,i (0k(21k) — 0 k (uo))) + v ( uk(0 , s))4(s)Sgn n (0k(uk (O, S) )
0

— ~k(u01 0M + J (((u) — 0k(u0))x + b(uk) — b ( uo))(Sgn,7 (0k(uk)
—L

o
-0k(u0)))xdx=—

J L ((Ok(u0))a+b ( u0))(sgn ri (0lc(uk) — Ok(u0)))xdx .

Proceeding as aboye, one proves that

(92 ) L(Ok(uk) — 0k( u0))x(Sgn,7l0k(uk) — 0k(u0)))x dx > 0 ;

(93) l— 0k(u0(0) ) )~

	

C

with (; independent of s ;

(94) ,7ll
á LT f(b(uk ) — b ( uo))(sgnn(0k(uk) — ~k(uo)))x dx = O.

Therefore

(95) (uks, S bng(0k(uk) — ~keuo)) )

¡ 0

C + J (b(uk ) — b(uo)) Sgnn(0k(uk) — 0k(u0))s dx
- L

Integrating (95) from b to r and going to the límit when 77 —> 0 + we have
because of (76), (92), (93) and (94) that

f0

(96) J lf L
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for S —> 0 + , because u k E C([O,T] ; L 2 (-L, O)) .

Thus, (89) and (96) gives us

(97 )

	

uk(t +T) — 2ó k( t ) Il L1(—L,0) < CT .

Now, Ukt E LZ (Qó), dS > 0 hence (1/r)lu k (t + T) — u k (t) l —> u kt (t) in
L Z (Q 6 ), and in L Z (—L, 0) for a .a . t E (S, T) . Thus (97) gives us (75) ,
because C is independent of S .

This ends the proof. ■

5 . Existence of solutions for degenerats problem

By definition, 0k ( . ) E C 1 ([0,1] ) and as far as aboye, one has

(98) III Loo (o,T ;L l (—L,o)} Ç C .

By (57) and (98) it follows that

(99) Iç C .

Hence,

(100) 0k(uk) is bounded in L°° (QT) n H1,1 (0, T ; L1 (—L, 0)} .

The (57) and (98) say that 0k(uk) E W (0, T), therefore

(101) 0k(uk) —> (PM in L 1 (QT) as k —> ao .

Hence, (p(u) E BV (0, T ; L 1 ( ---L, 0)}, because it is the limit of a sequence

in L°° (QT ) n H1,1( 0, T ; L1 (—L, 0)} .

By (66), u k -4 u in L 1 (QT ) , moreover, (69) and (75) imply that
uk is bounded in L°° (QT) n H1,1 (0, T; L 1 (—L, 0)}, hence u E BV(0, T ;

L I (—L, O)) ; a such u has a trace for t = O .

Since 0k(uk) t weakly converges to (U)t in L 2 (Q 6 ), V(5 > 0 as k ~

oo, we obtain the estimate : Iko ( u )tML 2 (&T ;L 1 L,ofl

	

C, where C is

a constant independent of (5 . Thus, I

	

C and

consequently, since V c L°° (---L, 0) with continuous injection ,

11Ç0(u) t II L 2 ( o ,T; vI )

	

C .

Then , ço(u ) E C([0, T] ; L2 (—L, 0)} and the Hólde r continuity of ço- 1

implies that u E C([0, T] ; L 2 ( —L, 0)} . Moreover, u E L°° (QT) and

cp(u) E L°° (QT ) n H1 (QT) . Finally, the trace in t = 0 for u in L 1 (—L, 0 )

coincides with uo .

Thus, we have proved the following existence resul t

Theorem 12. If (Hp ), (Hb ), (Hp), (Hq ) and (76) hold, then there

exists a strong solution for problem (1)-(4) .
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6 h Uniqueness of solution for degenerate problem

To study this problem, we introduce in R2 the one dimensional Haus -
dorff ' s measure 7-~1 (for a definition, see [4]) . Since cp is an homeomor -
phism and (p(u) E L°° (QT) n Hl (QT), in [6, Lemmas 1 and 2], is proved
that cp(u) and any solution u of (1)-(4) are 'H 1 -a .a . £ 2 -approximately

continuous on QT (see [4, pg . 158]) .

Now u E BV (0, T ; L'(-L, 0)i hence its distributional time derivative
u t is an integrable Radon's measure on QT , 7-~ 1 absolutely continuous

(see [6) . This means that u t do not charge the complementary set of r2-
approximate continuity points of u, thus we can utilize the integration

by parts formula .

Let u, fi be solutions for (1)-(4) with initial data u0, respectively, fi o .
Then

t

(u t - ict , v)v, ,vp (T ) dT

J t iv(u ( O , T )) - L(u ( O , T ))g ( T )v ( O , T )p IT ~ C~T
0

+ J t
f_L

— (ú))xvxp(T) dx dT
o

+ J t J

o

(b(u) - b(ú))vs p(T) dx dT = 0 ,
o

	

---n -r,L

Vv E I;2(0,T;V), Vt > 0 and p E D(O,t), p(t) > O .

Set w := ço(u) - co(ú) and H,7 (w) := w+2/(w2 +77), 77 > 0 and suppos e

that

(103)

	

l b (w-1 ( t )) - b(cP-1(S))i

	

c ' lt - s1 1/ 2 .

It is easy to prove that, d r E IR ,

(104)

	

lim

	

(r) = 0, 0 < Hq(r) < 1 and 0 rH'~(r) 1/2.

Choosing v = Hn (w) E H1 (QT ) in (102) one has ,

t

(102)

(i~(u(0, r)) — v(ú(0,T)))g(r)Hn(w(O,T))p(r) dr > 0
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because Sp is increasing, then

(u t — ut a Hn(w))v ,vP(T) dr

(105)

	

+ J t J
a

	

((u) — (~))xI2H(w)p(r) dx dr
0

	

L

+ J t
J ~

(«u) — b(ú))H~(w)xp(T) dx dr G
o —n

	

—r,L

Now,

¡t ¡o

— J J L
(b(u)—b(ít))H(w)p(r)dxdr

¡t f

L
(b(u) — b(ú))(cp(u) — cp(ú))xH ',~(w)p(T) dx d r

< J t f L Ib(u) — beú)I ((u) — (~))IH(w)p(r)dxdr

fJ 1s — sl 12 (s — s)(s — )p (T) dx dT
L

(1/2)
J

t
J ~

( s—)I2H(s—~)p(r) dx dT
0 -L

¡t ¡0
+ cl

J J-L
is

	

s 1H '~(s s)p(T) dx dT
0

by (103) with s := co(u), s := cp(ú) and the inequality of Young .

Therefore, (105) gives us

(ut — ut a Hn(w))v,vP(T) dr

(107)

	

+(1/2) J t L L ~ I— ) 2H(s — s)p(T) dx dr

o w

<c
1J

t
J

~
~0

	

L

hich implies

(ut — ZLt, 1I71 (w)}V'Vp(T) dT

t Ç cl

	

ls — .1114' (s — s)p(T) dx dT .
o 1:

L

t

lo

t

f

t

f



DEGENERATE PARABOLIC PROBLEM

	

349

H,7() is an C1 approximation of the Heaviside 's function and as far as
aboye claimed in (104) and by the Lebesgue's Theorem, we have

¡t

f
o

lim J J

	

— MH '~(s — §')p(r) dx dT = 0 .

Now, we treat the' term j(ut — út , Hn(w))v,V p(T) dT .

We known that u— 'ú E L Z (QT ) and (u—ú) t E Lz(O,T;V'), pHn (w) E

L2 (0, 7' ; V ) (Hn(w) E H1 (QT) n L°°(QT)) and (pHn(w ))e E L2 (QT ) .

Since V is embedded in L2 (—L, 0) with dense and continuous injec-
tion, then defined the intermediate spaces Y := [V, L 2 ] 1/2 and Y' :=
[L 2 ,V'11,2 (see [8, pg . 11]) one has that u — ú E C([O,T] ;Y'), pHn E

C([0, T] ; Y) and the following formula holds

(109) J t (u t — út , H~n(w))v,vP(T) dr - (u ( t ) — u(t),H~n(w(t))P(t))Y' Y
0

— (u(0) — ú(0), Hn(w (0 ))P (0))Y'Y - J tf0 (u — ú )(PHn(w))t dx dr.
0

	

L

But u E C8 ([0, T] ; L 2 (—L, 0)} , so the pairing of duality Y', Y is an
integral in L2 (—L, 0) (see [11, Chapter III] } and for p E D(O, t) (109 )
becomes

f
( 110)

	

(u t — út , H~(w))v,vP(T)C~T

¡t ¡o
_

	

J
(u—~)(pH 1(w)) t dxdr .

0

	

L

To the purpose of apply the results of [11, Chapter II], see also [2], we
work vvith the Borelian representative of u in the £ 2-a .a. class (that is
u -= ú£2-a.a.), this allow to use the Borel measure . We agree to write

¡t ¡o

	

f

-- J LL
(u—~)(pH,,(w)),dxdr==—

J
(u—íi)(pH,(w)) t

o

	

Q t

because pH,7 (w) E H1 (QT), belongs to BY(O, T; L 1 (—L, 0)} and the
Borel measure (pH,7 (w)) t is £2-Lebesgue absolutely continuous, with
density (pH,7 (W))t .
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Moreover, u — ú E BV(0, T ; L 1 (—L, 0)} n L°° (QT) , pHn(w) E
L°° (QT ) n H1 ( QT ) ad (u --- ú} t is a Radon's measure 7-i 1 -absolutely con-
tinuous, by a result of [12, sections 13 .2 and 14.4], (u — ú)pH,7 (w) E

B V (0, T ; L 1 (—L, O)) and we can use in (110) the formula of integration
by parts (see [2] and [11]) to obtain

f(111)

	

(u— ú, H(w))v,vP(T) dT — f P(t)H(w)(u — ú) t .
Qt

Taking in consideration that Hn converges pointwise to sgn+ as —> 0+
and (pea) — ço(ü) is defined and bounded 7-t 1 -a . a. in QT by its L °° (QT )
norm, the increasing of (p ( • ) implies that

li
óH

T,( w ) = sgn+ (cP (u ) —y(u )) =sgn+ (u—ú), 7-l l -a .a ., (sgn EBV(R)) .

By the boundedness of H,I (w) it is possible to apply the Theorem of
Lebesgue, since (u — ic } t is bounded .

Then,

(112) lim J p(t)Hn (w) (u — ú) t = J p(t)(sgn+ (u — fi)) (u — ú) t
n~ 0+ Qt

	

Qt = f p(t)((u — ü) +) t ,
Qt

(see Corollary 3.3 in [11], sgn+ is a bounded Borel function) .

Going to the limit as r1 ---~ 0+ in (108), we have

(113) p ( t )((u — ú)+ ) t < 0 ,
Q t

that implies the nonincreasing of (u(x, .) — ú (x, • )}+ as function of t .
Hence,

0

	

0
(114) f (u(x,t)—~(x,t))dz~ f (uo(x)—~o(x))dx, dt > o

L

	

L

and the application uo ~ u(•, t) is a T-contraction in L1 (—L, 0) . For
uo = üo in [—L, 0] the uniqueness of solution follows . Thus, the choice
of ú becomes no more important .

At Iast, the following result holds
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Theorem 13 . If (.14) — (H„), (76) and (103) hold, the problem (1) -
(4) has a unique strong solution . Moreover, (114) holds for any t > 0
and gives an order preserving for the solution .
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