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DISCONTINUOUS SOLUTIONS OF
NEUTRAL FUNCTIONAL
DIFFERENTIAL EQUATIONS

J. C. F. pE OQLIVEIRA AND L. FICHMANN

Abstract

The fundamental theory of existence, unigueness and continuous
differentiability of LP-solutions for Neutral Functlicnal Differential
Equations is presented. Also, the spectrum of the sclution opera-
tor of general autonomous linear NFDEs is described. Finally, an
extension of Hartman Grobman Theorem on local conjugacy near
a hyperbolic equilibrium is proved.

1. Introduction

We develop the fundamental theory of existence, uniqueness and con-
tinuous differentiability of solutions in the space L, of neutral functional
differential equations (NFDE)

0
{1.1) %E{x{t),m(t —7r)) = fla(t),z(t—r)) + / olfyg(x(t + 8)) 48,
with appropriate continuously Fréchet-differentiable maps F: X x X —
X, f:XxX - Xand g: X — X, and an integrable function a from
[—r, 0] into the space £L(X)} of linear continuous operators on X, X = R?
or C", with a positive constant delay r. For 1 < p < oo, we write Ly to
denote the Lebesgue space Ly ([—r,0), X} and write the above equation,
as usual, as

(12) 4D@) = Fiz),

where the functionals D and F are defined on the space € of continuous
functions @ : [-r,0] — X by

D) = Elp(0),p{—7)),
{
Flo) = F((0), 9(—1)) + f o(0)g(0(6)) 9

—T
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and z,(#) = z(t + 6), t in (—o0, 00}, # in [-r,0].
The flow of equation (1.1) is the group {S(#)}ier of strongly-

continuous Hadamard-differentiable operators S(t) on X x L, defined
by

56, = (g + fn t F(Es)dsazt) ,

for any £ € X, ¢ € Ly, where & € LP°(R,X) is the solution of the
integral equation

Dz =6+ /:F(xs)ds

which satisfies the initial condition z, = .

We prove that if 1 < p < oo, then (S(t))ier is a strongly-continuous
group and, unless 70 is linear, Fréchet differentiability of each map
8(t), 1 # 0, can not be obtained by Contraction Prineiples.

We also extend the theorem of Hartman-Grobman on the conjugacy
near a hyperbolic equilibrium point of the flow (S{f))icr and the flow of
the linearized equation.

We observe that the results can be extended to more general equations
such as

[}
o (s:(t). o= rid el = [ al(e)gl(zme))de)

-7

0
= (m(t), 2(t—r), ..., z{t —rn), [ a(Bg(z(i + 9))0!9) ,

—r

where E and f are smooth maps from XV *? into X, g, and g are smooth
maps from X into itself, o) and a are piecewise continuously differentiable
maps from [-r,0f inte L(X), 0<r1 < - <rp=T.

We note also that the space X in Theorems 3.1, 3.2, 5.1 {i)-(iv) and
5.3 can be any Banach space and, in Theorem 3.5, any Hilbert space.

2. Differentiable functions and Contraction Principles

The results of this section are taken from [9].

Let E and F be complex Banach spaces, A C F an open set, ¢ € 4
and f: A — F.

We say that f is Gdteaua-differentioble at ¢ if there exists a map
éf(g, ) : E — F such that for each & € E we can write f(g+th} = f(g)+
t6f(g, h) + tR(t, h) where R(t,h) — 0 as t — 0 In R. The G-derivative
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6f(g,-) is uniquely defined and satisfies the identity §f(q, th) = t6 f(q, k)
for any ({,h) in B x E. _

We say that f is Hedamard-differentiable (or quasi-differentiable) at ¢
if there exists a linear map f'(q) : £ — F such that for each A € E we
can write f(g+th+tk) = flg)+tf (g)h+ R(t, k, h) where R(t,k,h) — 0
as (t,k) — (0,0) in R x E. The H-derivative f'{g) is also uniquely
defined. Clearly we have §f(q, ) = f'(q) whenever this last exists.

We note that if dim £ < o0, then f is H-differentiable if and only if f
is Fréchet-differentiable.

Recall that the Lipschitz constant of a map f is defined by

Lip f =inf{L: | f(g) - F(@) < Lllg - g, ¢, 7 € A}.

Theorem 2.1. If f is G-differentiable at q, & f(q, ") is linear and there
exists a nesghborhood V' of the point g such that Lip(fjy) < oo, then f
w5 H-differentiable af q.

The proof follows easily from the inequalities

| f{g+th+tk) - flg) — t6F(g.h)|
< [[flg+th+th) — fla+th)|| + | f{g + th) — Flg) — t6 (g, )]

and [|f(g+ th + tk) — flg + th)|| < Lip(fjv)|tk]|.

The chain-rule can also be easily proved: the map f o g is H-
differentiable at ¢ if ¢ is H-differentiable at ¢ and f is H-differentiable
at g(g) and (f o g)(a} = f'(9(g))g'(a)-

Theorem 2.2. Let £ and F be Banach spaces, A C ExF be an apen
set and f: A — F be a map satisfying the following assumptions:

(i) f has strongly continuous partial H-derivatives f, and Jy ot any
point (z,y) in A, that is, the maps (z,y,h) — fo(z,y)h and
(z,y,k) — Fy(z,y)k are continuous on A x E and A x F re-
spectively,

(i) There exist closed sets S and T, S C E, T C F such that SxT C
A, f(§ xT) CT and sup,, yyesur | fy (2, )] < 1.

Then, there is a unique map y - S — T such that y(z) = flz,y(z))

for each z in 5.

Moreover, y is strongly-continuous H -differentiable and y'(z) = |[I —
Ful@y(@)] 7 folz, yla)) for each z in S.

Proof: For each z in S, we use the Contraction Mapping Principle to
themap y € T — f(x,y) € T to find the fixed point y(z).
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Now, let A = y(z+th+tk) —y{z) — tLh, for small (¢, k) € Rx E, with
L=11- flz,y(@))]" f2{z.y(z)), z in 5. Let us call y = y(z). Since

A= f(z+th+tk, y+tLh+ A)— f(z +th+tk, y+ tLh)
+ f(z + th + th, y + tLh) — flz,y) — folz,y}th — fylz, y)tLh,

it follows that
1
A1S [ 1+ thot th, -+ ek -+ £A)Alde + ofe) < 14| +o(1)
o}

where 6 = supq esxr Ify(z ¥}l < 1 and therefore, y is H-
differentiable at z. The strong-continuity of y' follows from the strong-
continuity of f. and f, and the proof is complete. B

Theorem 2.3. Let I C R be a compact intervel and X, Y be Banach

spaces. Let f:IxX — Y be a map satisfying the following conditions

(i) For almost allt € I, the map x — f(i,z) is H-differentiable and

there exisis a constant M > 0 such that "%ﬁ(t,x)",:(x?y) < M,
almost everywhere (a.e.) fort in I, for all z in X.

(ii) For each x and T in X, the maps t — f(t,z) andt — %g(t,x)a‘:

are measurable and the map t — f(t,0) is tn Lp(I,Y), for some

p € {1,00). ’

For a given v € L,(I,X) we define f{u) : I — Y by flu)t) =
Flt,ult)) ae. fort in I. Then, Flw) is in L,(1,Y) end the map f
Lp(I, X} — Ly(1,Y) is Lipschitz strongly-continuous H-differentiable
with [f1{w)v](t) = %ﬁ(t,u(t))'v(t) a.e. fort in I, for all v and v in
Ly(I,X).

Morveover, if f is Fréchei-differentiable at the null function of Ly(I, X),
then

Fe,) = F(6,0)+ 2L (6,0)z,

a.e. fortm I, forallx € X.

Proof: For the proof that f(x) is in L,(I,Y) see [11]. First, we prove
that f is G-differentiable. We have

Lt sede) — Fla(0] 22 (6 (t)ote)

= %/: [%(t, uft) + ov(t)) — g_i(t*”(t)) w(tydo —— 0
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a.e. for ¢ in I. On the other hand, for any measurable & C I we have

|47t 01 = Fowal - ety

Lpl{E.Y)

<

l 5
) / 2M vl L e x) do
0

=2M|lvllg,cex) — 0

uniformly in 0 < |s| < constant, when the measure of E tends to zero.
This imply that

|31 o) ) = ]|

when s — 0, and thercfore the G-derivative of f exists and & f(wu, v)(t) =

%ﬁ(t,u(t))v(t) a.e. for t in I and it is lincar on v.

Since

P
2 (1 utt) + (1 u)utt) - vt e

1
13

1F(w) - Flw)p < /

< /Mﬂu(t) — ()P dt = MP | — vif?
i

it follows that f is Lipschitz continuous. By Theorem 2.1, f is H-
differentiable.

Now, 6f(u,v) is continuous since u, — u and v, — v in Ly({, X)
imply &f(un,vn) — 6f(x,v) in measure, and { 16 F(n, v ) (B)P dE <
M? [ |on(£)|? dt — 0, uniformly in », when the measurc of E tends to
zero. This imply that 8 f(tn, v,) — 6 f(u,v) in Ly(I, X).

To prove the last assertion, we can assume without loss of generality
that f(#,0) = 0. If there exists xp # 0 such that f{i,zg) — %(t, O)zg =
A(t) with A{#) # 01in a set of positive measure, then we can take a point

. . . : 1 ftaté
to in the interior of J such that 61_12)1_}% fo—b |AR)Pdt = |Altg)|F # 0.
Taking the function vg(t) = xp for ¢ € [top — 6,%¢ + 8] and ws(t) = 0

outside, we have Jusll, = |zo|(26)}/? — 0 when & — 0, but
1 ws) — £(0) — F(Oyus
flusll5

3] ]
_ a5 |t xo) — ELHL0)zoP dE AP
[olP26 [ol?

#0:

a contradiction with the hypothesis that fis Fréchet-differentiable at 0.
Therefore, f{t,z) = %If(t, 0z ae fortin I, for all z in X, and the proof
is complete. W
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3. The fundamental theory

We state the fundamental theorems on the solutions of the NFDE

d 4]
(3.1) ﬁE(m(t)‘x(t — ) = flz(t),z(t —r}) + f a(@)g(z(t + 9)) db

—r

where £ and f are continuously Fréchet-differentiable maps from X x X
into X, X is the n-dimensional Euclidean space R" or C"*, g: X — X is
also continuously Fréchei-differentiable and ¢ is an integrable map from
[—7,0] into the space £{X) of continuous lincar operators from X into
itself.

We fix p, 1 < p < 00, and look for solutions of (3.1} in LI°°(R, X).
We assume that:

(H1) The derivatives DE = [% g—i} ., Df = [%% and Dg are all
bounded on their domains.
(HH2) There exist injective continuous linear operators Lg and L, from

X into itself and a real constant ¢, 0 € ¢ < 1, such that

oF

< d |[[I-L, 2—=(pe.p)| <
<c¢ an H 6p,,(p°p) e

gE
”I - LO%(P{),%)

for all (po,pr) € X x X, where [ is the identity.
(H3) [lall,r < oo, where lp + 51-, = 1.
We observe that if z belongs to L‘;C(R, X}, then the maps t — D{z,) =
E(z(t), z(t-r)) and ¢ > F(z) = f(a(t), st —r))+ [°, a(0)gla(t-+6)) do
also belong to LY°(R, X).

We say that z in LY°(R. X) is a solution of (3.1) if there exists a
constant vector £ in X such that the relation

(3.2) D(z) =€+ /G e, ds

holds a.e. for ¢t in (—oo,00); in this case, z is also a solution of the
integral equation (3.2).
We denote by L, the Banach spacc L,([—r,0], X) with the p-norm.

Theorem 3.1. For each {{,p) € X x L, there exists a unigue solu-
tion z in L°°(R, X} of equation (3.2) such that g = @. Moreover, if
1 < p < oo, the map (t,£,¢) — 2¢ € L, is continuous. This map is
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not continuous when p = oc although for each t in (—00,00), the map
(£,0) v &, € Loy 15 continuous.

Proof: Given (£,¢) € X x L, we consider the map F from
Ly([0,T], X) into itself defined by

(myﬂmn=wrm4mm—eﬁﬁme4aammmme

where we put 4y = .

For sufficiently small T > 0, independent of (€, ), F is a contraction,
uniformly in (£,¢). The fixed point = of F is the solution defined on
[0,7].

We use an induction argument to obtain the solution on [0, co).

_ Analogously, the solution on [~T" —r, —7] is the fixed point of the map
F defined by

]?[y](t—r) =y(t—r)—L, [D(yt) —£— /'; F(ys)ds] a.e. fortin [-T,0],

where again we put yo = .

Again, by induction, we get the solution on (—oo, c0).

Since the map ¢ — z; € L, is continuous when 1 < p < o< and
not continuous when p = oo, the rest of the proof is a consequence
of the continuity of each contraction with respect to (£,¢,y) and the
independence on {{, ) of the contraction constant. W

The flow corresponding to equation (3.2) is the family {S{t}},cx of
operators §(t) from X x L, onto itself defined by

5@@@=@ﬁ[ﬂmﬁm)

where = = z(£, @) is the solution of equation (3.2) through (£, ©).

By Theorem 3.1, the flow is a group of homeomorphisms under com-
position which is strongly continuous when 1 < p < oc.

Theorem 3.2. Suppose that E, f and g are twice continuously
EFréchet-differentiable with

IDBE|, | D' £l and (D@ g||
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bounded on their domains. The following statements are true:

(i) For any t in (—o0,00}, S{t} is strongly-continuous H-diffe-
rentiable at any point (£,¢) and DS{E)E, v)(AL, Ap} = (AL +
fg M{s)zs ds, z;) where z is the solution of the linearized equation
around the solution §(£){(£, )

(3.4) Ap(D)z(t) + A (t)2(t — 7)
=AE+ /t M(s)zsds a.e for t in {—o0,00)
b}

through (AL, Aw), where M)z, = Bo(t)z(t) + Br(t)z(t
Y+ fo B(t,8)z(t + 8)d6, B(t,0) = a(0)Dglz(t + 6)), Bi(t) =
&L (w(t),z(t — 1)) and A(t) = ZE(a(t),x(t ~ 7)) ae fort in
(—00,00), i =0, .

(ii) Suppose 2 < p < oc and a is essentially bounded. If E is lin-
ear then S(t) is continuously F-differentiable {class C) for any
t in R. Conversely, when p is not co, if either the operator F
or the operator F given in the proof of Theorem 3.1 is Fréchet-
differentiable at some point (£, y) n its domain, then E is hin-
ear.

Proof: (i) The proof foliows from Theorem 2.2 applied to the contrac-
tion F given by relation {3.3) above, as foliows: F is G-differentiable with
respect to (£,¢,y) in X x Ly x Ly([0, 7], X), the derivative at (£,¢,y)
is the continuous linear map given by

DF(E, 0, y)(AL, Ay, Ay)(i)
— Ay(e) - Lo |Ao(®)y(t) + Ac(B)y(t — ) — AL — /D M(s)s ds]

a.e. for ¢t in [0,7], and F is Lipschitizian. Therefore, by Theorem 2.1, F
is H-differentiable.

To prove that DF is strongly-continuous we first prove the result when
Ay and Ay are essentially bounded and vse a density argument for the
general case.

Now, for T > 0 sufficiently small, it is easy to see that
sup{ %—?’;(g,w,y)” :€in X, win Ly, yin Lp([O,T]‘X)} is less than 1.
By Theorem 2.2, the fixed point z({,y) is strongly-continuous H-
differentiable.

Since, for 0 < t < T, the map (£,¢) — (&, x(§,¢)) and (&,y) —
€+ fo (ys) ds, y;) are strongly-continuous FI-differentiable, so is the
composition S{t).
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For an arbitrary positive £, we take a positive integer m such that
0 < Lt <7T. Bince 8(t) = (t/m)m the chain-rnle shows that S{t) is
strongly-continuous H-differentiable.

The proof for negative ¢ is the same if we use the contraction F.

The strongly-continuous H-differentiability of (£,¢} — z(£,p) €
Lp{e,b), X} for an arbitrary compact interval [a,b] and the proof that
z = Dz{€ o ){AL, Ap) satisfles equation (3.4} follow easily from the dif-
ferentiability of S(#} and the chain-rule applied to the equation (3.2).

(il) Let us show that F is of class C'. Since E is linear, it suffices to
show that {¢,y) — F*(p,7) is C, where

fo Fyls),els =)+ [27 a(@)g(pls + 6)) d6
F o p)(t) = +f_s a{@g(y(s + 6))dF) ds,
fo<t<r
Sy Fly,) ds, fT>randr<t<T.
We show that F* is of class C'! with respect to ¢.
Using the H-derivative of 7*, taken from (i), we have

*

‘T”‘(@ + Ap,y)(E) — F (w0, 1)(t) — aaj; (e, 1) Ap(t)

£
1 .
< [ 51021 1a0(s - r)?as
[

Ll —%
+ [ 5102l [ la@)lapts +6)2 doas
g

ot

< S| D@ FlEP| Ap|2 + ||Df2)g|l el Apl5t

b

a.e. for ¢ in [0, 7], where > + % = 1. It follows tha.L

where K is constant. In the same way it may be shown that F* is C!
with respect to y. To prove the continuity of % L, x Lp([0, 7], X) —
L{Ly, L,([0,T], X)) with respect to ¢, for example, we have
SF* aF*
» = h5 . "lia Qip(t
(S ten - 2w avte

Fp+ Dp,y) — F*lp,y) - < KTY?[Agl?,

]

< IDPD £l e — ¥l Ap|lp
+1DPg|| lafloolle — ¥llpl| AT
< (Ip® g5

+11 0%l laler™F NA@ll,llo—ll,
= Kl 8glplle — 9,
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a.e. for t in [0,7), where K is a constant. Note that p’ < p. It follows
that

< KT?)|A¢llllp - 9,
P

}8?*

aF*
i - A
Bo (p,y)hp e (P, y)Ap

and therefore

oF BF .
‘ %(% y) - F{;(?ﬁ', y) < KTY2||p ~ 9l

L(Lp.Lp([0.T],X)

When T > 0 is small enough, the fixed point z(£, ¢} of F(£,p,-) is
of class C* in (£,¢). The proof that S(¢) is of class C* for an arbitrary
t in (—c0,c0) follows as in item (i), changing “strongly-continuous H-
differentiable” for “continuously Fréchet-differentiablc”.

Suppose now that F is Fréchet-differentiable at some point (€5, w0, yo)
(the case of F is completely analogous). Define E: L, x L([0,T], X} —
Ly([0,7), X) by Elg,y)(t) = E(y(t),y(t — ) ae. for ¢ in [0,T), where
we put y(8) = p(f) for & in [-r,0]. Then we have F(£,,y) = y —
LoE(p, ) + Lo(€) + LoF* (¢, y). This implies that E is F-differentiable
at (g, yo), since the other parcels are of class C! in (§,4,y). There is
no loss of generality in supposing that 8§ < T < 7.

We now use the Theorem 2.3. Let / = [0,7] and use in X? =X x X
the norm ||{po,».)| = (lpol” + |prlp)1/;0‘

Define f: I x X? — X by f(¢,(po,pr)) = E(yo(t) + po,polt — ) +
pr) — E(yo(t), polt — r)) ae. for ¢ in I, for all (po,p-) in X2 For a
given u € Lo(I, X?), u(t) = (w1(t), ua(t)), we have Fl () = E(yolt) +
uy(t), wolt — v} +ua(t)) — E(yo(t), ot — 7). We have f(3,0) =0 and f
is F-differentiable at the null function of L,(f, X?)}. Then, by Theorem
2.3, £, (P, p-)} = 2L, (0,0))po + 2L(2,(0,0))pr, that is,

E{yo(t) + po, wolt — 7) + pr)

- E(yoa),sao(z—rmg—im{t),m(t—r)) (£), golt—r))pr

a.e. for tin I, for all {pp,p,} in X2 If we take some dense and countable
set D C X?, we can find some ¢ € [ for which the above equality holds
at this ¢ and all (pg,pr) € D. By the continuity of E we get

-

3 oF
E(po,p-) = E(0,0) + (0 MNpo + 5—

5. (0007

for all (pg,pr) In X%, and the proof is complete. W
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4, The linear flow

If B, f and g are linear, the equation (3.2) can be written as
t
(4.1) Dy =¢ +/ Lys ds a.e. for 1 in {—o00, co)
0

where

Dy; = Aoy(t) + Ayt — 1),
Q
Lye = Boy(#) + Boylt — ) + / B(OYy(s + 6) db,

-r

a.e. for t € {—o00,00). The functions Ag, A,, By, B, are in £{X), B is
in Ly ([—7,0], £{X}) and the hypothesis (H2) becomes: Ay and A, are
invertible in £(X). In this case, the flow of cquation (4.1}, denoted by
{T(t)}ier, is 2 group of linear isomorphisms on X x L,.

We will need also the non-homogeneous equation
t
(4.2 Dy, =€+ / Lys ds + Q(t) a.e. for tin {—oc, 2a)
to

where @ is in LP°(R, X), to € R.

The existence and uniqueness of solution ¥ in L};’“(R,X} for equa-
tion (4.2} with initial conditions y;, = w can be proved with the same
arguments used in Theorem 3.1. If 1 € p < oo, the solution depends
continuously on £ in X, ¢ in Ly, tg in R and Q|jq4; in Ly([a, 8], X}, for
each compact interval g, b] containing tg, and the solution y{tg, &, v, @)
can be decomposed as y:{to, §, 0, Q) = mT'(t — o) (£, w) + K{t, t0)Q| 110,19
where my is the projection (£, ¢) — © and K(t, ¢p) is a continuous linear
operator from L,([tp,t], X} into L, {if ¢ < ¢; we interchange the order
in [tg,f]),

Let {T%(t)}cer be the flow of the difference equation

The flow {T9(¢)}.em is the ma-projection of the restriction to {0} x L, of
the flow corresponding to equation (4.1) with . = Q.

The main purpose of this section is to describe the spectra of T7°(¢) and
T(t). Dofine H()\) £ Ag+ A,e™ and A(X) 2 AH(A) — By — Bre=>" —
7% B(6)e* 8, for Ain C.
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Theorem 4.1. (i} For 1 < p < o0, the infinitesimal generator of the
group {T%(t)}sem is given by GP» = ¢, D(G®) = {p € WP : D(yp) = 0}
where WP = {p € L, :p € L,}.

(i) The spectrum of G° consists only on eigenvelues and X € o(GO) if
and only if det H(AY =0

(i) If p = 2, then o(TO(t}) = eto(G%).

Proof: The proof is due to D. Henry [8].

(i) Let ¢ be in D(G%). Then, putting z, = Tt} and y =
ToHG e = GPT )y = To(t)(p = a:t we have xt = cp + fo ys ds
so that, a.e. for 8 in [, 0} z(t + 8} )+ fHe s. Hence, for
each € in [—7,0] for which this last relatlon holds, the rlght—hand side
is an absolutely continucus functicn of ¢t in R and so is z with £ = ».
Then ¢ = zq is in W%, ¢ = y5 = G% and Dy = 0 because when the
solution is continuous, the equation is satisfied for all ¢ in R.

Conversely, if  is in W1#, Dy = 0, then, putting z; = T%(t)¢, y, =
TO(t)¢ and 2(t) = T{t) — (0) - f; y(s) ds, we have zp = 0 and D(z,) =0
a.e. for ¢t in R. By uniqueness, 2z = 0, so z is absolutely continucus and
# =y and then ¢ is in D(GP) and GY% = ¢.

(it} For a given % in L, and X in C, the solution ¢ of G% — dp = 9
is given by w(§) = e™p(0) + fi eM8—¥)p(u) du. This solution ¢ is in
D(G®) if and only if Dy = H(M\)@(0) + A, [° e M+ uy(u) du is equal
to zero. This last condition determines ¢(0) uniquely if and only if
det H{A\) # 0. From this we conclude that o(G%) = {} € C: det H(A) =
0} and contains only eigenvalues.

(i11) It is easy to see that, for A such that RedA > o and
det JT()) # 0, there exists a constant ¢, such that [[(A ~ G Y| gr,) <
CallH{A) "l zexy-

A theorem of Gearhart and Herbst [10] says: e is in o(T%(#)) if and
only if either there exists an integer k& such that A + @ is in ¢{G) or
for any integer k, A+ 2% is not in o(GP) but (A + 2% — GU)_I is not
uniformly bounded as & — +o0.

If we have this last possibility then dist{c(G®), {) + 3%@ c k
integer }) = 0. In fact, det H(A) is an analytic almost periodic func-
tion of A, and this implies that H{A\)~" is uniformly bounded in any set
{r€e C:a < Reh £ B, dist{a(G®),2) > 8} for o < 8, 6 > 0 (see [8]).
Therefore, e* € et9(G°) and the proof is complete. B

Remark 4.1. We have taken p = 2 in Theorem 4.1 (iii) because the
Theorem of Gearhart and Herbst applies to strongly continuous semi-
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groups defined on Hilbert spaces and no comparable result is known for
semigroups on Banach spaces.

Remark 4.2, Theorem 4.1 has been proved in [8] when X is any
Hilbert space and D has the special form

oQ 0]
Dz, 2 z{t) + Z Arz(t — ) + / A(8)z(t + ) db
k=1 -

where Ay and A(8) are compact operators. The possibility r = +oc was
also allowed.

In the following, we use the identification T°(t) : L, — L, = {0} x L,,.
Lemma 4.2. For 1 < p < oo, the map T(t) — TP(t)wy is compact.

Proof: The proof follows by observing that T{t) — T%(f)my, =
{Q, K°(2)Q), where K°(t} is the above operator K(t,0) corresponding
to equation (4.2} with L =0 and Q{t} = mT(¢}(£, ), m being the pro-
jection (£, ) — £ The map (£,¢) — @ is a compact linear map from
X x L into the space of continuous functions from [0,] {or [t, 0] if £ < 0)
to X with the uniform norm, by the Arzeld-Ascoli theorem. B

Theorem 4.3. (i} For 1 < p < o0, the infinitesimal generator of
the group {T(t}}icn is given by G(&, ) = (Ly.¢), D(G) = {(§,¢) €
X x WP £ = Dp}.

(it} The spectrum of G consists only on eigenvalues and A € o(G) if
and only if det A(A} = 0.

(i) If p = 2, then o(T(t)) = et?(G), a.e. fort in (—oc,oc).

Proof: The proof of (i) and (ii) follows them same steps of the proof
of (i) and (ii) of Theorem 4.1.

(iii) Let Z = {ReX : X € a(G%)}, let {3,~) be an open bounded
interval disjoint from the closure Z. Let U = {u € C: ” < |u| < ™}
Since for all ¢ we have

(4.4) etrlC) C lu e C:|u| =€, £ € Z)

using Theorem 4.1 (iii), we conclude that U is disjoint from o(T°(¢)).
Also o{(TO(t)ms) = o(T(t)) U {0} and U is disjoint from o(TO(t)ms).
By Lemma 4.2 and a result of Gohberg and Krcin stated in [6, Lemma,
4.2}, it follows that U C 5(T{t)) or U C e*{%} where p{T(t)) is the set
of all normal points {regular points or isolated eigenvalues with finite
multiplicities) of T'(¢).
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Since £!°(%) is countable, I must be disjoint from the essential spec-
trum ¢.(T(t}}, the complement of 5(T(t)), which implies that ¢ (T(t))
is contained in the set {u € C: lul = €%, £ € Z}.

From [7], the inclusion (4.4) is, in fact, an equality holding for almost
all ¢ in (—00, 00}, so that a.{T(t)) is contained in !°{G°) a.e. for t in
(—00, 20) and, since e2@{G%) C () we conclude the proof. W

5. Conjugation

We say that the linear equation (4.1) is hyperbolic if there exists a
to > 0 such that the lincar operator T{t) is hyperbolic, that is, its
spectrum is disjoint from the unit circle in the complex plane.

The following proposition is an extension to our context of the corre-
sponding results for the phase space £ and we ommit the proof since it
is analogous to the one given in [5] and [6]. To prove the last statement,
we use Theorem 4.3 (iii).

Proposition 5.1. The equation ({.1) is hyperbolic if and only if for
any t # 0, T(#) is hyperbolic. In this case, there exist closed linear
subspaces L* and L* of X x L, such that

() L' @ L* = X x Ly;
(it L* and L* are invariani under the flow;
(if) There ezxist positive constants a and K such that

IT(E(E el < Ke™ (S, 0)ll,  (§,¢p) in L5, 120
IT@)(E, o)l < Ke*[[(€, @), () in L™, 1<0;

(tv) L® and L* are characterized by,

L*={{§, v} € X x Ly : T(#)(§, 0} — 0 as t — fo0}
E¥ ={{&, ) € X x Ly : T(t){&, 0} — 0 as t — —oa}.

L is the stable subspace and L* is the unstable subspace of equa-
tion (4.1}

(v) If p = 2, the hyperbolicily of equation ({.1) is eguivalent to the
ezistence of a positive number § such that det A(A) # 0 if |Re )| <
&,

Suppose that equation {4.1} is hyperbolic. We will show that the flows
{S(t)} of equation (3.2) and {T{#}} of eqnation (4.1) are conjugates if
D — D and F — L are small encugh.
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Givene >0, let B, : X x X > X, fe : X xX —>Xandg : X > X
be any boonded C'l-maps, with

(5.1} sup  {IDE(po,p-)Il, 1D fe (o, 2-)l, 1 Dge{po}ll} < &.
(po.pr)eX x X

A homeomorphism h : F — E is said to be a conjugation for two given
maps T:E - Fand §: F— Eif Th = hS.

Lemma 5.2. LetT € L{E) be a hyperbolic isomorphism. Then, there
ezisis a & > 0 such that for any perturbation T+ @ of T by a bounded
map © : K — E with Lip® <« §, there exists a unique continuous map
h: E — E such that h — I is bounded and Th = k(T + &). Furthermore,
h™' is continuous, so that h is a conjugation between T and T + .

The proof is an application of the contraction principle. See [12] for
details.

Theorem 5.3. Suppese equetion (4.1) is hyperbolic with B(8) =
a{f) M, where M € L(X) is constant and a salisfies the hypothesis
(H3). Then, there ezists ¢ > 0 such that if E(pe,pr) = Agpo +

Arpr + Eelpo,pr )y f(Po,pr) = Bopo + Brpr + fe(po,pr) and g = M + g,
for any pg and p, in X, then, there exists a unigue homeomorphism
At X x L, -~ X x L, h—1I bounded, such that h is o conjugation
between the flows {S(t)} aend {T(1)}.

Proof: We note that for ¢ less than ||A;'||~! and ||A;7']~! the hy-
potheses (H1) and (H2)} are verified for E, f, ¢ and the flow {S(t)} is
well defined.

Let us write equation (38.2) into the form

t
Dz, =£+/ Lz, ds+ Q(1),
0

where Q(t) £ —E.(2(t), 2(t—r))+ [y [fole(s), als—r))+ 2, alf)gelals+
a1 di) ds, with 2, = mS(t)(€, v).
We now define &, : X x L, = X x L, by S(t) = T(¢} + &;.
The map &,, satisfies:
0

(£, ) = [0 [Felals) 2(s — 7)) + / a(8)ge(2(s + 0)) d6] ds

-

+ /Gt[Bgz(s) + Brz(s —r}+ /0 B{8)z{s + &) df] ds

bl

?T2(Pt(€v {P) = I
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where z = K(t,0)Q)0,4{K(t,0)Q),0 if ¢ < 0} is the solution of Dz =
I Lzg ds + Q(t) with 2 =0,

With some laborious but straightforward work, we can prove that &,
is continuous, bounded and &, is Lipschitzian with Lip @, < I%:E} ¢
and ¢, are constants dependent only on equation {(4.1).

We now apply Lemma 5.2 to the hyperbolic operator T(r): we take
€ > 0 such that Lip®, < §, so that T{r} and S{r) are conjugated by a
unique homeomorphism h of X x L,, k — I bounded.

For any ¢ in (—oco,cc), we define by : X x L, - X x L, by hy =
T(—t)hS(t).

Clearly, h; is continuous, ||k — Il < (|T(=a(|h = I]| + [|®:]]) < o0
and T(—r)hS(r) = T{—t — r}hS(t + r) = T(—t)hS(t) = Ay, 50 that A,
also conjugates S(r) and T(r). By the unigueness in Lemma 5.2, by = h
and T'(¢)h = hS(¢) for all £. W

We note that, in the above theorem, it is not necessary that equation
{4.1) be the linearization of equation (3.2) around a constant solution.

Corresponding to 2 constant solution z(tf) = ¢ of equation (3.2},
there is a fixed point (E(e,c¢),¢) of the fHow S{t). In this case,
fle,e)+ f_or a{8} dfg(c) must be zero, and conversely.

We say that such a fixed point is hyperbolic if the linearized equation
around it is hyperbolic.

The proof of the next Lemma can be found in [4].

Lemma 5.4. Let X be a Hilberi-space, { > 1 an arbitrary integer, and
G : X' — X an application of class C! with G(0) =0, G'(6) = 0. Then,
for any e > 0, there exist § > 0 and G, : X' — X, G, of class C*, such
that Ge(g) = G{q) for every g € X' with [lg]| € & and sup e x: |G{@)l <
€, subyex¢ |Gelal)ll < &

Theorem 5.5. Suppose that {0,0) € X x L, is a hyperbolic fized point
of eguation (3.2) and equalion (4.1} is the hnearized equation around
(0,0). Then, there exists a homeomorphisin b X x Ly — X x Ly, h~ 1
bounded, such that for each T > 0, there exists § > 0 such that if (£, )
isin X X Lo and |[(€,oHixx1., < 8 then T()h(€,p) = RS(t)(, ) for
onyt in[—7,7].

Proof: Let E = E — DE(0,0), f = f — Df(0,0) and § = g — Dg{0).
For a given £ > {, we apply Lemma 5.4 to 0btain~<§1 > 0 and bounded
C*-functions F;, f. and g. such that F.(po,pr) = E{po,p-), Felpo. -} =

F(po,pr) and g.(po) = G{po) for |pg| and |p| less than & and relation
(5.1) holds.
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We choose ¢ sufficiently small and apply Theorem 5.3 to the equa-
tion (4.1) and the perturbed equation defined by the maps DE(Q,0) +
E., Df{0,0)}+ f. and Dg(0) +g. (with the same kernel a(8)). Let {S(¢})
be the flow of this perturbed equation. We get a homeomorphism & of
X x Ly, h — I bounded, such that T(£)h = hS(2) for all .

Since X X Lo, is invariant under S(¢), using ihe continuity of the
solution with respect to (£,) in X x L., for a given 7 > 0 we can find
¢ > 0 such that if [[(§,}||xxr.. < 9, then |z{f + 8)| < &, a.e. for ¢ in
[—7,7) and @ in [—r,0], where z, = mS{E){(£, p).

Since in the above situation §(t) and S(t) coincide, the proof is com-
plete. B
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