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ON THE EXISTENCE, UNIQUENESS AND
PARAMETRIC DEPENDENCE ON

THE COEFFICIENTS OF THE SOLUTION
PROCESSES IN McSHANE'S STOCHASTIC

INTEGRAL EQUATIONS

ADRIAN CONSTANTI N

Abs tract
In this paper we use the Schauder fixed point theorem and meth-
ods of integral inequalities in order to prove a result on the exis-
tence, uniqueness and parametric dependence on the coefficient s
of the solution processes in McShane stochastic integral equations

1. Introduction

In this paper we consider the problem of the existence and uniquenes s
of the solution processes in the stochastic integral system

r

	

t

(1) xZ
(
t) = a Z( t) + E J gj ( S , x ( S )) dzj

j=1
0

r

	

t
h; k (s, x(s) } dzi (s)dzk ( s ) , o Ç t Ç a, z = 1, . . . , ~z ,

0

where the stochastic integrals involving dz3 are interpreted as McShane
stochastic integrals .

Some previous results were given by McShane [13] in the special case
in which a z is not depending on time and the processes zi are sam-
ple continuous and by Elworthy [8] which does not require these condi-
tions but considers stronger hypotheses on gti and h; k . Recently, Angulo
Ibañez and Gutiérrez Jaimez [1] proved (under weaker requirements than
in [8] and [13]) an existence and uniqueness theorem for (1) assuming
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that the functions gii and hii k satisfy a Lipschitz condition and the pro-

cesses zá satisfy a K-condition, using an adequate version of the Fomin-

Kolmogorov fixed point theorem . They considered in [2] the problem o f

the convergence of the solution processes in McShane's stochastic inte-
gral equation systems with coefficients depending on a parameter under

similar assumptions to [1] .

Under the hypothesis of a weaker condition than the Lipschitz condi-
tion on and hti' k we prove an existence and uniqueness result for th e

solution process of equation (1) applying Shauder's fixed point theorem

[15] and methods of integro-differential inequalities (see [3], [4], [5], [7] ,
[9]) . Under the same hypothesis we prove also the continuity with re-
spect to the initial condition and we consider the problem of parametric
dependence of the solution processes on the coefficients, generalizing the

results of [2] .

2 . Preiiminaries

Let (S-2, F, P) be a complete probability space and let {F, o t < a}
be a family of complete u-subalgebras of F such that if o Ç s ç t Ç a
then Fs Ç Ft .

Let L 2 be the space of all random variables y : SZ --> IR with finit e
L 2-norm 11 . II and let L2 be the space of all random variables x : S2 —> If~n
with finite norm ii • j j ,~ ,

n

II x IIn =

	

iIl2,

	

x = (Xi, . . . ,xn) E L .
i=

We say that the real valued second order stochastic process z on [o, a]
satisfies a K-condition if z is adapted to the Ft ( i .e . z(t) is Ft-measurable
for every t E [o, a] } and

1E[(z(t) — z(s))P/Fs li

	

Kit — s i

a.s . whenever o Ç s ç t < a, p = 1,2,4 . An example of such a process
is a Wiener process with respect to the Ft , o Ç t ç a .

Let us define also for each second arder process x on [o, a] the norm

= sup {iix(t)ii} .
tE[O,a l

For the basic elements of the McShane stochastic calculus theory w e

refer to McShane [13] and Elworthy [8] . Let us remind only that if f :
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[o, a] —> L 2 is a measurable process adapted to the Ft and if t -~ I
is Lebesgue integrable on [o, a], then ([S], [9]), if z 1 and z2 satisfy a
K-condition, the McShane integrals

J
0

Q f(s) dz i (s), J Q f(s) dzl ( s )dz2 ( s )
0

exist, and the following estimates are true

f
a

f (s ) dzi (s )

a1f(s) dzi(s) dz2(s )

C j J a IIi 2 cu

y

'
J

where C = (2 + 8Ka) 1 " 2 .

We will use in Chis paper the following result

Lemma (Bihari [3]) . Let v, h be positive, continuous functions on
0 < t < a, and let q be a nonnegative constant; further let w be a positive
nondecreasing function on [0, oo) . Then the inequalit y

t
v(t) < q +

	

h(s)w(v(s)) ds, 0 < t < a ,
0

implies the inequality

Lt
v(t) < G-1 (G+

	

h(s)1
\

	

/

where G(u) = f~s} u > o, and a ' zs defined so that G(q) + f h(s) ds

lies within the domain of definition of G-1 for o Ç t < a' .

For proofs of the lemma, see [3] and [5] .

3 . Existence and uniqueness of solutions

Let C [O, a] denote the space of all processes x : [o, a] —> L2 which are
continuous and adapted to the Ft . A solution to the equation (1) on
[O,a] is a process x E C[0, a] which satsifies (1) on [O,a] .

Let us assume that

(H 1 ) the noise processes zj , j = 1, . . . , r, satisfy on [o, a] a K-condition ;

ds, otÇa' ,
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(H2) if f is any one of the functions h i.n, : [ o, a] x L2 —> L 2 , z =
1, . . . , n ; j, k = 1, . . . , r, then f (s, x) is continuous in x on L~ fo r

every s E [0, Q] , and far any x E C[0, a] , the process t —> ,f (t, x (t ) }
is measurable and .Ft-adapted with t --~ II f (t, x (t)} 1j 2 bounded on

[O,a] ;
(H3) there exists a continuous, nondecreasing function w : R+ ~ R+

with w(0) = o, w(t) > o for t ~ o and

1
ds

	

t ds
hm	 	 = oc, lim

	

= o0
t—o t

w(s)

	

t—}oo ~ w(s)

such that

ll f ( t , x ) — f(t , y) I1 2 < w (llx — II),

	

t E [O,a],

	

x , y E Lz ;

(H4) the initial condition a belongs to C[0, a] .

Theorem 1 . Let us suppose that the hypotheses (H 1 )-(H4 ) are satis -

fied. Then there exists an unique solution of the equation (1) on [0, a] .

Proof: Let us first prove the existence of a solution on [o, a] .

We define the operator T : C[0, a] —> C[0, a] by

r ¡t
Tx(t) = a(t) + E J gi (s, x(s)) dz; (s )

j=1 0

r ~-E ft
IZik(s, x(s)) dzj (s) dz k(s), 0

	

t < a .

Let M = 2n sup lñ + 4rtC2(r+r2 ) 2Ka where
tE[O,a]ll

Ils; (t~ o) II~,

	

sup

	

,0)1 1 2
t E[o]

	

tE[O,a l
i=1, . . .,n ; 3=1, . . .,r

	

i=1, . . .,n ; 7,k=1, . . ., r

K = max

	

sup
t E [o, ~,a

n ;

and let us consider

¡ ds
G : (0, oo) —+ R, G(u) =

	

w(s)

(the hypotheses guarantee that G is a bijection from (0,00) to R) .
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We also consider the functio n

m(t) = G--1 (G(M) + 4nC2(r + r2 ) 2t), o ç t ça.

This function has the property that

¡t

m(t) = M + 4nC 2 (r + r 2 ) 2 J w(m(s)) ds, 0 < t < a ,
no

being the solution of the differential equation

m ' (t) = 4nC2(r + r2)2w(m(t)), 0 < t < a ,

with initial condition m(0) = M .

We consider the se t

B = {x E C[0, a] : Ilx(t)~~n < m(t), 0 < t < a} .

This is a closed, bounded and convex subset of the Banach space C[0, a ]
and we will show that T(B) c B .

Let x E B . We have then that

t

	

1 1/ 2fo t

G C {J 9j ( S , x(s)) Ii 2 dS
1~

	

J
r ft

	

1/ 2

(hit (s, x(M — gii (s, 0)II + lig;(s, 0)11) 2 ds
l J

<C ( J t(2 II9;(s , x ( s )) — 9;(5 , 0 )11 Z + Z I9~(S , 0 )11 2 ) ds
1l o

( ¡t

	

2Kt}

	

C { 2 J w(llx(s)ii~) ds -E- 2Kt }

	

0 < t a ,
l

	

o

	

J

and similarly

t
h~k(s,x(s)) dzi (s) dzk(s )

f
e

	

1 / 2

	

C{2

	

w(11x(s)iIn) ds + 2Kt }

	

0 < t < a .
o

deduce that

IIT=(t)II„s

	

sup I
eElo,ml

( ¡t

	

1 / 2

	

+ 2n(r -}- r 2)c

	

w(11x(s) iIñ) ds + Kt }

	

0 t < a ,
lo

	

J

1/2
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thus (since x E B )

!i Tx(t ) PIñ

	

t

	

1 / 2 a

sup

	

1 w(m(s)) ds + Ka }
tE[O,a]

	

f
< 2n

E
Íp lla(t) + 4nC2(r + r2)2

	

w(m(s)) ds + 4nC 2 (r + r 2 ) 2Kat

¡ t

= M + 4nC2(r ~- r 2 ) 2 J w(m(s)) ds = m(t), 0 < t a .
n0

Hence T(B) c B.

In a similar way we prove that if x E B, then

I ITx(t) — Tx(s) 11
n

< 4nC2(r + r2)2 ft w(m(u)) du + 21la(t) —

+4nC 2 (r+r 2 ) 2 (t—s)K, 0<s<t<a,

from where we conclude that the set T(B) is equicontinuous .

On the other hand we have for x, y E B that

r

	

l

11 Tx (t ) —Ty2(t)C li(( )) - 9~sy(s)) 11 2ds }
j= l {ft 1

r

	

l

{ft Ilh k (s,x(s)) — h(s,y(s)) 2 ds }

	

0

	

t < a .
7,k 1

From (H3 ) and the continuity of g ij (s, x ) and h3 k (s, x ) in x we deduce by
the Lebesgue convergence theorem that T is continuous . An application
of Schauder' s fixed point theorem enable s us to deduce that T has a fixed
point in B, thus equation (1) has a solution on [0, a] .

Let us now prove the uniqueness of solutions far equation (1) .

Suppose that there exist two different solutions x, y E C[o, a1] of equa-
tion (1) on some interval [o, a l ] with 0 < al Ç a . Then there exist point s
0 C t < a1 with ii x (t) --- y(t)IIn> 0 . Let b be the lower bound of these
t . We have then that l— y(b)l1n == o, but l— y(t)ii n > 0 for
b < t Ç b+ ,c3 with a certain number ,@ ~ 0 .
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. We have that

r

	

t

	

1 1/2

	

ll x2 (t) — yZ ( t ) Ii

	

E c ~~
Il9(5, x(s)) — 9~( 5 , ~J( S ))11 2 ds 5

.9=1

	

0

t

	

1/ 2

+ É

	

C ¡
J

Ij,k=1

	

l 0

	

¡ ¡t

	

l i /2
(Cr+Gr)J w(llx(s) — y(s) lIñ) ds i

	

lo

	

J

thus

11 x(t) — y(t)~~ñ Ç n(Cr + Cr 2 ) 2 f t w~~ i x(s) — y(s)Ii
ñ
) ds, 0 G t al .

0

Sílice w(0) = 0 and ilx(t) — y(t) li n = 0 on [0, b] we obtain that

flix(t) — y(t) l n(Cr+Cr2 ) 2 w(llx(s) — y(s)~~) ds, b t < b+~ ,

thus (denoting v(t) = li x(t) — y(t) ii ñ, b < t < b+ O) for every e > 0 we
have

¡t
v(t)

	

+ n(Cr -}- Cr2 ) 2 J w(v(s)) ds, b < t G b + ~ .
b

Let VE (t) = e + n(Cr + Cr 2 ) z fb w(v(s)) ds, b < t < b + /~ . We have
then that

VÉ (t) = n(Cr + Cr 2 ) Zw(v(t)) < n(Cr + Cr2)2w(V,(t)), b < t b+ )3 ,

thus (since VE (t) > 0 on [b , b +~] )

V'(t)	
< n(Cr + Cr 2 ) 2 , b < t < b + ,3 •

w(VE (t) )

An integration yields

G(VE (t)) — G(VE (b)) < n(Cr + Cr2 ) 2 (t — b) ,

thus

G(VE (t)) < G(VE(b)) + n(Cr + Cr 2 ) 2 (t — b )

< G(e) + n(Cr + Cr 2 ) 2 , b < t b + ~3 .

0 CtÇ al f

bctcb+í3,
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Since 0 < v(t) < VE (t) for b < t < b + /3, we deduce that

G(v(t)) < G(e) + n(Cr + Cr 2 ) 2 P , b c t < b +

for every E > O .

This leads to a contradiction since v(t) > 0 far t E (b, b + O] thus

G(v(t)) is a real number for b < t < b + but limG(E) = ---oo .
E—> o

Thus equation (1) has an unique solution on [0, a] .

This completes the proof of Theorem 1 . ■

Remark 1 . Theorem 1 is not only an existence and uniqueness result ,

it provides also a bound for the solution x E C[0, al :

lix(t)III < m(t), O < t

	

a .

Remark 2. If the hypothesis (H3 ) is satisfied with w(t) _ Lt on IR+
(L > 0 being a real constant) we obtain the existence and uniqueness

theorem of Angulo Ibañez and Gutiérrez Jaimez [1] and as a special case
(when a is not depending on time t and the processes z3 are sample con-
tinuous) of this we obtain the existence and uniqueness result of McShan e

[13] . Our requirements are weaker in some aspects with respect to those

in [8] (Elworthy requires in [8] Lipschitz conditions on the functions

and h~k) .

4. Continuity with respect to the

	

condition

We proved in the preceding section that if the conditions (H1 )-(H3 )

are satisfied, the stochastic integral equation s

tT

f
j =

(2 .k) x(t) = ak (t) + gi(s i x ( s )) dz7 (s )

r

	

t+ E fh ik (sx(s))dzi (s)dzk (s) , 0<t<CL ,

have an unique solution xk E C[0, a] if ak E C [O, al, k � 1 .

Theorem 2. If the hypotheses (H 1 )-(H 3 ) are satisfied and zf al, Ct2 E
C[0, a], then

H X 1

	

x2lll 2n

	

C-' –1 (G(K1IIIQ 1 — a2111 2n) + K2)
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where Kl = 1 + r + r 2 and K2 = nKl (CZr + C 2r 2 )a .

Proof.• In a similar way to the proof of Theorem 1 we can stat e

I —xz( t )ii 2

r 1/ 2

(t)—(t)11 +Ec

	

(s, xi(s))—9~(s, xz(s ))11 2ds }

j=1

ut

T

	

1/ 2

+ c

ut

Il hjk(s , xl(s)) — ~jk(s , x2(S )) II 21,~8

1i,k=1

		

2

r

( 1 + r + r2) 1f w (11xi(s ) —x2(s )llñ) ds

~=1

	

0

T

	

ft
+ CZ

	

w (11 xl(s ) — x2(s)Il2n) ds

	

0 < t < a ,

thus (taking supremes on [0, a] to the initial condition term)

lix i( t) —x2( t )Ii 2n ~ (1+r+r2 )IIIc i —azllin

¡ t

+ n(1 + r -I- r2)(C2r -}- CZr2) J w (11x1(s ) — x2(s) Iiñ) ds, 0 < t < a .

0

By Bihari's inequality we obtain that

11 x i( t) — xz( t )IIn ~ G—1 (G((1 + r + r2)Illai — a2 111 2n

+ n(1 + r + r2) (C2r + CZr2)t), 0 t < a ,

so that

illx l x2 ill 2n < G—1(G(K1

	

a2 111 2n ) + K2) . E

Theorem 3 . If the hypotheses (H 1 )-(H3) are satisfied, cx, an E C[o, a]

and lim Ick — alf i n = o, we have that
k—>oa

~~~ IIIXk–XWn= 0

where x E C[0, a] is the solution of equation (1) and xk is the solution

of (2.k) with initial condition ak E C[0, a], k > 1 .

Proof.• By Theorem 2 we have that

111 xk – x llll 5 G-1 ( G(Killiak – alil 2 ) + K2)
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thus
G (Illxk — x lllñ) Ç G (Killi ak — a iil 2 ) + K2 .

Since lióG(u) = —oo and ~i i Illak — a iliñ = 0 we deduce that

lim
k—› oo G (IIIxk — x lln~ _ -00

thus lim lix k — xf i = o . ■
k ---~ oa

Remark 3. It seems (see the Introduction to [2]) that the first who
considerad the problem of the continuous dependence of the solutio n
process with respect to the initial condition in the context of McShane' s
stochastic integrals were Angulo Ibañez and Gutiérrez Jaimez [2] . Our
hypotheses do require a weaker condition than the Lipschitz conditio n
on and h;k . If w(x) = Lx on R+ (L > D being a real constant) we
obtain from Theorem 2 that

IUx i — x2llre Ç K1eLKZ Il a1 — a2III n2 •

This proves the Lipschitz character of the solutions with respect to the
initial condition in the case of a Lipschitz condition on

	

and h3 k .

5. Parametric dependenc e
of the solution processes on the coefficients

In this section we consider the problem of the convergence of the so-
lution processes in McShane's stochastic integral equation systems with
coefficients depending on a parameter .

Let us consider families of stochastic integral equation systemsr
J(3.) x(t) =

	

(t) +

	

g(s, x(s)) dz(s )

T

f

t

+ É J hik , ~(s, x(s)) dzi (s) dz k (s), 0 < t < a ,
.7,k=1 0

where far each A E A, A being an open and bounded subset of ~m
(m E N), the hypotheses (H1 )-(H4) are satisfied . By Theorem 1 we have
that for every a E A, equation (3.a) has an unique solution xa E C[0, a] .

Let ao be a fixed point in A.
We assume that for every process x E C[0, a] we have

(H5)

	

al t , x ( t)) ~ .Í),o(t, x(t))
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as a --} ao (P expresses the convergence in probability) if fA is any one
of t he functions g~ , ), and k , A '

By Lemma I and the remark of [2] we have that condition (H 5 ) implies
that for every x E C [o, al ,

a
lim J I–fa o (s, x(s))11 2 ds = O .

a–o, o

Theorem 4. If the hypotheses (H 1 )-(H5) are satisfied, then
lim

	

– aa o 111 n = 0 implies lim í– xao iji n = O .
asao

	

ayaa

Proof: The conditions of the theorem allow to state that

i –xáo(t ) 11 2 < (1+ r + r2) ilaVt) –a;,o( t )11 Z

	

r

	

t

+ E c2 f ii 9~,a(s , xa (s )) – 9~,ao ~ s , xao ( s ) ) ii 2 ds
i=1

	

0

	

r

	

t
+ E c2 f h7k>A(S) xa( s )) —hjk,ao(s, X Ao (S)) 11 2 ds

	

7,k=1

	

0

< (l+r+r2) t I aaa( t )II 2

{r

I +
2CZ

	

9~sx(s)) - 9(S , xao(S)) Zds
i=1

r -I- 2 E C 2

	

li9j,a (Sxao ( s )) – 9j,ao ( S ,

	

( s )) ii 2 d s
i=1

ft

r

	

f
t

+2 E C2J
I7,k=1

	

0
r

	

¡ t
+2 E CZ

	

I—hjk,ao(s,xao(s))11Zds

	

0 < t < a,
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since if fA is any one of the functions g ii,x,

	

we have

t

f I—.fao( s , xao(S))II Zds
0
t~ f (li f (s,xa(s)) —h,(8, xao(s))11 +11 fa(s , x~o(s ))—.fao(s , xao(s ))11 )Zds

t
< f(2IfÀ(s,xÀ(s))_f(s,xÀ o (s)) 2+2IIfÀ(8,xÀ o (s))_fÀ o (s,x o (s))M2)ds2)ds

foroCtCa.
We denote by J1 , >, (t), J2 , a ~t} , J3,a (t) and J4 , >, (t), o Ç t ç a, the last

four terms in the last member of the previous inequalities .

The hypothesis (H3 ) enables us to state that

i—xáo ( t ) 11 2 � (1+r+r2) {ii t ) — aáo (t) 11 2 + Jz,a(t ) + Já,„( t )

t
+2(r + r2 ) c2 f w (11 xa(s ) — xAo(s )Il~,) ds}

	

0 < t < a .
0

Denoting

n

Mi(A)=(l+r-I-r2) illaA —aao111ñ+E J2,a~a)+4,a~a)
2-1

	

i

n

=

MZ = 2n(l + r + r2 )(r + r2 )C2

we see that by the hypothesis (11 5 ) we have

n
lim

	

(J , À(a) + J4 ,a(a)} = o
z=

and so, since 1m co, — aa o 1112
ñ

= O, we deduce that ~m MI (a) = O .
A a q

	

a
On the other hand, we have that

i

	

~, < MI(A)+M2
J

tw(11xa(s)—xao(s)IIñ)ds, 0 < t < a .
0

Applying Bihari's inequality, we obtain

l x — xao ( t ) n G—1(G(MI(A)) + M2t), 0 < t a,
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thus

IUXÀ —

	

1 1 1 1 ñ < G--1 (G(M1 (a)) + M2 a} .

Since lim M1 (a) = 0 we deduce in a similar way to the proof of
A—ao

Theorem 3 that lim ilix>, — xao 1111 = 0 . ■
a—>a o

Remark 4. The problem of the parametric dependence of the solutio n
processes on the coefficients was studied in [2], in the case of a Lipschit z
condition on the functions

	

and h; k .
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