
Publicacions Matemàtiques, Vol 38 (1994), 175-185 .

AN APPLICATION OF
METRIC DIOPHANTINE APPROXIMATION

IN HYPERBOLIC SPAC E
TO QUADRATIC FORMS

S. L . VELANI 1

Abstract	
For any real T, a lim sup set WGty (T) of T-(well)-approximabl e
points is defined for discrete groups ~ acting on the Poincar é
model of hyperbolic space . Here y is a ` distinguished point ' on
the sphere at infinity whose orbit under G corresponds to the ra-
tionals (which can be regarded as the orbit of the point at infinity
under the modular group) in the classical theory of diophantin e
approximation .

In this paper the Hausdorff dimension of the set WG , y (T} is de-
termined for geometrically finite groups of the first kind . Conse-
quently, by considering the hyperboloid model of hyperbolic space ,
this result is shown to have a natural but non trivial interpretatio n
in terms of quadratic forms .

1 . Introduction

The Euclidean norm of a vector x ~ (x 1 , . . . , xk , xk+ 1 ) in Rk+1 wil l
be denoted by 114, i .e . iixii = ixx + . . . + x~ + xl+1 } 1 /2 . The k + 1-
dimensional unit ball

Bk+l = {x E

	

: llxll < 1 }

is a model of k + 1 -dimensional hyperbolic space and supports a metri c
p derived from the differentia l

dP=	 dx ~ ~
1 — lixII 2
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The unit ball model is usually referred to as the Poincaré model .
Geodesics far the metric p are ares of circles orthogonal to the unit
sphere S I and straight lines through the origin .

Denote by M(B" -}-1 ) the group of orientation preserving Moebius
transformations preserving the unit ball B"+1 . The group M(8"+1 )
preserves the aboye metric p . Let G be an arbitrary discrete subgroup
of M(Bk+1 ) and denote by L(G) the limit set of G, the set of cluster
points in S' of any orbit of G in B"+1 . The limit set is either empty
or contains one, two or an infinite number of points . The group G is
said to be elementary if the number of points in L(G) is at most two ,
and non-elementary otherwise . Also the group G is said to be of the
first kind if L(G) = S k and of the second kind otherwise . So all elemen-
tary groups are of the second kind . In this paper, G will be restricted
to non-elementary geometrically finite discrete subgroups of M(B 1 +1 ) .
By definition, there exists some convex fundamental polyhedron with
finitely many faces which implies that G is finitely presentad (see [7] and
[13] for further details) . The reader is referred to [11, [2] and [7] for
a general introduction to the theory of discrete groups and hyperboli c
geometry .

For each z, w in B~+1 let

1

	

Iiz — wil 2
2

	

(1 — 110)(1 — 11w11 2
L(z, w) — +	

Clearly L(z, w) > 1/2, and L(z, w) is related to the hyperbolic distance
p(z, w) between z and w by cosh 2p(z, w) = 2L(z, w) . For s E I[8 define
the exponent of convergente of G as

b(G) = inf s > 0 : E L(z, g(w)) —S < oo
gE G

The series in the aboye definition diverges if s C S (G ) and converges if
s ~ S( G ) . It is a classical fact that S(G ) E [o, k] and that if G is of the
first kind S (G) = k, while if G is of the second kind á(G) E [o, k) . The
reader is referred to [7] and [9] for further details .

The following definition of T-approximable is the natural extension of
Defiñition 1 given in [14] .

Definition 1 . For each real number T, a paint x in the set L(G) is
said to be T-approximable with respect to a non-empty finite subset A
of L(G) if for some y in A the inequality

ilx — g(y) II 5 L(0, g(0))—T
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is satisfied for infinitely many g in G . Let ,

WG;y (T) = {x E L(G) : N

	

II Ç L(0, g(0)) -- T

for infinitely many g in G }

denote the set of T-approximable points with respect to y in L(G), and
denote by WG; A (T ) the set of points x in L(G) which are T-approximable
with respect to A. Thus

WG ; A (T ) = U WG ;Y(T ) •
yEA

With reference to the aboye definition let y be an arbitrary parabolic
cusp of G is there any, and a hyperbolic fixed point otherwise . Let dim F
denote the Hausdorff dimension of a subset F of H1 k +1 . For the definition
of Hausdorff dimension and for further details the reader is referred to
[5] . The following results are a generalization of the metric results give n
in [14] .

Theorem 1 . For T > 1 ,

dimWG;y (T) <
S(G)

Theorem 2. If the group G is of the first kind, then for T > 1

dim WG;y (T )

Note that for groups of the first kind 5(G) = 1e; so Theorem 2
just implies that for these groups equality holds in Theorem 1 . Since
dim(UyEA WG ;y (T)} = maxyEA {dim WG;y (T ) } for any finite set A, the
following result is a direct consequence of Theorem 2 .

Corollary 1. Let A be a non empty finite set of parabolic cusps if
there are any, and a finite set of hyperbolic fixed points otherwise . For
T > 1,

k
dim WG;A(T) _ – ,

T

where WG;A (T) is the set of points x in Sk which are T-approxirnabl e
with respect to A .

Remark. For groups with parabolic elements, Theorem 2 also ap-
pears in the work of M . V. Melián and D . Pestana [6] . They also give

k
'7-
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the equivalent geometric result in terms of the `rate ' of excursions by
geodesics into a cuspidal end of the associated hyperbolic manifold .

In Section 2, we provide the reader with the results required to prove
the aboye theorems . In view of these results, the proofs of the theorems
follow on using essentially the same arguments as in the Ftiichsian case
(k = 1) [14] ; and will therefore be merely sketched . On t he whole, the
results of Section 2 are generalizations of Pattersons results for Fuchsian
groups stated in Section 2 of [14], to geometrically finite groups with the
restriction that all parabolic cusps (if there any) are of maximial rank .

The main purpose of this article is to give an interpretation of The-
orem 2 in terms of quadratic forms . For this, suppose that c E R and
consider the k + 1 -dimensional hyperboloid

Q(c) _ {(x,y) E I[8k+1 x I[8 : y 2 — Iixii 2 = c} .

If c is positive Q(c) is two sheeted, if c is negative it is of connected and
if c = 0 it is a cove . Denote by Q+ (c) the upper half of Q(c), i .e .

Q+ (c) = «x, y) E Q(c) : y > 0} .

The map p : Q+ (c) —> B k+1 defined by

x
P(x, Y )

is a bijection for positive c and p : Q+ (o) —> S k is a surjection. A ray on
Q+ (o) passing through the origin is mapped by p onto a single point on
Sk , different rays are mapped onto different points . However the map
p : II n Q(0) ---~ Sk , where II is a k + 1 -dimensional hyperplane such that
II n Q(0) is a subset of Q+ (0), is a biject ion and moreover is easily seen
to be bi-Lipschitz .

For z = (x, y), let
q(z) = y2 - - ll

x
ll 2

denote the quadratic form on Rk+1 x R. The function q(z) of the sin-
gle variable z determines the symmetric bilinear form q (z 1 , Z2) by the
formula

¡

	

1
g ( Z1, z2) = 4

{q(z1 + z2} - q(z1 - z2)}

so that q(z, z) = q(z), see [3] . A lattice in Rk+2 is the set of points

u1b1 + u2b2 + . . . + uk+2b k + 2

where b 1 , b 2 , . . . , bk+ 2 is a basis for the lattice ( i .e . a set of k+ 2 linearly
independent elements of Rk+2), and u 1 , u2 , . . . , uk+ 2 run through Z. Let



DIPHANTINE APPROXIMATION AND QUADRATIC FORMS

	

179

A be a lattice in Rk+l x R on which the quadratic form q takes integral
values, i .e . q : A ----~ Z .

The group O (k + 1, 1) acts on each Q(c) and leaves the quadratic form
q(z) and the bilinear form q(z1, z2) invariant . The action is transitive
if c 0 and is also transitive on Q(0)\{O} . Let lk+ 1 denote the k + 1 -
dimensional identity matrix. Then in matrix notation A E O(k + 1,1) i f
AT JA = J where

1 0

	

. .

	

0
0

-4+1
0

whence (det A) 2 = 1 . For further details see [1, page 371 and [2, Sec-
tion 3 .71 . Far c positive, Patterson [10] has shown that M(Bk +1 ) , the
group of orientation preserving Moebius transformations preserving the
unit ball 8k+1 , can be identified with the subgroup G + (k + 1,1) of
O (k + 1,1) of index 2 which preserves all the Q+ (c) . More precisely,
M(B k+1 ) = p(O+ (k + 1,1)}p—1 .

Let F be the maximal subgroup of 0+ (k + 1,1) which preserves the
lattice A introduced aboye. By definition r preserves each Q(c) . It i s
known that I' acts discontinuously on Q(1) and that the quotient Q(1)/F
has finite volume. Also, if q takes on the value 0 on A \{0}, so that
(Q(0)\{o})nA O, the quotient Q(1)/r is not compact . Let G = pI'p —1 ,
then G is a discrete subgroup of M(Bk+ 1 ) with finite covolume . Since G
is of finite covolume it is certainly of the first kind, and by a theorem o f
w. P. Thurston ([11, Prop . 8.4 .3D is also geometrically finite . Hence G
is a geometrically finite group of the first kind . Furthermore, if Q(1)/F
is not compact then the quotient B '+1 /G is not compact and so G
contains parabolic elements [131 . In this case, to each parabolic cusp of
G there corresponds a ray on Q(0) such that its intersection with 11\0}
is non-empty; and any point of (Q(0)\{0}) n A( O) corresponds to some
parabolic cusp of G .

In Section 3, we prove the following interpretation of Theorem 2 in
terms of the quadratic form q and the lattice A introduced aboye .

Theorem 3. Let q, A be as above and let a be a positive real number .
Suppose that Q+ (0) n A O . For cx > 1, the se t

W(a) = {( E Q(0) Iq((, z)I
for infinitely mant' z in Q(0) n A }

has Hausdorff dimension +1 + 1 .
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Some results on discrete groups

In arder to simplify notation, write L g for L(o , g(0)). It is a well
known fact that for any positive real number N

~ 1 CC 1V
ó(G) ,

gEG
Lg< N

where the implied positive multiplicative constant is dependent only on
the group G ([7], [9]) . A direct consequence of inequality (1) is that fo r
t < 6(G)

(2)

	

L-t

	

S (G)	 . N6(G) - t<<	
g «G} -

gEG
LgC11T

The reader is referred to [14] for the proof of (2) . In fact inequalitie s
(1) and (2) are valid for arbitrary discrete subgroups of M(B '+ 1 ) . Given
these estimates, the proof of Theorem 1 now follows on using the same
arguments as those in Section 4 of [14] .

The proof of Theorem 2 relies on the concept of a `ubiquitous system '
([4, Section 5] in [14] } , and the following results are essential in setting
up such a system .

Theorem 4 . Suppose that G has no parabolic elements . Let rl, n'
be the set of fixed points of a hyperbolic subgroup of G . Then there is
a positive constant c with the following property : for each x in L(G) ,
N > 1, there exist y in {i, ri' }, g in G so that

<N and ii x— 9(Y)II < Ñ
.

Theorem 5. Suppose G has parabolic elements only of maximal rank
k and let P be a complete set of representatives of the cusps of G . Then
there is a positive constant c with the following property: for each x in
L(G), N > 1, there exist y in P, g in G so that

Lg < N and llx — g(y) II <	 c	.\/L9 N

These theorems are a generalization of Dirichlet's theorem in the the-
ory of global diophantine approximation and were proved by Patterson
in [8] for Fuchsian groups . It should be noted 'that for Fuchsian groups

(1)
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the concepts of geometrically finite and finitely presentad coincide and
that all parabolic cusps are of maximal rank . The proofs of the aboye
theorems make use of the fact that G has a convex fundamental polyhe-
dron with finitely many faces and that in the case of Theorem 5, there
exists an orbit point of the origin within a bounded distance (dependent
only on G and P) of the summit of a horoball belonging to a complete
sety of horoballs [12] for G . This latter fact is guaranteed by considering
only groups with cusps of maximal rank . However, it should be possible
to remove this restriction . In any case, for the purpose of this paper
Theorem 5 is required in the proof of Theorem 2 in which G is of the
first kind, and so all cusps are automatically of maximal rank .

For a subgroup H of G, let G i i H be a set of representatives of the
cosets {gH : g E G} so chosen that if g E G i IH, h E H then Lg Ç Lgh .
So in this notation the minimum of Lgh (h E H) occurs when gh E GilH .
The foliowing geometrical results are extensions of Propositions 8 .1 and
8.2 in [81, and can be proved using the same arguments as in the Fuchsian
case [8] .

Proposition 1 . Suppose G has parabolic elements only of maximal
rank k and let P be a complete set of representatives of the paraboli c
cusps of G . Then there are constants c1 , c2 , c3 , depending only on G
and P with the following property: if p, q E P, g E Gil Gq there is an
element h in Gil Gp so that

I — 9(q )II < cl and c2Ly Lh c 3 L y .
9

Proposition 2 . Suppose that has G no parabolic elements . Let rl, rl '
be the set of fixed points of a hyperbolic subgroup of G . Then there are
constants c4, c5 , c6, depending only on G and {r], rl'} with the following
property: if g E GilG,in , there is an element h in Gil G,m, so that

Ilgeri') — h( 97)iI < L and cS Ly < Lh < c6 Ly .
9

Providing the group G has parabolic elements, it should be noted
that the hypotheses of Theorem 5 and Proposition 1 are satisfied for
all non-elementary geometrically finite groups of the first kind and fo r
all non-elementary finitely generated Fuchsian groups . The two propo-
sitions play an important role in `decoupling' the parabolic cusps or the
hyperbolic fixed points in order to obtain results for a single paraboli c
cusp or a single hyperbolic fixed point .

Let G be a group of the first kind and y be an arbitrary paraboli c
cusp of G if there are any, and a hyperbolic fixed point otherwise . By
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Theorem 1, dim WG;y (T) Ç k/T for T > 1 ; so in order to prove Theorem 2
it is sufficient to show that dim WG ;y (T ) > k/T(T > 1) . This lower bound
inequality is obtained by using the concept of ubiquity and the reader is
referred to [4] and/or [14] for the definition of ubiquity .

Let SZ be an open subset of Sk and let R. = {g(y) E : g E G} be a
set of points in 12 . Far a positive constant c 7 , let

: G

	

: 9 f-+
Lg

)3

	

c 7

be a positive function on G and le t

: Hl+ -> IR+ :x(c7x)-T ,

be a positive decreasing function with ~~x} -> 0 as x --+ oo . On combin-
ing the results stated in this section with the arguments used to prove
Theorem 2 in [141 ; it can be verified that the system (R., ~3} is ubiquitous
relative to the function

A(n) = 4c8n-1 log n ,

where c 8 is a positive constant . Basically, this implies that for each
positive integer N there exists a Lebesgue measurable subset A(N) of
such that (i) limn~~ 19\A(n) ~ = O, where 1X 1 denotes the k-- dimensiona l
Lebesgue measure of a measurable set X ; and (u) for any x in A(N) ,
there exists a g in G with Lg Ç c7 N such that the inequality IIx- g (y ii <
A(N) is satisfied . The function a associated with the system (7?., ~)
above, arises naturally from Theorem 5 and Proposition 1 in the case
when G has parabolic elements and from Theorem 4 and Proposition 2
otherwise . The set A(N) is an approximating set for SZ in the measur e
theoretical sense and is obtained by `thickening' each point g(y) in 11
with Lg Ç c7N by a A(N)-neighbourhood .

It follows from Theorem 6 in [14] that

dim WG;y (7) k-y ,

where

= min 1 lim su
log A(n)

= min {i }
1

,y

	

' ~~p log~~n}

	

'n

Hence for 7 > 1, the correct lower bound inequality follows .
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3 . Proof of Theorem 3

Let 1' be the maximal subgroup of G+ (k + 1, 1) preserving the lattic e
A and consider the action of F on Q(1) . Then G = pI'p -1 is a geomet-
rically finite group of the first kind, and since Q+ (o) n A 0 the group
G contains parabolic elements . Let A be a complete set of inequiva-
lent parabolic cusps. Since G is geometrically finite, the set A is finite .
Consider the set WG ;A (r) = UyEA WG;y (r) where

WG;y (r) = {x E S k : I I x— ()II ç L9T far infinitely many g in G} .

By Corollary 1, dim WG;A (r) = kiT for T > 1 .
For any 'y in F let g = p-yp -1 be the corresponding element in the

group G. Patterson in [10] shows that there exist positive constants
cg, cm, so that if z E Q+ (o), then for any -y in 1' there exists fy * in -y I' z
such that

II-y(z) 11 < c9Lg

and
lly*(z)ll ~ cioL9* 11 z 11 .

Here I' z = {¡y E F : -y(z) = z} is the stabilizer of z, and so -y(z) =
'y* (z) ; and g* E g Gp(Z) where Gp(Z) = {g E G : g(p(z)) = p(z)} is the

stabilizer of the point p(z) in S k . This shows that Lg can be taken to be
comparable with ll'y(z)M for the optimal choice of g, Le . for g in G I I Gp(Z)

in terms of the notation introduced in Section 2 .

In the set WG;y (r) replace the g(y) by p(z) for some z in Q+ (o) nA and
take L g to be comparable with lizM . On writing g(y) = p(z), x = p(()
where ( E Q (o), it is easily verified that

(3)

	

I
	 I

Hl z illI M

Consider the set

W11 = {( E IInQ(0) : 4((, z)i Ç 11(11 ifor i . m . z in Q+ (0)f1A} ,

where H is a k + 1-dimensional hyperplane of the form described earlier .
In view of (3) and the discussion aboye, the map p = Wn ~ WG;A (r) is
bi-Lipschitz . Since Hausdorff dimension is invariant under bi-Lipschit z
transformations, the set Wn also has Hausdorff dimension k/r for 'r > 1 .

Consider a ray on Q(0) passing through the origin and containing a
point of the set Wn. Excluding the origin, each point on the ray belongs
to the set W(2r - 1), since q(r(, z) = rq((,z) for r E R\{0} ; and each
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point in W(2 7- - 1) Ties on some ray passing through the origin and
containing a point in Wn . Hence

W(27 — 1) _ {r( : ( E Wn, r E R\{0}} ,

from which it follows that for T > 1

dimW(2T—1)=dimWn+l= ~+1 .
T

Putting cx = 27 — 1 the assertion of Theorem 3 follows immediately .

Remark . In the case where Q(0) n A = {0}, elements of Q(0) are
approximated by a pair of hyperbolic fixed points . An analogue to The-
orem 10 in [10] should be possible for this case. 1 hope to pursue this
problem in the near future .
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