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SOME THEOREMS OF
PHRAGMEN-LINDELOF TYPE
FOR NONLINEAR PARTIAL
DIFFERENTIAL EQUATIONS

RAMON QUINTANILLA

Abstract

The present paper studies second order partial differential
equations in  two independent variables of the form
Div{pr|e,1 1~ w1, p2lu,2 [P Tu,z) = 8. We obtain decay esti-
mates for the solutions in a semi-infinite strip. The results may
be seen as theorems of Phragmen-Lindelof type. The method is
strongly based on the ideas of Horgan and Payne [5], (8], (8]

1. Introduction

In [5] Horgan and Payne studied the asymptotic behaviour of solutions
to the equations:
(p(z,u, Vidtte )ya = 0,

on the semi-infinite strip R = {{(z1,22}/0 < 22 < h,zy > O} under
boundary conditions:

(11) U(I]_,D)=u(ﬁ?1,h):0, E1 20!
{1.2) u and U, — O (uniformly in z2) as z; — oo,
(1.3) u(0,22) = flzg), 0<z<h,

where the prescribed function f is sufficiently smooth and satisfies f{0) =
f(h) = 0. This study was made for two kinds of functions :

(case 1) 0<mi<p< M+ Kiplp®+9%),
(case 2) 0<my <pt < M+ Kop(p® + ¢2),
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where p = du/8z; and g = du/8z,. Horgan and Payne obtained cxpo-
nential decay for the solutions. Recently (8] the assumption (1.2) on the
behaviour of the solution at infinity hes been weakened and many others
geometries for the domains have been considered.

These results were motivated by the desire to establish versions of
Saint-Venant's principle in elasticity. A good survey of rescarch on this
principle in several kind of problems may be found in [3], [4]. Similar
methods are currently used in the study of constrained elastic cylinders
of variable cross section [11], {12]. Recent results using related methods
may be found in [9], [10]. Furthermore, some considerations for the
p-laplacian equation were given in [13] and for nonlinear fourth order
equations in [15].

Alternatively, the results may be viewed as theorems of Phragmen-
Lindelof type [2].

Following the main ideas of the work of Horgan and Payne, we gener-
alize the results to a larger class of equations. From now on, R will
be a strip lying in the half plane x; > 0 with fixed lateral curves
olzy),é(zy) for z; > 0. We may designate B = {{z1,z2) € R?/z;, 2
0 and ¢{z1) < 23 < &(z1)}. We will suppose that the width of the cross
section L, = {(z1,22) € Rf/z1 = z} is bounded above by a constant h.
We observe that the Dirichlet homogeneous boundary condition are:

(1.1b) uw{zy,c{z1)) = v{z), &(z,)) = 6 for all z; > 0,
and the end condition may be written as:
(1.3b) u(0,29) = f(z2) for all (0,z2) € Lo,

where the prescribed function f satisfies f{c(Q)) = f(é(0)) = 0. In
this paper we prove the exponential decay of classical solutions of the
equation:

(1.4) Div(p|p|* e, p2lal* " 'g) =0, >0,

where g; = p;(z, v, Vu) in the semi-infinite strip R subject to the bound-
ary conditions (1.1b}, (1.3b) and under suitable hypothesis at infinity
(H.s) which is the natural translation to our case of the hypothesis used
in [8). Our results may be seen as analogues of Phragmen-Lindelof the-
orem for the equations and domains we study.

We establish our results for four classes of equations depending on the
functions g1 and gg. The main result is to establish an exponential decay
estimate for the energy:

15) B = [ Wl + pela )
Rz
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contained in the subdomain R, = {(z),2;) € R%/0< 2 < 21 <} N R
provided that the total energy E.(D) is finite for s = 0, 1. Nevertheless
the method may be used for all natural numbers s. To ensure that the
function Ej is well defined we need to impose at infinity the condition
that the solutions satisfy:

o) tminf [ (o™ + palgl e =0,

z

while to ensure that E; (s > 0} is well defined we suppose that (H.0) is
satisfied together with the condition on the behavior of the solutions at
mfinity:

() iminfe [l + palgl s < oo

z

We may observe that whenever p; and p; are bounded above by a con-
tinuous function of u,p and ¢ then condition (1.2) implies (H.s} for all
se M.

We separate the hypotheses into the following four types:

Type I
0 <my < popl !, and
{1.6) 0 <mg < pa < My + Ky(orlp™t + pale™™).
Type I1
_1 . —1fn
0< ity E PPy 1
(1.7) 0 < p3t < (M + Ko(palp*™ + palg™1))™
Type III
0 < m2 < pp2,
(1.8) 0< p1 < My + Ki{pa|p[™*" + polgi™*").
Type IV

0 < ma < popl ™,
(1.9) 0 <my < plt < M+ Kilp|p[* T + polg|™ ).
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We observe that when p; = pz Types I and III become identical and
naturally generalize Case 1 in [5]. We can say the same thing about
Types II and IV in the case n = 1. Then our hypotheses are a natural
generalization of Case 2 in [5].

A family of functions satisfying the foregoing conditions is given by:
(1.10) pr = {147 |p|" " +72lq** Wand pp = (147 |p|™* +r2lg]™ )7,

where r; and ry are two positive numbers. H 0 <y <z < y+ 1 then an
easy calculation proves that these functions arc of the Type I by taking
my =mg = My =1 and K7 = max{zr;,zre). In the case 0 <z < —ny,
the functions (1.10) are of Type I by taking my = Mz =1 and Ky = 0.
In a similar way our functions are of Type III if 0 € —y < z/n by
taking my = My = 1 and K; = 0. For the Type IV we can fake
my = my = Mz = 1 and Ky = max(ry,r2) whenever —% <y <0and
T = -y

In Section 2 we state two lemmas which are useful in the study of the
exponential decay of the energies E, for the Type I to IV. In Section 3 we
prove the exponential decay of E; for all the Types. We give a complete
proof for Type I, but provide only a sketch for the other three types.
We also give in Section 4 a theorem of decay of the energies without the
restriction that the cross section is bounded above, but the hypotheses
on asymptotic behavior (H.0) and (H.s) must be modified to another
(H'.s). Section 5 is devoted to obtain L™ !-estimates in the whole strip.
We make a similar study in Section 6 but for the cross-section. In Section
7 we obtain an estimate for Ey for the Neumann boundary problem.
Section 8, which concludes the paper, summarises our results by listing
the various Types and measures for which exponential decay have been
established. An appendix to the paper describes a method for estimating
an upper bound to the total energies F{0) in terms of the end conditions.

Acknowledgments. | am grateful to Prof. C. . Horgan and Prof.
R. J. Knops for their comments on an earlier version.

2. Two previocus lemmas

In this section we establish two lemmas about integration which are
useful in proving the resulis of Section 3. First, we generalize a weighted
Poincar€ inequality, due to Horgan and Payne (5, p. 314].

Lemma 2.1. Let p: [0,h] — RY — {0} be a continuous function and
w: [0,h] = R g diferentiable function such that w(8) = u{h) = 0. Then
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there exist two constants Gr.1 and B such that:
h h
/ plulr-l—ld:c < :—:13r+1/ p_ridu/dIIerI,
o o

where 8,11 depends onr and B = foh pdx.

Proof: We consider the change of variable:

= " p(a)da,

so that, dt = pdx, hence we see:

h B
j plultldr = / [u| "t (¢)dt.
0 0

Now, we can apply Poincaré inequality (1], to obtain:

B B
|t < pymre | Vg ae,
4] 0
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where Jr41 is a constant that depends on “r 4 17, Upon recalling that:

du/dt = (du/dz){dz/dt) = p~ du/dz,

we obtain the desired inequality.

From Lemma 2.1 we may obtain an inequality useful in the study of

the behaviour of E;:

h
(2.1) /p|ufff+1)(s+“da:g
0

B
<(s+ 1)r+l(ﬁr+1)_lBT+1/ ol D (du/da) | der,
0

whenever u(0) = u(h) = 0. This inequality may be proved by applying
the former lemma to the function w**'(s + 1)~!. Now, we recall the

following result which is proved in [5, p. 315].

Lemma 2.2. Let p: [0,{) = R — {0} be a continuous function such

thait: ,
/ pdt < Az + B where A, B > 0.
0

Then:

/0 p_]dzz—g—%, for all z > 0.
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3. Decay of the energy

In this section we state and prove some theorems for the exponential
decay of the energy {(1.5) for each of the types considered in Section 1.
We give a complete proof only in the case of Type I. We sketch the proof
in the other cases.

In order to prove the theorems, we need to introduce the function:

1

(3:1) Gsl2) = sfn+1)+1

| el ppul+ e
L:
Because of the divergence theorem, this may be rewritten as:
x
(3_2) Gq(z) = G‘S(Zo) _|_/ / |u|5(n+1}(p1 |p|n+1 + pg|qlﬂ+1)d11
L"I
for all z > 25 > 0. Direct differentiation gives:

(3.3) Gi(z) = f [l (g o+ 4 polgl ) ds.
IJ‘

Holder’s inequality applied to (3.1) leads to the inequality:
(3.4) |Gs(z) <

< m[[ p1|p[n+1|u|s(n+l d$2] ey [] pl|ul(S+l (n+1)d$2] cen i)

Now, we state the following resuli.

Theorem 3.1. Letu € C?*(R)NC'{RUSR) be a function that selisfies
equation {1.4), the boundary conditions (1.1b) and the end conditions
(1.3b), (H.0) and (H.s). We suppose that p1 and po sebisfy conditions
of Type I{1.6). Then for all z > 0 we have:

(3.5) E,(2) < E,(0)e1e™ %,

where

Ky Eo(0)(n + 1)(s (fn,+1)+1)'n'a“+1 ;:;:imz
P MZR2(s + 1)nmet ’

and
(n+Vsn+ 1)+ l}m{‘” 6“+1m2
Mah(s + 1)n7t

oy =



SOME THEOREM OF PHRAGMEN-LINDELOF TYPE 449

Proof: Let G4(z) be defined by (3.1). On using the first inequality of
{1.6) in the inequality (3.4) we obtain:

=1
4l

m bl
- i n41y, (s(n+1} =
61 < syl ol b o
X [/ p2lu|FIH N dzgy)m <
I
< (s +1)B(z)

 (s(n+ 1)+ DmIT A

X I/ pa "l g™+ dg] T <

) [/ oo™l D] 7
L.

< (s + 1)n=+H : 1 B(z)x

(n+1)(s(n+ 1)+ Dm{T B ime

x / D (o o™+ pofgl™ Yz,
Lz

where B(z) = sz polz, o)dza. We observe that the second inequality
follows from (2.1) and the third one from the second inequality in {1.6).
Thus we may conclude that:

(3.6) [Gs(2)] < ks B(2)G(2),

where
(s + 1)n7+

ks = L i
(n+1}(s(n+ 1)+ )m7H griime

H

and B(z) has been defined previously. From inequality {3.6) we may
deduce the following two first-order differential inequalities:

(3.7) Gs(z) = ksB(z)G;(z):
(3.8) ~Gs(2} < ks B(2)Go(2).

We now show that Gs(2} < 0 for all z > 0. To this end, let us suppose
that there exists z* > 0 such that G,(z*} > 0. Then integration of {3.7}
gives:

o f dn
Gulz) 2 Go(z*) xexp [ K7D | —— 2T
( ) ( ) P ( z* an P?(ﬂ:xz)dxz)
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But from (3.7) and the sccond inequality in (1.6}, we have:

/ [l D (o o™+ + palgl™ )z >
L,

E71G(2%)
2 i x
Mzh + Kz [ (p1lp/™th + polg|™* )dee

_ Z dy
3.9) xexp| k! ] |
o p( * Ji Mok + Ka f; {plpI™t + pzlg]““)dzz)

and since condition (H.0} is satisfed, we obtain:

z‘lfL [ul* D (o |pI™ Y+ polgl™ T Mdar >

ET1G(2")
= 2{Mh + Kjez)
__kJ'Gi(e*) | Mah + Koz _a
2{Moh + Kaez) Moh + eKipz* !

exp{k; Te 1Ky In(Mah + eKon)|Z.) =

for all € small and for all 2 > z(¢) > 0. It then follows that:

(310) = / [l (o pl™ 4 polal™ )z
Ly

> kT1G(2")[Mah + eKoz| FoRE 2 [Moh + eKyp2*]eKs |

On letting 2 — co, we observe that for e sufficiently small the right-hand
side tends to infinity, which centradicts condition (H.s). Hence we have
proved that G;(z) < 0 for all z 2 0. On recalling inequality (3.8}, we
have:

(3.11) E,(2) < E:(0)exp (—k;lf B(n)‘ldn).
0
The upper bound for g, in {1.6) gives the inequality:
f / pgdA S Mzhz + KQEG(O),
0 JLy

while from lemma 2.2, we conclude:

: K2 Eo{0)
B(n) ldp > —— — ‘
/0 (m~"dn = 3 M2h3

Thus, the desired estimate is established. R
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Theorem 3.2. Letu € CH{R)NC(RUBR) be a function that satisfies
equation (1.4), the boundary conditions (1.1b) and the end conditions
(1.3b), (H.0) end (H.s). We suppose thot py and py satisfy conditions
of Type 11{1.7). Then for all z > 0 we have:

(3.12) Ey(2) < E4(0D)e%2e™ 27,
where
0, = 12Eo(0)(n + (sn+ 1) +n1)mﬁ Tj
MEZh2(s + Ljnwit
and
o (o Disln+ 1)+ it oI

Moh{s + 1)n==1

Sketch of Proof: From inequality {3.4) we obtain a similar inequality
to (3.6) but with B(z) = [, _p; /" (z,22)dzs and

k, = (s+ Dn»+ 1 =

1
(n+1)}s(n+ 1)+ Dm;H? i

Theorem 3.3. Letu € CH{RINCH RUSR) be a function that satisfies
eguation (1.4), the boundary conditions (1.1b) and the end conditions
(1.35), (HO) and (H.s}). We suppose that py and p salisfy conditions
of Type 111{1.8). Then for all z > 0 we have:

(3.13) E.(2) < E,(0)e4se™ 3%,

where \

K Ep(0)(m+ 1)(s{n + 1) + 1)mZ VT g
MZh2(s + 1)n7h

@s

]

and . .
_(m+D(s(n+1)+ Dmg 877
B Mih(s + Dna '

Sketch of Proof: As before, inequality (3.4) leads to an inequality sim-
ilar to (3.6} but with B(2) = [, p1(z,22)dzs and

(s + 1)n7v1
k, = g S
(n+ 1)(s(n+ 1) + Lym; T 8771
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Theorem 3.4. Letu € C2{RYNCH{RUR) be a function that sotisfies
equation (1.4}, the boundary conditions (1.1b) and the end conditions
(1.3b}, (H.0) and (H.s). We suppose that py and ps satisfy conditions
of Type IV(1.8). Then for all z > 0 we have:

(3.14) E,(z) < B,(0)eQre™%*,

where

_1
K Bo(0)(n + (sl + 1) + Y™ T mI™
M2h2(s + )7+ '

Qa=

and
1

(n+ 1)(s(n + 1} + 1)m7 e ;L‘iimg?

Mih(s + 1)n=+1

g =

Sketch of Proof: From inequality (3.4) we obtain an inequality as (3.6)
where B(z) = sz 07 (2, 22)dx; and

1 n st
k, = (s+1)n =

(n+1)(s(n+1)+ 1)m;‘+1 ,:;;mé‘“

4, Non-bounded cross-section case

Similar theorems may be obtained for a larger class of domains by
means of the techniques used in [11], provided that the functions py
satisfy the conditions (1.6). A slight change of hypotheses permits the
previous method still to be applicable. The restriction on the height of
the cross section is not necessary if we change the asymptotic hypotheses
(H.0) and (H.s) by:

(H’.s} There exists z* > 0 such that:

lim (f;,z e[S+ D (1 Ip|"+? + pa g™ T Ydza ) fo p2d22) B
e CXD( L, padao)” ‘dn)

Now, we suppose that G;{z*) > 0 and we introduce the function:

Z
I(z,2") = / / D (o [pHE 4 palgl™H)dA.
z* S Ly
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From (3.7}, we have:

(4.1) I(z,2") > (expk;l /z f_prg(f:?:cw - 1) Go{z*).
z* Ly 1

On assuming that:

(4.2)

/‘” _

z* an podzy

we may apply the 'Hopital Rule to (4.1) to obtain the inequality:

(J £l (o [p|™+" + polg|™+M)da2)( [, pods)
exp (ks_l I (fs, pgdxg)‘ldn)

Thus, when G,(2z*) > 0 (4.1) can not hold simultanecusly with the
asymptotic condition {H'.s) and we conclude that G,(2) < 0forall z > 0.
Hence we may establish the estimate:

o fF an
Ey(z) < E,(0)ex —kslf—— .
(2} (0) p( A anpzd$2>

Thus, we have :

Z kSGS{z*)'

Theorem 4.1. Letu € C2{R)NC{RUSR) be a function that satisfies
equation (1.4), the boundary conditions (1.1b) and the end conditions
(1.36), (H's) ond ({.2). We suppose that py and ps setisfy conditions
of Type I{1.6). Then for all z > § we have:
Eo(0)k, IKQ
M2l

where k; is given in the proof of Theorem 3.1, !(n) is the hezght of the
cross-section Ly and o = inf 0,00y 1(77).

Ez) < By exp(- 227 dn

Of course, Theorem 3.1 is related with Theorem 4.1. Futhermore, if
we suppose that {(n) < Cn and - o > 2, then

lim 271 / (11D + palgV)daz = O,
Z— 0 L:

and
i 27 [l g™ 4 palgl™ e, < oo

O
=

are sufficient conditions to garantee the decay of solutions.
We also may obtain some theorems for the Types II, I11, IV by suitable

modifying the function g2 by p; ”n,pl and py! in conditions (4.2) and
(H's).
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5. LP-estimates on the strip

The aim of this section is to obtain LP-estimates for the solutions of
our equations for the Types I to IV. To this end we use the estimates for
the energies E. obtained in the Section 3. Thus, our object is o examine
the asymptotic behaviour of the function:

J{z) = f " dA.

Theorem 5.1, Letu € CE{RINC(RUIR) be a function that satisfies
(1.1b), (1.8b), (1.4} ond Eg(0) < co. We suppose that & < dz < ps.
Then' for all z = 0 we have:

(5.1) J(z)=/R " A < (dofnrr) B Eol2).

Proof: First, we may recall the Poincaré inequality:

] |u|”+1d:rg < ﬁw:—il-lhn-l_l/ |q|n+1dx2,
L. L,
which on using the hypothesis on ps enables us to deduce that
[ s < @iy 5 [ pala e
Lz -Lx
Now, if we integrate the former inequality from 2 to infinity we obtain:
24 ¥

J(z) = / ™A < (o) [ el A S
A, R

< (doBprr) TR Ey(2). B

Remark 5.1. The assumption on p, is automatically satisfied for the
functions of Type 1. Then, we conclude the estimate for the solutions
in this case. Moreover, we also can derive a similar estimate for the
solutions of the family given in {1.10) whenever 0 < z.

Theorem 5.2. Letu € C*(R)NCH{RUSR) be o funciion that satisfies
(1.18), (1.8b), (1.4}, Eo(0) < oo and E1(0) < co. We also suppose that
n is a natural number and 0 < p;! < (D2 + Folpilo™! + p2lg™ )™,
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Then, there exist "n+1” positive numbers k;, 0 <1 < n such that for all
z > 0 we have:

(6:2) I = [ furtiaas

< Z kiE; (Z)Eo(z)) + ko ET{2) Eo(z)

l<i<n

Proof: Let us consider :
ey = [ rtida= 1) [ e - delulada,
Rz Rz

where ¢{u) is the sign of u. On using the Holder inequality with the
hypothesis on ps we find:

n

41 ﬁ]‘
s <im0 ([ 53 uriaa) ™ ([ paltian)
R, B,

< B{n + 1M(D2J(2) + BBy (2)) 75 Egz) =T,

and hence, we conclude:
(53)  J(@" < (A(n+ 1)) DaJ(2) + F2E1(2)) Eo(z).

Using now the Newton formulae we see:

n J(2) \ns nmi N F2 iy
S < (5 (g () greia
i)

D, Ei(2)(h{n+ L))" D% Ey(2).

+(

But we have the inequality ab < % -+ %;, whenever p~! +¢~! =1, and
so we may Obtain:

Ty s} ((2«1)"—"(2‘)(%Jf(h(nﬂ))”“D?Ei‘(z)so(z))?—+‘%‘+
1<i<n
+ (h{n+ L))" B B} (2) Bo(2)),

which leads to the desired inequality. ®
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Remark 5.2. In a similar way to that noted in the remark at the
end of Theorem (5.1}, the hypothesis imposed on pg is automatically
satisfied for the Type I1. An easy calculation shows that if gy and po are
of Type ITI or IV, then we have the inequality 0 < p; ' < (m, R4SV A

/" (palp™H + p2lg T, Of course the hypothesis on gy is auto-
maticaly satisfied for the functions of Type . Then, we obtain estimates
of the solutions for all four types.

Remark 5.3. We may generalize the previous results for the case
that n ¢ N. To this end we should make a manipulation from (5.3} that
allows to obtain the inequality

J(2OHH < (h(n 4+ L)Y (DR J(2) + FEr(2)) T Eg(2),

where I{n+1) is the maximum integer which is less than n+1. Now, we
may obtain an estimate for J(z} is a similar way to the proof of Theorem
5.2.

6. LP-estimates on the cross-section

In this section, we obtain LP-estimates on the cross-section for the
solutions of our equations. Under suitable hypotheses, we establish the
exponential decay of the function:

H{z):/ [u|** (2, 2 )dz2.

Theorem 6.1. Letu € C*(R)NCH(RUER) be o function that satisfies
(1.1b),(1.8) and (1.4). We suppose that G < di < pr, J{0) < co and
Eo(0) < 0o. Then for all z > 0 we have,

(6.1}

H(z) = [L 1U|n+1d~'52 <(n+ l)dl—lf(ﬂ+1)Ea(z)l/(n+l)J’(z)nﬁ(n+1)_

Proof: First, we observe

f ||t dey = —(n + 1)/ u)|ul*pdA <

<{n+1) (f |u|”‘+ldA) (/ |p|“+‘dA) .
R. £y

Using the hypothesis on p;, we find:

P T
H(z) < dl—lf(n+l)(n+ 1) ([R |uhn+ldA) (/ p1|p|n+1dA) <
E] Rz

< dl_l‘/(n-'-l){’n-l'-1)E@(Z)1/(n+l)«](z)n{{n+1). =
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Remark 6.1. The hypothesis on g is satisfied for the elements of the
family (1.10) where 0 < y. If we suppose that py = ps the hypothesis on
p1 is automatically satisfied for functions of Type 1 and IIL.

Theorem 6.2. Letu € C2{R)NCH RUSR) be a function that satisfies
(1.1b), (1.3b) and (1.4}). We suppose that 0 < p7! < (Dy+Fy{pp|* 1 +
p2lg|" T, Ep{0) < oo, E1(0) < oc and J(0) < oc. Then for allz > 0
we have:

(6.2)

H(z):/ [u|"dzs < (n+ 1) Eo(2) "IN D J(2) + FLE(2) (21
L.

Proof: First, we observe :

H{z)=—-{n+ 1)/ e(u)|u|"pdA <

z

-1/n, 1n+l mh 1 =
<+ ([ o7 e | mlpmiaa)

Then from the the hypothesis on p;, we obtain:

H(Z) < (n+ I)Eo(z)l/(n-'-l)(DlJ(Z) +F1E1(z))n/(n+l]_ u

Remark 6.2. Forn > 1and 0 < p;' < (D1 +F (o1 [pI 42"+ 1)),
then 0 < py !t < (D) +Fi{p) [p|"t 4 p2lg[™t))™ where D} = maz(1, Dy ).
Thus, we may derive an estimate whenever p, and p; are of Type IV. If
we suppose that g, = p2 the hypothesis on p; is automatically satisfied
for the functions of Types I to IV.

Remark 6.3. By recalling the Sobolev type inequality {see [14, p.
61])

bl
(sup |u(@)]) < KPR full 0,
=€ [0 k]
we may also conclude decay estimates for the function

L{z) = max |u{z,z3}],
z2€L,
when the cross sections are bounded.
7. Neumann boundary condition

Until now, our results on solutions of the equations {1.4) have becn
subject to homogeneous Dirichlet boundary conditions. The aim of this
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section is to sketch similar resuits for Neumann conditions, whenever the
cross- section is the interval [0,h). A deep study of this problem for the
case py = py and n = 1 may be found in [10). Thus we examine the
equations {1.4) subject to the conditions at infinity (H.0}, and the end
condition:

prlpl”'p = g{z2) on 21 = 0,
and the boundary conditions:
g{71,0) = g{x1, 1) =G forall z; > 0.
We also make an assumption on the end condition (1.3) which is related

to the condition that the load he self-equilibrated for an elastic material
(see among others (3], [7]):

(7.1) . g(xg)d:a:g =0

On using the divergence theorem, we see that the former assumption
implies:

(7.2) f o1lp® tpdz, =0 for all 2, > 0.

=

Now, we take v{x1, 22} = u{z1, 22} — #(z;}, where & will be explicitly
defined later. We remark that g(u) = g(v). Because of (7.2) we have:

73) Eo(®) = - |yl tpudos
Lz
Direct differentiation of (1.5}, with s = 0, yields:
(79) Bo(s) = = [ (ool + palal™ )z
Ly

In a similar way to the derivation of (3.11), we obtain the fcllowing
inequality for Ep:

(7.5} Ep{z) +a{2)Es(z) < —/ o2l T ldzy + o™ T2) prv” T dey,
L, L.
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Now, we may obtain similar estimates to (8.5}, (3.12), (3.13} and (3.14)
with s = 0 by taking respectively:

upods
Wz ) = fL 2 for the Type I,
fL 2422
_l.fn
. ©p dz
i{zy) = f:,‘_z—l/n for the Type 11,
f;,_, py T dxs
w(z) = fL pl ? for the Type III,
Jp mdrs
ue, 4z
(z1) = w for the Type IV.

sz p

8 Summary

To conclude we summarize briefly the cases where we have cstablished
exponential decay.

In Section 3, we have proved the exponential decay of the energies F,
for all the Types (I to IV) whenever (H.0) and (H.s) are satisfied and the
cross-section is bounded. In Section 5, we have proved that if (H.0} is
satisfied and the cross section is bounded, then there is exponential decay
of J{z) for the functions of Type [. We may say the same thing for many
functions of Type III. We have alsc established the exponential decay of
J(z) for solutions of the equations containing the functions of Type II,
H1 and IV whenever (H.0) and (H.s) ave satisfied and the cross-section
is bounded.

In Section 6, we have proved that if (H.0) is satisfied and the cross-
section is bounded, we may conclude the exponential decay of H{z) for
functions of Type I. We have also proved the exponential decay of H(z)
for the solutions of the equations having functions of Type IV whenever
(H.0) and (H.s) are satisfied and the cross-section is bounded. Some
comments on the behavior of the function L{z) are also stated.

In order to obtain a good cstimate of the decay for J{z) and H(z)
we may use inequalities (5.1), {5.2}, (6.1) and (6.2}. Notc however that
we have not found estimates for the values of the k; in {5.2) nor when
we estimate H(z) in (6.2). Nevertheless, it should be possible to obtain
these values.

In Section 4, we have extended the exponential decay results for the
energy to an enlarged class of domains.
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Section 7 is devoted to obtaining exponential decay of Eqy for the Neu-
mann problem, whenever the cross section is constant, for the Types I
to IV.

Appendix A: Total energy bounds

The total energies:

(A.l) E(0) = _/Rlu|3(n+l)(p1 |pin+1 + p2|q1n+1)d44,

contained in the strip appears in the estimates. We now obtain upper
bounds for E¢{0) in terms of the end data, for functions of Type L. Similar
estimates may be obtained for the other types. We will consider that R
is determined by two straight lines:

elzy) = erz; and &(z1) = cpzy + A

For an arbitrary C! function ¢(z1, z2), defined on R, Holder's inequal-
ity yields;

(A.2) L(Pl'pln_lp‘b‘l +p2(q]" " o2 )[ul "¢ dA <

< By{0)=+1 (f (o116, [T + paldy2 |“+1)|¢>ls(“+”d/1) ,
R

If ¢ is chosen to satisfy {1.1b), (1.2} and (1.3), the divergence theorem
shows that the left hand term of (A.2) is:

-1

(A-3) sfn+ 1) +1

/ e(u)prlp|* *olul T Vude, = E,(0).
Lo
Thus, we obtain:

(A8 EO< [ (aloa P+ palba )6 Va4
R

For the functions of Type I we have from {A 4):
E©0) < [ palmy o™ + 18" igf Va4 <
R
< [ (Mt Ko™+ o™ ) 0 - P11Vt <

< My /R (g [P + (6,0 PTG dAT

(A5)  +Eamax(mi e " + 6 [M)lel T Eo(0).
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Thus, on setting F(¢)} = 1 — Ky maxg(my d, "1 + @2 *T1) > 6, we
obtain :

EO(O) < .F(Qﬁ)_lMQ /R(m;ll¢‘1 |ﬂ+l + |¢’2 |n+l)dA

Let us take ¢ = f (({%:f;—;‘%) e~ 7", Easy calculations lead to:

6] < TS+ 1| et
and
Cmm o f (B2 —cizi)R h
$a=e S ((cz—cl)zl +h) {co —cijzy + A

On supposing that

Kyl > max((|f (@) + m 2] + el f (22" ),

we have an upper bound: Ep(0) <
< Mo f ‘—(ﬂ-f—l)"ril(ml—l[_rrfl_l_lf Iﬁh]ni—l"_rf In+1(m}n+ dA
- 1=Kz maxpp ny(|f (z2)I"F 4my  al f{z2) Bea | (m2) )7 +7)

Thus:

E@(O) <
_ Plotrs + wtital (o 0n DI + el P 4 171 )ds )
T 1= Komaxpu(1f (2)" + my v fl@)] + el £ (z2) 7))

which after inscrtion into inequality (A.5), yields the estimate :
By(0) < Ky max D f ()7 +
+my (7l F(z2)] + el £ (@) )" Eo(0)+

Mg[h{n+ Dy(1+s(n+ 1)) + (2 — o)
h (n + 1)292(1 + s(n + 1))?

13
X ( A | FEPHEI i I £+ ol £ + |f’|”+l)d$2> :

]%
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