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ON APPROXIMATION AND INTERPOLATIO N
OF ENTIRE FUNCTION S
WITH INDEX-PAIR (p, q )

H . S . KASANA* AND D . KUMAR

Abstract	
In this paper we have studied the Chebyshev and interpolation
errors for functions in C(E) , the normed algebra of analytic func-
tions on- a compact set E of positive transfinite diameter. The
(p, q)-order and generalized (p, q )-type have been characterized in
terms of ,these approximation errors . Finally, we have obtained
a saturation theorem for f E C(E) which can be extended to an
entire function of (p, q) -order 0 or 1 and for entire functions of
minimal generalized (p, q )-type .

Introduction

Let E be a compact set in complex plane and 1' (n)
= {U,

	

. . . , ~nn}
be a system of (n + 1) points of the set E such that

n

H Inj - 'nk 1 and q (j)Wn)}-- fi Ir i - Ink l ,
°Ç jÇkÇn

	

k= q

j = o,l , . . ., n .

Again, let n(n) -- {7ni, 7]n2, . . . , ?inri } be the system of (n + 1) points in
E such that

Tln ; v (r] (n) )

sup V(1 ( rz) ) and q° (n(n) )

	

á(j) (n(n) ) for j = 1, 2, . . . , n .
1 (n) C E
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Such a system always exists and is called the nth extrema] system of E.
The polynomials

n

L (i) (z a 77(n)) = H

	

z — 71nk

	

j ~ O1 . .
>

	

>

	

a

	

~

—

	

,n ,
rin,ry

	

r]nkk= 0

are called Lagrange extremal polynomials and the limit d

	

d(E) =
limn_›oo Vñ/n(n+1) is called the transfanite diameter of E .

Let C(E) denote the algebra of analytic functions on the set E . Let
us define the approximation errors as follows :

Pn,l U ; E} lun,I( .f ) = ~f If— g H ,
9

where ii

	

is the sup norm and 7r n (z) denotes the set of all polynomials
of degree n .

Further, we also define

pn,2( .Íi F% ) = mn,2( .f) = Ii Ln — Ln,—1 11, n > 2

mn,3(f ; E) z mn,3(f) = Il Ln — f 11 ,

where n E N and
n

Ln (z) = E L(3)(z,n(n)) f(77ni )
j=0

is the Lagrange interpolation polynomial of degree n .
Reddy [$], [9] connected classical order and type with polynomial ap-

proximation error of an entire function which is an extension of a continu -
ous function defined on [—1,1] . Contemporarily, Rice [10] and Winiarski
[13] studied these results for different approximation errors of a continu -
ous function on the arbitrary domains . Later on, Massa [0] developed a
simpler proof of Reddy's results . It has been noticed that these author s
fail to compare the approximation errors of those entire functions which
have the same positive finite arder but their types are infinity. In order
to include this important class of entire functions we shall utilise the
concept of proximate order due to Levin [5] . Moreover, for the inclusion
of entire functions of slow growth and fast growth their results will also
be extended to the (p, q)-scale introduced by Juneja et al . ([2], [3]) . It is
significant to mention that Shah [11] and Kapoor and Nautiyal [3] have
studied in this direction far continuous functions on the domain [—1, 1] .
They studied the results for (a, )3}-orders . However they have to study
separately the entire functions of slow and fast growth . That is why in
our studies the (p, q )-growth has been preferred to the (a, ,C3 )-growth.
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1 . Definitions and auxiliary results

Before stating the auxiliary results it will be justified to introduce with
the concept of (p, q )-scale, p ~ q ~ 1, and certain notations which will
be frequently used in the text :

expími x == log{-m] x

= exp(exp [m-11 x) = log(log Hm-13 x), m = ±1,±2, . . . ,

r
A[,, ] (x) = fliog [zi x for r = 0,1, . . .

z=o

L(p,q)

	

if q C p C oo ,

1+ L(p,q)

	

ifp =q=2,

	

P(L(p, q)) =

	

•max(1, L(p, q)} 1f 3 c_ p = q ,

oo

	

ifp — q = oo .

0o

Let f(z) — E Qnzn be an entire function . We set M(r, f )
rz=o

maxiziT ,. ~

	

M(r, f) is called the maximum modulus of f(z) on the
circle ~z! = r .

Definition 1 . An entire function f(z) is said to be of (p, g)-order
p(p, q) if it is of index-pair (p, g) such that

	

lim

	

M(r,
f) _m sup	

[ g ]

	

— p(p' q) 'r—~

	

log r

and the function f(z ) having (p,q)-order p(p, g)(b < p(p,q) C oo} is said
to be of (p,q)-type T(p,q) if

lim sup
log[pIIM(r'

f,q)) = T(p, q) ,
r~~ (iog_ r }~~~~ g )

where b = 1 ifp =q, b=0 if p ~ q .
Nandan et al . [7] has extended the idea of proximat e order to entire

functions with (p, q )-growth as

Definition 2 . A positive function pp,q (r) defined on [r o , oo}, ro >
exp[q-I] 1, is said to be of the proximate order of an entire function with
index-pair (p,q) if

(i) pp,q (r) —> p(p,q) as r ~ oo, b < p(p,q) C oo ,
(u) A[q] (r)pp' yq (r) —> 0 as r ~ oo; pP ,q(r) denotes the derivative o f

pp,q (r ) .

o T(p,q) oo,
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It is known [7, Thm . 4] that (logíg- 11 )PPq(T)_4 is a monotonically

increasing function of r for r ~ ro, where A = 1 if (p, q) = (2, 2) and

A = o otherwise.

Hence we can define the function O(x) far x ~ xo to be the unique
solution of the equation ,

x

	

(1og1' r)nP,4(r)-A	 O(x) = log [q-1] r .

Definition 3. Let f (z) be an entire function of (p, q)-order p(p, q)(b
p(p,q) < oo) such that

log~-~~	lim	 	 m (
r,f)

	

T*

	

*sup

	

[g-=

	

~p a g } a ~ T(p, q) Ç oo .
r~vo (1og 11 r )PP>q (T )

If the quantity T* (p, q) is different from zero and infinite then pp,q (r) is
said to be the proximate order of a given entire function f (z) and T* (p, q )
as its generalized (p, q)-type . Clearly, proximate order and the corre-
sponding generalized (p, q)-type of an entire function are not uniquely

determined. For example, if we add c/ log Iql r, U C c < oo to the proxi-

mate arder pp,q (r) then pp,q (r) + c/ log Iql r is also a proximate order sat -
isfaying (i) and (u) and consequently, the generalized (p, q)-type turns
out to be e cT*(p, q) .

Definition 4 . An entire function with index-pair (p, q) is said to be of
minimal, normal and maximal (p, q)-type with respect to a proximate
order according as T* (p, g) as zero, positive finite and infinite respec-
tively .

Let Er be the curve defined by

= {z C : 10(z)Id = r} ;

where w = ~ ~z} is holomorphic and maps the unbounded component o f

the complement of E on Iw 1 > 1 such that «oc) = oo and 7P'(oc) > O .
Also, we set M(r, f) = supzEEr ~

	

for r ~ 1 .
The following auxiliary results will be utilised in the sequel :

Lemma 1 . lf f(z) is an entire function of (p,q)-orderp(p,q), then

log~]
lim	 	 ~ r, f}

sup	
~VI

[q]

	

= p (p, q ) '
r—oo

	

log r
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and for p(p, g )(b < p(p,q) C Do), T*(p,q) is given b y

log [P–1 ]
lim sup	 m(

r
' f)= T* (p, q) .

r -,oa (1og 1 ' r ) P
P
,g(T )

Proa: Let zo be a fixed point of the set E, and r ~ 1 . Then from
[13],

r --2 1 Ef — I za l ç Iz1 C r+ IEI +

	

z E Er .

For p ~ q ~ 1, a < 1 and ~ > 1, using log [g] kx

	

log [g] x as x --~ oo ,
oC k Coo,

log' M(ar)

<

log'' M(r)

Ç

log~~
m(or)

log [9] r

	

logl9l r

	

1og19l r
	 for r > ro .

Also, for p(p, q)(b < p(p, q) < oo), using 1og 19l (k+x) '� log í9l x as x —> oo ,

log [p-1i M(r —a)

	

log~-11 M(r)

	

log~-11 M(r + c)
(1og_r)PPQ(T) < (1og 1I r)Ppq fr) — (Iog 1i r)PPq(r) '

where
a = 21E1 + zo , c = IEI + iz o ' .

After passing to the límits and taking the Definition 1 and Definition 3
finto account this lemma is established .

Lemma 2. If a function f is defined and bounded on a compact se t
E, then

pin,I(f) 5. llf — Lnll

	

(n +

and

Ii Ln — Ln_1I1 Ç 2(n + 2}Pn-~,i ~ .f)a for n = 2, 3, . . . ,

whre L~ is the Lagrange interpolation polynomial with nades at extrema l
points rini .

The proof of this lemma is available as Lemma 3 .2 in [13] .

Lemma 3. Let f E C(E) . Then f can be extended to an entire func-
tion if and only if

1/n(
(f) —} o as n ---~ oo, j = 1, 2, 3 .

This lemma is a direct consequence of Lemma 1, equation (4.5) o f
Winiarski [131 and an inequality due to Walsh [12, p . 771 .
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Lemma 4 . For every f E C(E) and

	

(f), j = 1,2,3, there exists

an entire function gi (z) = E µn,i (f )zn+l such tha t
n= 0

M(r, f ) ao + 2gj (r/d) .

Proof: Define the function

00

(1 .1)

	

f-(z) = 7ro + E{7rn+I(Z) 7rn(Z)} .
k—o

Obviously, J(z) = f(z) for all z E E. We prove that f(z) = f(z) for
all z in the complex plane . For this it is enough to show that this serie s
converges uniformly on every compact subset of the complex plane, since

I en+l(z ) = 7rn (z)l < Il~n+l — 7rnII b .z E E

~ µn+1,1(f) +µ n ,1(f) ~ 2µn-i(f) ,

using Walsh inequality [12, p . 771, we have

n+l
1— ~~,(z)I

	

2 µn,, I( .f) ( 71r )

	

for z E ET .

Hence

00

Is I+E I en+I(z) - 7rn(=) I
n-1

00 n+ 1

ao+ 2 E~n,1(f)
r

	

forzEET .
n = Ü

The last series converges for every r and therefore, the series on the right
of (1 .1) converges uniformly on every compact subset of C and so f(z)
is entire and f-(z) = f(z) . Consider the functio n

9J(z) = Eµn>7(f) zn+ 1
n= U

Since limn,~ ~n~~ (f) = o, j = 1,2,3, by Lemma 3, it follws that eac h
gi (z) is entire and further, (1 .2) implies the required inequality . ■
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2. Main result s

Theorem 1 . If f E C(E) can be extended to an entire function with
índex-Pair (p, q), (p,q)-order p(p,q)(b < p(p,q) < oo) and generalized
(p,q)-type T* (p, q), then for every µn,j (f ), there exists an entire func-

tions gj (z) = E µn,j (f)zn+ such that
n= 0

p(p,q, f)

	

p(p,q,gj ) and T*(p, q, f) _ /C3T* ( p , q , gj) y

where /3 = d-P(p,1 ) for q = 1 and ,3 = 1 for q ~ 1 .

Proof: It has been shown in Lemma 3 and Lemma 4 that 1(z) = f(z)
far all z in the complex plain and for each p,n,j ( f) , the function gj (z ) =
cci

E pn,j (f)zn+1 is an entire function . Winiarski [13, p. 266] has proved
n=o
thatforanye> 0,

(—dee(2 .1)

	

1~n,3(f) � kM(, f)

	

r
~

where k is a constant and d > 0 is the transfinite diameter of E .
Using (2 .1) in the power series expansion of gj (z) for j = 3, it is

inferred that

(
de2f )

r n+l
= >2/~fl,3(f) (de2 En=0

krm(r, f
) E

°° 1
Ç

	

n Ed 2 Ee

	

n=o e

<	 l~rN~(r, f)

or
log g3

. de2Er

	

Ç 0(1) + log 1V1( r, f) + log r .

Thus, in view of the aboye inequality and Lemma 1, for p > 2 and q = 1 ,

p(p , 1, g3)

	

P(pa 1, f) and T* (p 7 1 , g3) Ç e 2EP(P,1) dP(P' I) T* (p, 1, f) ,

andforp> 2,andq> 1 ,

p(p, q, g3 ) Ç p(p, q, f) and T* (pa q, g 3 ) Ç T* (p, q, f) .

deE(eE — 1)
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Since E > o is arbitrary, both inequalities imply that for all (p, q) ,

(2 .2)

	

p(p,q,g 3 )

	

p(p,qy f) and í3T* (p 7 q,
g3 ) Ç T * (p, q, f) •

Further, using the inequality M( r, f) Ç a o + 2gj (), we observe that fo r
q = 1,

p(py 1,f)

	

p(p, 1, 9j ) and T * (p a 1,f)

	

d-P(p'1)T* (p s 1 ,9j ) ,

andforq~1 ,

p(p , q 5 f) Ç p (p, q ,9j) and T* (pa q, f) Ç T* (p , q ,9j ) •

Hence, for all index-pairs (p, q) ,

(2 .3)

	

p(p,ga f)

	

p (p? q ,9j ) and T * (p, q , f)

	

fiT* (p a q ,9j ) .

Combining (2 .2) and (2.3), we have

p(p , q , f) = p(p,q,g 3 ) and T* (p a g 7 f) = OT* (p , g a 93 )

and further, application of Lemma 2 makes this result valid for j

	

1
and j = 2 also . ■

Theorem 2 . Let f(z) E C (E) . Then f(z) can be extended to an
entire function of (p, g)-order p(p, g )(b < p(p, g) C oc) if and only if

p(p , q) = P(L(p, q)} ,

where

L(p,q) = lim sup

	

[4-11 _1/nn~°° log

	

un-1/n ((f )

Proof: In Lemma 3 and Lemma 4 we have concluded that f E C(E)
can be extended to an entire function if and only if gj (z) is an entir e
function . Moreover, by Theorem 1, f(z) and gj (z) have the same (p,q)-
order . Applying Corollary 1 by Juneja et al . [1, p . 62] to the function

00
9(Z) _ ~ Pn, j (f)zn+l Theorem 2 follows . ■

log 1p- 11 n

n=o
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Remarks .
(a) For (p, q) = (2,1 ), this theorem includes Theorem 2 by Winiarsk i

[13] and further for (p,q) _ (2,1), j = 1 and E = [-1,1] this also
contains a result by Massa [61 .

(b) On setting (p, g) = (2, 2), j = 1 and E = [-1,1] this theorem may
also be considered as an alternative proof of Theorem 5 by Reddy [7] .

Theorem 3 . Let f(z) E C(E) . Then f(z) can be extended to an
entire function of (p,q)-order p(p,q)(b < p(p,q) < oo) and generalized
(p, q)-type T*(p, q)(0 < T*(p, q) G oo) if and only if

~*

	

lo [~-2~ n

	

p(p , q)— A

	 ~ p ' g} = lim sup	 )
~~ ~pa q)

	

n~~p [ iog_ 1 ] 1/n (
~n~~ f}

where fi is defined in Theorem 1 and

(P(2 , 2) - 1)n(2,2)-1/(P(2, 2))P(2'2)

	

if (p, q) = (
2

, 2 ) ,

M(p, q) =

	

1/ep(2, 1)

	

if (p, q) = (2,1) ,

1

	

otherwise .

Proof: To prove this theorem we apply Theorem 1 by Kasana [4] to the
function gj (z) defined in Lemma 4 and the resulting characterisation of
T* (p, q, gj ) in terms of ,un,i (f) and the relation T* (p, q ; f) = í3T* (p, q, g3 )
taking together prove the theorem . ■

Taking pp,q (r) = p(p, g)dr > ro and O(x) = x1/(P(psg)-A), we have the
following corollary which gives a formula for (p, g)-type T(p, g) in terms
of the approximation errors of an entire function f (z) .

Corollary. Let f(z) E C(E) . Then f(z) is the restriction of an en -
tire function having (p, q)-order p(p, q)(b < p(p, q) < oo) and (p, q)-type
T(p, q)(0 < T(p, q) < oo) if and only if

	 T ~psq}

	

log~ -2 j n
¡¡ q) =

lim sup	 _
(f))p(pq) — A~M 1p a q }

	

n~oo (log —
~

(a) for (p, q) =(2, 1) this corollary gives the Theorem 1 of Winiarski

[13] as a particular case .

(b) On the domain E = [-1,1] and for the approximation error Pln, 3
this corollary also includes some of the theorems of Massa [6] and Redd y

[7], respectively for (p, g) _ (2,1) and (p,q) = (2,2) .
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Theorem 4 . If f (z) E C(E) can be extended to an entire function of
(p, q)-order p(p,q) such that p(p,q) = b, then for every S > 0 ,

(log lP—2] n) s
limsup	

[Q—1] -1/,~
(f)

= o .
n~oo log

	

~n ,.?

Further, if p(p,q) > b and f (z) is of minimal generalized (p, q) -type, the n

«log2] n}
lim sup	

log { q
—1]

-1/n

	

= U ,

/2n ,i (f)

where b has the same meaning as in Definition 2.

Proof Since p(p, q) = b, it follows from Lemma 1 that for given e > o
and r ~ ro ,

logM(r, f) < exp [P—zl (log(e—i] r)b+f .

Using (2 .1) in aboye, we get

(2.4) Ion l/n(f ) C log k + log deE1 log r +
exp~—2] ( log [ q --1] r}b+E

~ in

	

--
n

Choose the value of r satisfying

1/(6+e )
(2 .5)

	

r = exp[q—11 (logP_ 21 	 n

b+ e

For (p,q) = (2, 1), (2 .5) implies r = (n/e)/E and using this value in
(2.4), we get

Pn,3(f) < k(de E1 ~ ee n1 E
~

	

n

or

1/ n
(f)

	

k l/nde Ei (ee) l /e
Pn,3

	

C

	

n 1 /E

which on taking límits gines

lim supni/Etin,3 (f) C oa .
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1/(1+E )

In case of (p, q) = (2, 2) we observe that log r = ( 1+E )

	

satisfie s
(2 .5) and (2 .4) is reduced to

1/(
1`+-E )

lo

	

C log k +	 Ti + n (log de" – n
g11 71 ,3

	

1 +

	

1 + e

log,~ gin > (1+o(1)) (1 + E )

Thus,

n l/( 1 +E )
(2 .7)

	

limsup

	

~,~	 < 1 .
n,—•°° loó I.G n,3 ~ .f

Finally, for (p, q)

	

(2, 1) and (p, q)

	

(2, 2), (2 .4) and (2.5) give

log [e-11 ÇJ(f) > (1 + 0(1)) (log íP-21 )
1/E , p > q ,

or

log [e-1]

	

~(f)> (1 + 0(1)) (log[P_21
1 + s)

	

, P — 9 •

It means that for all p ~ q � 3 ,

(1og2' )1/(b+E )
hin slip	 Ç 1 .

n—;oa log[q-1]
_

~n,3n
(
f

)

Clearly, (2 .6), (2 .7) and (2 .8) combine to give

lim sup

	

C oo .
n—>oc log[q --1]

~n lln(f
)

, j

foreveryS> 9 and j = 1,2,3 .
If limit superior in (2.9) is finite and positive for some S > 4 then for

every a > 0, we have

(1og 2 ' n}6+'
lim sup

	

= DO .
ri—>oo log [q--i] pn

IIn (f), j

(log[P-z ] n eó
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This is a contradiction to what we obtained in (2 .9) and hence the firs t
part is proved . ■

For the second part, we put T* (p, g) = 0 in Theorem 2 to get the
required result .
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