GALOIS H-OBJECTS WITH A NORMAL BASIS IN CLOSED CATEGORIES. A COHOMOLOGICAL INTERPRETATION

J. N. Alonso Álvarez and J. M. Fernández Vilaboa

Abstract _

In this paper, for a cocommutative Hopf algebra H in a symmetric closed category C with basic object K, we get an isomorphism between the group of isomorphism classes of Galois H-objects with a normal basis and the second cohomology group $H^2(H, K)$ of H with coefficients in K. Using this result, we obtain a direct sum decomposition for the Brauer group of H-module Azumaya monoids with inner action:

 $\mathbf{BM}_{\mathrm{inn}}(\mathcal{C},\mathbf{H})\cong\mathbf{B}(\mathcal{C})\oplus H^2(\mathbf{H},K)$

In particular, if C is the symmetric closed category of K-modules with K a field, $H^2(H, K)$ is the second cohomology group introduced by Sweedler in [21]. Moreover, if H is a finitely generated projective, commutative and cocommutative Hopf algebra over a commutative ring with unit K, then the above decomposition theorem is the one obtained by Beattie [5] for the Brauer group of H-module algebras.

Preliminary

A monoidal category $(\mathcal{C}, \otimes, K)$ consists of a category \mathcal{C} with a bifunctor $-\otimes -: \mathcal{C} \times \mathcal{C} \to \mathcal{C}$ and a basic object K, and with natural isomorphisms:

$$a_{ABC} : A \otimes (B \otimes C) \cong (A \otimes B) \otimes C$$
$$l_A : K \otimes A \cong A$$
$$r_A : A \otimes K \cong A$$

such that

$$(A \otimes a_{BCD}) \circ a_{A(B \otimes C)D} \circ (a_{ABC} \otimes D) = a_{AB(C \otimes D)} \circ a_{(A \otimes B)CD}$$
$$(A \otimes l_B) \circ a_{AKB} = r_A \otimes B$$

If there is a natural isomorphism $\tau_B^A : A \otimes B \cong B \otimes A$ such that $\tau_A^B \circ \tau_B^A = A \otimes B$, $\tau_{B\otimes C}^A = (B \otimes \tau_C^A) \circ (\tau_B^A \otimes C)$, then \mathcal{C} is called a symmetric monoidal category.

A closed category is a symmetric monoidal category in which each functor $-\otimes A: \mathcal{C} \to \mathcal{C}$ has a specified right adjoint $[A, -]: \mathcal{C} \to \mathcal{C}$ ([12], [18]).

Examples:

- 1) The category of sets and mappings.
- 2) The category of R-modules over a commutative ring R.
- The category of chain complexes of R-modules and morphisms of degree 0, with R a commutative ring.
- 4) The category of sheaves of θ -modules over a topological space, with θ a sheaf of commutative rings.
- 5) The category of coherent sheaves of modules over a scheme.
- 6) The category of all R-graded modules with morphisms of degree 0 (R is a commutative graded ring).
- 7) (R, σ) -Mod, with R a commutative ring and σ an idempotent kernel functor in R-Mod.

In what follows, C denotes a symmetric closed category with equalizers, co-equalizers and projective basic objec K. We denote by α_M and β_M the unit and the co-unit, respectively, of the C-adjuntion $M \otimes - \dashv [M, -]$: $C \to C$ which exists for each object M of C.

1. An object M of C is called profinite in C if the morphism $[M, \beta_M(K) \otimes M] \circ \alpha_M(\hat{M} \otimes M) : \hat{M} \otimes M \to [M, M] = E(M)$ is an isomorphism, where $\hat{M} = [M, K]$. If, moreover, the factorization of $\beta_M(K) : M \otimes \hat{M} \to K$ through the co-equalizer of the morphisms $\beta_M(M) \otimes \hat{M}$ and $M \otimes ([M, \beta_M(K) \circ (\beta_M(M) \otimes \hat{M})] \circ \alpha_M(E(M) \otimes \hat{M})) : M \otimes E(M) \otimes \hat{M} \to M \otimes \hat{M}$ is an isomorphism, we say that M is a progenerator in C.

2. A monoid in C is a triple $\mathbf{A} = (A, \eta_A, \mu_A)$ where A is an object in C and $\mu_A : A \otimes A \to A$, $\eta_A : K \to A$ are morphisms in C such that $\mu_A \circ (A \otimes \eta_A) = A = \mu_A \circ (\eta_A \otimes A)$, $\mu_A \circ (\mu_A \otimes A) = \mu_A \circ (A \otimes \mu_A)$. If $\mu_A \circ \tau_A^A = \mu_A$, then we will say that A is a commutative monoid. Given two monoids $\mathbf{A} = (A, \eta_A, \mu_A)$ and $\mathbf{B} = (B, \eta_B, \mu_B)$ in C, $f : A \to B$ is a monoid morphism if $\mu_B \circ (f \otimes f) = f \circ \mu_A$ and $f \circ \eta_A = \eta_B$.

A comonoid (cocommutative), $\mathbf{D} = (D, \varepsilon_D, \delta_D)$ is an object D in C together with two morphisms $\varepsilon_D : D \to K, \delta_D : D \to D \otimes D$, such that $(\delta_D \otimes D) \circ \delta_D = (D \otimes \delta_D) \circ \delta_D$ and $(\varepsilon_D \otimes D) \circ \delta_D = 1_D = (D \otimes \varepsilon_D) \circ \delta_D (\tau_D^D \circ \delta_D = \delta_D)$. If $\mathbf{D} = (D, \varepsilon_D, \delta_D)$ and $\mathbf{E} = (E, \varepsilon_E, \delta_E)$ are comonoids, $f : D \to E$ is a comonoid morphism if $(f \otimes f) \circ \delta_D = \delta_E \circ f$ and $\varepsilon_E \circ f = \varepsilon_D$.

3. For a monoid $\mathbf{A} = (A, \eta_A, \mu_A)$ and a comonoid $\mathbf{D} = (D, \varepsilon_D, \delta_D)$ in \mathcal{C} , we denote by $\operatorname{Reg}(D, A)$ the group of invertible elements in $\mathcal{C}(D, A)$ (morphisms in \mathcal{C} from D to A) with the operation "convolution" given by: $f * g = \mu_A \circ (f \otimes g) \circ \delta_D$. The unit element is $\varepsilon_D \otimes \eta_A$.

Observe that $\operatorname{Reg}(D, A)$ is an abelian group when D is cocommutative and A is commutative.

4. Definition. Let $\Pi = (C, \eta_C, \mu_C)$ be a monoid and $\mathbf{C} = (C, \varepsilon_C, \delta_C)$ a comonoid in C and let $\lambda : C \to C$ be a morphism. Then $\mathbf{H} = (\mathbf{C} = (C, \varepsilon_C, \delta_C), \Pi = (C, \eta_C, \mu_C), \tau^C, \lambda)$ is a Hopf algebra in C with respect to the comonoid \mathbf{C} if ε_C and δ_C are monoid morphisms (equivalently, η_C and μ_C are comonoid morphisms) and λ is the inverse of $\mathbf{1}_C : C \to C$ in $\operatorname{Reg}(C, C)$.

We say that **H** is a finite Hopf algebra if C is profinite in C.

5. Definition. $(\mathbf{A}, \varphi_A) = (A, \eta_A, \mu_A; \varphi_A)$ is a left **H**-module monoid if:

- i) $\mathbf{A} = (A, \eta_A, \mu_A)$ is a monoid in \mathcal{C} .
- ii) (A, φ_A) is a left H-module $(\varphi_A \circ (C \otimes \varphi_A) = \varphi_A \circ (\mu_C \otimes A), \varphi_A \circ (\eta_C \otimes A) = A).$
- iii) η_A , μ_A are morphisms of left **H**-modules ($\varphi_A \circ (C \otimes \eta_A) = \eta_A \otimes \varepsilon_C$ and $\varphi_A \circ (C \otimes \mu_A) = \mu_A \circ \varphi_{A \otimes A}$, where $\varphi_{A \otimes A} = (\varphi_A \otimes \varphi_A) \circ (C \otimes \tau_A^C \otimes A) \circ (\delta_C \otimes A \otimes A))$.

We say that the action φ_A of **H** in **A** is inner if there exists a morphism f in Reg(C, A) such that $\varphi_A = \mu_A \circ (A \otimes (\mu_A \circ \tau_A^A)) \circ (f \otimes f^{-1} \otimes A) \circ (\delta_C \otimes A) : C \otimes A \to A$, where f^{-1} is the convolution inverse of f.

6. Definition. If H is a cocommutative Hopf algebra and (\mathbf{A}, φ_A) is a commutative H-module monoid, then, we say that a morphism σ in Reg $(C \otimes C, A)$ is a 2-cocycle if $\partial_1(\sigma) * \partial_3(\sigma) = \partial_2(\sigma) * \partial_4(\sigma)$, where $\partial_1(\sigma) = \varphi_A \circ (C \otimes \sigma), \ \partial_2(\sigma) = \sigma \circ (\mu_C \otimes C), \ \partial_3(\sigma) = \sigma \circ (C \otimes \mu_C)$ and $\partial_4(\sigma) = \sigma \otimes \varepsilon_C$.

Two 2-cocycles σ and γ are said to be cohomologous, written $\sigma \sim \gamma$, if there exists a morphism $v \in \operatorname{Reg}(C, A)$ such that $\sigma * \partial_2(v) = \partial_1(v) * \partial_3(v) * \gamma$, where $\partial_1(v) = \varphi_A \circ (C \otimes v)$, $\partial_2(v) = v \circ \mu_C$ and $\partial_3(v) = v \otimes \varepsilon_C$.

Trivially, " \sim " is an equivalence relation.

The set of equivalence classes shall be called the second cohomology group of the cocommutative Hopf algebra **H** with the coefficients in the left **H**-module monoid (\mathbf{A}, φ_A) , and will be denoted by $H^2(\mathbf{H}, \mathbf{A})$.

If σ is a 2-cocycle in Reg $(C \otimes C, A)$, then the morphism $\bar{\sigma} = \sigma * \partial_1(\pi) * \partial_2(\pi^{-1}) * \partial_3(\pi)$ is a 2-cocycle in Reg $(C \otimes C, A)$ cohomologous with σ such that $\bar{\sigma} \circ (\eta_C \otimes C) = \varepsilon_C \otimes \eta_A = \bar{\sigma} \circ (C \otimes \eta_C)$, where $\pi = \sigma^{-1} \circ (C \otimes \eta_C)$ is a morphism in Reg(C, A) with inverse $\pi^{-1} = \sigma \circ (C \otimes \eta_C)$. Moreover, if

 γ is cohomologous with σ , then there exists a morphism $\bar{\vartheta} \in \operatorname{Reg}(C, A)$ such that $\bar{\vartheta} \circ \eta_C = \eta_A$ and $\bar{\sigma} * \partial_2(\bar{\vartheta}) = \partial_1(\bar{\vartheta}) * \partial_3(\bar{\vartheta}) * \bar{\gamma}$.

Remark. Let C the category of K-modules over a field. In this case, $H^2(\mathbf{H}, \mathbf{A})$ is the second cohomology group of the Sweedler's complex $\{\operatorname{Reg}(\overset{q}{\otimes}C, A); \Delta_q\}_{q\geq 0}$

$$\operatorname{Reg}(K,A) \xrightarrow{\Delta_0} \operatorname{Reg}(C,A) \xrightarrow{\Delta_1} \dots \xrightarrow{\Delta_{q-1}} \operatorname{Reg}(\overset{q}{\otimes} C,A)$$
$$\xrightarrow{\Delta_q} \operatorname{Reg}(\overset{q+1}{\otimes} C,A) \xrightarrow{\Delta_{q+1}} \dots$$

where $\Delta_q := \partial_1 * \partial_2^{-1} * \cdots * \partial_{q+2}^{(-1)^{q+1}}$ and for each $f \in \operatorname{Reg}(\overset{q}{\otimes}C, A)$,

$$\begin{aligned} \partial_1(f) &= \varphi_A \circ (C \otimes f) \\ \vdots & & \\ \partial_i(f) &= f \circ (C \otimes \overset{i-2}{\ldots} \otimes C \otimes \mu_C \otimes C \otimes \overset{q-i+1}{\ldots} \otimes C) \\ \vdots & \\ \partial_{q+2}(f) &= f \otimes \varepsilon_C \end{aligned}$$

([**21**]).

7. Definition. $(\mathbf{B}, \rho_B) = (B, \eta_B, \mu_B; \rho_B)$ is a right H-comodule monoid if:

- i) $\mathbf{B} = (B, \eta_B, \mu_B)$ is a monoid in \mathcal{C}
- ii) (B, ρ_B) is a right H-comodule $((\rho_B \otimes C) \circ \rho_B = (B \otimes \delta_C) \circ \rho_B; (B \otimes \varepsilon_C) \circ \rho_B = B)$.
- iii) $\rho_B: B \to B \otimes C$ is a monoid morphism from (B, η_B, μ_B) to the product monoid $B\Pi = (B \otimes C, \eta_B \otimes \eta_C, (\mu_B \otimes \mu_C) \circ (B \otimes \tau_B^C \otimes C))$ (that is, $\rho_B \circ \eta_B = \eta_B \otimes \eta_C$ and $\rho_B \circ \mu_B = (\mu_B \otimes \mu_C) \circ (B \otimes \tau_B^C \otimes C) \circ (\rho_B \otimes \rho_B)$).

From now on we assume that **H** is a finite cocommutative and commutative Hopf algebra.

8. Definition. A right H-comodule monoid (\mathbf{B}, ρ_B) is said to be a Galois H-object if and only if:

- i) The morphism $\gamma_B := (\mu_B \otimes C) \circ (B \otimes \rho_B) : B \otimes B \to B \otimes C$ is an isomorphism.
- ii) B is a progenerator in C.

For example, in the case of (R, σ) -Mod, a commutative **H**-comodule monoid is a couple (\mathbf{B}, ρ_B) , where B is a commutative (R, σ) -algebra and $\rho_B : B \to B \perp H := Q_{\sigma}(B \otimes_R H)$ is a morphism of algebras and it defines a right **H**-comodule structure over B. (\mathbf{B}, ρ_B) is a Galois **H**-object if and only if *B* is a (R, σ) -progenerator and the mapping $\rho_B^{\hat{H}} : B \# \hat{H} \to \operatorname{Hom}(B, B)$ arising from the left $B \# \hat{H}$ module structure on *B* is an isomorphism ([15, (1.3.17)]).

If a Galois **H**-object is isomorphic to **H** as an **H**-comodule then we say that it has a normal basis.

If \mathbf{B}_1 and \mathbf{B}_2 are Galois **H**-objects, $f : B_1 \to B_2$ is a morphism of Galois **H**-objects if it is a morphism of **H**-comodules $(\rho_{B_2} \circ f = (f \otimes C) \circ \rho_{B_1})$ and of monoids.

If (\mathbf{A}, ρ_A) and (\mathbf{B}, ρ_B) are **H**-comodule monoids, then $\mathbf{A} \circ \mathbf{B}$, defined by the following equalizer diagram

$$A \circ B \xrightarrow{i_{AB}} A \otimes B \xrightarrow{\partial^1_{AB}} A \otimes B \otimes C$$

where

$$\partial^1_{AB} = (A \otimes \tau^C_B) \circ (\rho_A \otimes B), \text{ and } \\ \partial^2_{AB} = A \otimes \rho_B$$

is an **H**-comodule monoid to be denoted by $(\mathbf{A} \circ \mathbf{B}, \rho_{AB})$.

If moreover (\mathbf{A}, ρ_A) and (\mathbf{B}, ρ_B) are Galois H-objects, then $(\mathbf{A} \circ \mathbf{B}, \rho_{AB})$ is also a Galois H-object, where ρ_{AB} is the factorization of the morphism $\partial^1_{AB} \circ i_{AB}$ (or $\partial^2_{AB} \circ i_{AB}$) through the equalizer $i_{AB} \otimes C$.

The set of isomorphism classes of Galois H-objects (with a normal basis), with the operation induced by the one given above, is an abelian group to be denoted by $\operatorname{Gal}_{\mathcal{C}}(\mathbf{H})(\mathbf{N}_{\mathcal{C}}(\mathbf{H}))$. The unit element is the class of $(\Pi, \delta_{\mathcal{C}})$ and the opposite of $[(\mathbf{B}, \rho_B)]$ is $[(\mathbf{B}^{\operatorname{op}}, (B \otimes \lambda) \circ \rho_B)]$ where $\mathbf{B}^{\operatorname{op}} = (B, \eta_B, \mu_B \circ \tau_B^B)$.

Remark. In the case of a finitely generated projective, commutative and cocommutative Hopf algebra \mathbf{H} over a commutative ring R, $\mathbf{Gal}_{\mathcal{C}}(\mathbf{H})$ is the group of Galois \mathbf{H} -objects in the sense of S. Chase and M. Sweedler in [9].

9. Proposition. If $[(\mathbf{B}, \rho_B)] \in \mathbf{N}_{\mathcal{C}}(\mathbf{H})$, then, there is a 2-cocycle σ in $\operatorname{Reg}(C \otimes C, K)$ satisfying $\sigma \circ (\eta_C \otimes C) = \varepsilon_C = \sigma \circ (C \otimes \eta_C)$.

Proof:

Let (\mathbf{B}, ρ_B) a Galois **H**-object with a normal basis. Then we have an isomorphism $\gamma_B : B \otimes B \to B \otimes C$ and an **H**-comodule isomorphism $r : C \to B$. Therefore the morphism of **H**-comodules $f = (\varepsilon_C \otimes B) \circ (r^{-1} \otimes r) \circ (\eta_B \otimes C) : C \to B$ is in $\operatorname{Reg}(C, B)$ with inverse

$$f^{-1} = \mu_B \circ (B \otimes \varepsilon_C \otimes B) \circ (B \otimes r^{-1} \otimes r) \circ (\gamma_B^{-1} \otimes \eta_C) \circ (\eta_B \otimes C)$$

and satisfying
$$f \circ \eta_C = \eta_B$$
.
Indeed:

$$\begin{split} f*f^{-1} &= \mu_B \circ (\varepsilon_C \otimes B \otimes \varepsilon_C \otimes B) \circ (r^{-1} \otimes B \otimes r^{-1} \otimes r) \circ \\ &\circ (\eta_B \otimes \gamma_B^{-1} \otimes \eta_C) \circ (r \otimes C) \circ \delta_C = \\ &= \mu_B \circ (\varepsilon_C \otimes B \otimes \varepsilon_C \otimes B) \circ (r^{-1} \otimes B \otimes r^{-1} \otimes r) \circ \\ &\circ (B \otimes [\gamma_B^{-1} \circ \gamma_B] \otimes C) \circ (\eta_B \otimes \eta_B \otimes B \otimes \eta_C) \circ r = \\ &= (\varepsilon_C \otimes B \otimes \varepsilon_C) \circ (r^{-1} \otimes r \otimes C) \circ ([\rho_B \circ \eta_B] \otimes C) = \\ &= \varepsilon_C \otimes \eta_B \\ f^{-1}*f = \mu_B \circ (B \otimes [\varepsilon_C \circ r^{-1}] \otimes B) \circ (\gamma_B^{-1} \otimes r) \circ (\eta_B \otimes \delta_C) = \\ &= \mu_B \circ (B \otimes [\varepsilon_C \circ r^{-1}] \otimes r) \circ (B \otimes \rho_B) \circ \gamma_B^{-1} \circ (\eta_B \otimes C) = \\ &= \mu_B \circ (B \otimes \varepsilon_C \otimes r) \circ (B \otimes \delta_C) \circ (B \otimes r^{-1}) \circ \gamma_B^{-1} \circ (\eta_B \otimes C) = \\ &= (B \otimes \varepsilon_C) \circ \gamma_B \circ \gamma_B^{-1} \circ (\eta_B \otimes C) = \\ &= \varepsilon_C \otimes \eta_B \end{split}$$

because r is an **H**-comodule isomorphism and the equalities:

 $\begin{aligned} (\mu_B \otimes B) \circ (B \otimes \gamma_B^{-1}) &= \gamma_B^{-1} \circ (\mu_B \otimes C) \\ (\epsilon_C \otimes B) \circ (r^{-1} \otimes r) \circ (\eta_B \otimes \eta_C) &= (\epsilon_C \otimes B) \circ (r^{-1} \otimes r) \circ \rho_B \circ \eta_B = \eta_B \\ (\gamma_B^{-1} \otimes C) \circ (B \otimes \delta_C) &= (B \otimes \rho_B) \circ \gamma_B^{-1} \end{aligned}$

Trivially, f is a morphism of **H**-comodules and $f \circ \eta_C = \eta_B$.

The morphism $\sigma_f = (\mu_B \circ (f \otimes f)) * (f^{-1} \otimes \mu_C) : C \otimes C \to B$ factors through the equalizer

$$K \stackrel{\eta_B}{\to} B \stackrel{\rho_B}{\underset{B \otimes \eta_C}{\Rightarrow}} B \otimes C$$

because **H** is a Hopf algebra, (\mathbf{B}, ρ_B) an **H**-comodule monoid, f a morphism of **H**-comodules and the equality $\rho_B \circ f^{-1} = (f^{-1} \otimes \lambda) \circ \tau_C^C \circ \delta_C$ ([14, (2.3)]).

Moreover, the factorization, $\bar{\sigma}_f$, of σ_f is in $\operatorname{Reg}(C \otimes C, K)$ with inverse the factorization of the morphism $\sigma_f^{-1} = (f \circ \mu_C) * (\mu_B \circ \tau_B^B \circ (f^{-1} \otimes f^{-1})) : C \otimes C \to B$ through the equalizer η_B .

The morphism $\bar{\sigma}_f : C \otimes C \to K$ is a 2-cocycle. Indeed:

$$\begin{split} \eta_B \circ (\partial_1(\bar{\sigma}_f) * \partial_3(\bar{\sigma}_f)) &= \\ &= (f * f^{-1}) \circ (\bar{\sigma}_f \otimes \mu_C) \circ (C \otimes \tau_C^C \otimes C) \circ (\delta_C \otimes \delta_C) \circ \\ &\circ (C \otimes \bar{\sigma}_f \otimes \mu_C) \circ (C \otimes C \otimes \tau_C^C \otimes C) \circ (C \otimes \delta_C \otimes \delta_C) = \\ &= \mu_B \circ (B \otimes f^{-1}) \circ \rho_B \circ f \circ (\bar{\sigma}_f \otimes \mu_C) \circ (C \otimes \tau_C^C \otimes C) \circ (\delta_C \otimes \delta_C) \circ \\ &\circ (C \otimes \bar{\sigma}_f \otimes \mu_C) \circ (C \otimes C \otimes \tau_C^C \otimes C) \circ (C \otimes \delta_C \otimes \delta_C) = \\ &= \mu_B \circ (B \otimes f^{-1}) \circ \rho_B \circ \mu_B \circ (f \otimes f) \circ (C \otimes \bar{\sigma}_f \otimes \mu_C) \circ \\ &\circ (C \otimes C \otimes \tau_C^C \otimes C) \circ (C \otimes \delta_C \otimes \delta_C) = \\ &= \mu_B \circ (B \otimes f^{-1}) \circ \rho_B \circ \mu_B \circ (\mu_B \otimes C) \circ (f \otimes f \otimes f) = \\ &= \mu_B \circ (B \otimes f^{-1}) \circ \rho_B \circ f \circ (\bar{\sigma}_f \otimes \mu_C) \circ (C \otimes \tau_C^C \otimes C) \circ (\delta_C \otimes \delta_C) \circ \\ &\circ (\bar{\sigma}_f \otimes \mu_C \otimes C) \circ (C \otimes \tau_C^C \otimes C \otimes C) \circ (\delta_C \otimes \delta_C \otimes C) = \\ &= (f * f^{-1}) \circ (\bar{\sigma}_f \otimes \mu_C) \circ (C \otimes \tau_C^C \otimes C) \circ (\delta_C \otimes \delta_C) \circ \\ &\circ (\bar{\sigma}_f \otimes \mu_C \otimes C) \circ (C \otimes \tau_C^C \otimes C \otimes C) \circ (\delta_C \otimes \delta_C \otimes C) = \\ &= \eta_B \circ (\partial_2(\bar{\sigma}_f) * \partial_4(\bar{\sigma}_f)) \end{split}$$

because f is a morphism of **H**-comodules, **H** a cocommutative Hopf algebra and the equality

$$f \circ (\bar{\sigma}_f \otimes \mu_C) \circ (C \otimes \tau_C^C \otimes C) \circ (\delta_C \otimes \delta_C) = \mu_B \circ (f \otimes f)$$

and then, since η_B is a monomorphism, $\bar{\sigma}_f$ is a 2-cocycle.

Trivially, $\bar{\sigma}_f \circ (\eta_C \otimes C) = \varepsilon_C = \bar{\sigma}_f \circ (C \otimes \eta_C)$.

Remark. If $[(\mathbf{B}_1, \rho_{B_1})] = [(\mathbf{B}_2, \rho_{B_2})] \in \mathbf{N}_{\mathcal{C}}(\mathbf{H})$ then there is an isomorphism of **H**-comodule monoids $h: B_1 \to B_2$. Clearly, $\overline{\sigma_{f_1}} = \overline{\sigma_{h \circ f_1}}$. (Notice that $h \circ f_1 \in \operatorname{Reg}(C, B_2)$ with inverse $h \circ f_1^{-1}$). Moreover, $\overline{\sigma_{f_1}} \sim \overline{\sigma_{f_2}}$.

Indeed:

The morphism $e = (h \circ f_1) * f_2^{-1} : C \to B_2$ factors through the equalizer η_{B_2} :

$$\begin{split} \rho_{B_2} \circ e &= (\mu_{B_2} \otimes \mu_C) \circ ((h \circ f_1) \otimes \tau_{B_2}^C \otimes \lambda) \circ (\delta_C \otimes f_2^{-1} \otimes C) \circ \\ &\circ (C \otimes (\tau_C^C \circ \delta_C)) \circ \delta_C = (B_2 \otimes \eta_C) \circ e \end{split}$$

and then, there exists a morphism $\bar{e}: C \to K$ such that $\eta_{B_2} \circ \bar{e} = e$. Clearly, $\bar{e} \circ \eta_C = K$. Moreover, \bar{e} is in $\operatorname{Reg}(C, K)$ with inverse \bar{e}^{-1} , the factorization of $e^{-1} = f_2 * (h \circ f_1^{-1})$ throught the equalizer η_{B_2} . We also have that:

$$\begin{split} \eta_{B_2} \circ (\overline{\sigma_{f_1}} * \partial_2(\bar{e})) &= \\ &= \mu_{B_2} \circ (\eta_{B_2} \otimes \eta_{B_2}) \circ (\overline{\sigma_{hof}} * \partial_2(\bar{e})) = \\ &= \mu_{B_2} \circ (\mu_{B_2} \otimes \mu_{B_2}) \circ [(h \circ f_1) \otimes (h \circ f_1) \otimes ((h \circ f_1^{-1}) * (h \circ f_1)) \otimes \\ &\otimes f_2^{-1}] \circ (C \otimes C \otimes \delta_C) \circ (C \otimes C \otimes \mu_C) \circ (C \otimes \tau_C^C \otimes C) \circ (\delta_C \otimes \delta_C) = \\ &= \mu_{B_2} \circ (\mu_{B_2} \otimes B_2) \circ (\mu_{B_2} \otimes (\mu_{B_2} \circ \tau_{B_2}^{B_2}) \otimes \mu_{B_2}) \circ \\ &\circ ((h \circ f_1) \otimes (h \circ f_1) \otimes (f_2^{-1} * f_2) \otimes f_2^{-1} \otimes f_2 \otimes f_2^{-1}) \circ \\ &\circ (C \otimes C \otimes C \otimes \delta_C \otimes \mu_C) \circ (C \otimes C \otimes C \otimes \tau_C^C \otimes C) \circ \\ &\circ (C \otimes C \otimes \delta_C \otimes \delta_C) \circ (C \otimes \tau_C^C \otimes C) \circ (\delta_C \otimes \delta_C) = \\ &= \mu_{B_2} \circ (\mu_{B_2} \otimes B_2) \circ ((\eta_{B_2} \circ \bar{e}) \otimes (\eta_{B_2} \circ \bar{\sigma_{f_2}})) \circ \\ &\circ (C \otimes \tau_C^C \otimes C) \circ (\delta_C \otimes \delta_C) = \\ &= \eta_{B_2} \circ (\mu_{B_2} \otimes B_2) \circ ((\delta_C \otimes \delta_C) = \\ &= \eta_{B_2} \circ (\partial_1(\bar{e}) * \partial_3(\bar{e}) * \overline{\sigma_{f_2}}) \end{split}$$

and then, since η_{B_2} is a monomorphism, $\overline{\sigma_{f_1}} \sim \overline{\sigma_{f_2}}$.

10. Proposition. If σ is a 2-cocycle in $\operatorname{Reg}(C \otimes C, K)$ such that $\sigma \circ (\eta_C \otimes C) = \varepsilon_C = \sigma \circ (C \otimes \eta_C)$, then $(\mathbf{C}_{\sigma} = (C, \eta_C, \mu_{C_{\sigma}} = (\sigma \otimes \mu_C) \circ (C \otimes \tau_C^C \otimes C) \circ (\delta_C \otimes \delta_C)); \delta_C)$ is a Galois H-object with a normal basis.

Proof:

Trivially, $(\mathbf{C}_{\sigma}, \delta_C)$ is an **H**-comodule monoid.

The morphism $\gamma_{C_{\sigma}} = (\mu_{C_{\sigma}} \otimes C) \circ (C \otimes \delta_C) : C \otimes C \to C \otimes C$ is an isomorphism with inverse

$$\gamma_{C_{\sigma}}^{-1} = (\mu_C \otimes C) \circ (C \otimes \sigma^{-1} \otimes \lambda \otimes C) \circ (C \otimes \mu_C \otimes C \otimes \delta_C) \circ (\delta_C \otimes \lambda \otimes C \otimes C) \circ \circ (C \otimes \delta_C \otimes C) \circ (C \otimes \delta_C) \circ$$

Indeed:

$$\begin{split} \gamma_{C_{\sigma}}^{-1} \circ \gamma_{C_{\sigma}} &= \\ &= (\mu_{C} \otimes C) \circ (\mu_{C} \otimes \sigma^{-1} \otimes \lambda \otimes C) \circ (C \otimes C \otimes \mu_{C} \otimes C \otimes \delta_{C}) \circ \\ &\circ (C \otimes C \otimes \mu_{C} \otimes \lambda \otimes C \otimes C) \circ (C \otimes \tau_{C}^{C} \otimes C \otimes \delta_{C} \otimes C) \circ \\ &\circ (\sigma \otimes \delta_{C} \otimes \delta_{C} \otimes \delta_{C}) \circ (C \otimes \tau_{C}^{C} \otimes C \otimes C) \circ (\delta_{C} \otimes \delta_{C} \otimes C) \circ (C \otimes \delta_{C}) = \\ &= (\mu_{C} \otimes C) \circ (\mu_{C} \otimes \sigma^{-1} \otimes \lambda \otimes C) \circ (C \otimes C \otimes \mu_{C} \otimes \delta_{C} \otimes C) \circ \\ &\circ (C \otimes \tau_{C}^{C} \otimes [\mu_{C} \circ (C \otimes \lambda) \circ \delta_{C}] \otimes \delta_{C}) \circ (C \otimes C \otimes \delta_{C} \otimes C) \circ \\ &\circ (\sigma \otimes \delta_{C} \otimes \delta_{C}) \circ (C \otimes \tau_{C}^{C} \otimes C) \circ (\delta_{C} \otimes \delta_{C}) = \end{split}$$

$$\begin{split} &= (\mu_C \otimes C) \circ (\mu_C \otimes \sigma^{-1} \otimes \lambda \otimes C) \circ (C \otimes \tau_C^C \otimes [\tau_C^C \circ \delta_C] \otimes C) \circ \\ &\circ (\sigma \otimes \delta_C \otimes C \otimes \delta_C) \circ (C \otimes \tau_C^C \otimes \delta_C) \circ (\delta_C \otimes \delta_C) = \\ &= (\mu_C \otimes C) \circ (C \otimes [\mu_C \circ (C \otimes \lambda) \circ \delta_C] \otimes C) \circ \\ &\circ (\sigma \otimes C \otimes C \otimes \sigma^{-1} \otimes C) \circ (C \otimes \tau_C^C \otimes \delta_C) \circ (\delta_C \otimes \delta_C) = \\ &= (\sigma \otimes C \otimes \sigma^{-1} \otimes C) \circ (C \otimes \tau_C^C \otimes \delta_C) \circ (\delta_C \otimes \delta_C) = \\ &= (\sigma \otimes C \otimes \sigma^{-1} \otimes C) \circ (C \otimes \tau_C^C \otimes C) \circ (\delta_C \otimes \delta_C) = \\ &= (\sigma \otimes \tau_C^C \otimes C) \circ (\delta_C \otimes \delta_C) = \\ &= ([\sigma * \sigma^{-1}] \otimes C \otimes C) \circ (C \otimes \tau_C^C \otimes C) \circ (\delta_C \otimes \delta_C) = \\ &= C \otimes C \\ &\gamma c_\sigma^- \circ \gamma_c^{-1} = \\ &= (\sigma \otimes \mu_C \otimes C) \circ (\mu_C \otimes \tau_C^C \otimes C \otimes C) \circ (C \otimes \mu_C \otimes \delta_C \otimes C) \circ \\ &\circ (C \otimes \tau_C^C \otimes C \otimes \delta_C) \circ (\delta_C \otimes \sigma^{-1} \otimes \delta_C \otimes C) \circ (C \otimes \delta_C) = \\ &= (\sigma \otimes \mu_C \otimes C) \circ (C \otimes \tau_C^C \otimes C \otimes C) \circ (C \otimes \delta_C \otimes C) \circ \\ &\circ (C \otimes \tau_C^C \otimes C \otimes \delta_C) \circ (\delta_C \otimes \sigma^{-1} \otimes [(\lambda \otimes \lambda) \circ \tau_C^C \circ \delta_C] \otimes C) \circ \\ &\circ (C \otimes \tau_C^C \otimes C \otimes \delta_C) \circ (\delta_C \otimes \sigma^{-1} \otimes [(\lambda \otimes \lambda) \circ \tau_C^C \circ \delta_C] \otimes C) \circ \\ &\circ (C \otimes \phi_C \otimes C) \circ (C \otimes \tau_C^C \otimes C) \circ (\mu_C \otimes \mu_C \otimes \delta_C) \circ \\ &\circ (C \otimes \phi_C \otimes C) \circ (C \otimes \delta_C) = \\ &= (\sigma \otimes C \otimes C) \circ (C \otimes \delta_C) = \\ &= (\sigma \otimes C \otimes C) \circ (C \otimes \delta_C) \otimes (C \otimes \sigma^{-1} \otimes \delta_C) \circ \\ &\circ (C \otimes \mu_C \otimes C \otimes \delta_C) \circ (\delta_C \otimes \delta_C \otimes C) \circ (C \otimes \delta_C \otimes C) \circ (C \otimes \delta_C) = \\ &= (\sigma \otimes C \otimes C) \circ (\phi \otimes \delta_C \otimes C \otimes C) \circ (C \otimes \delta_C \otimes C) \circ (C \otimes \delta_C) = \\ &= (\sigma \otimes C \otimes C) \circ (C \otimes \delta_C \otimes C) \circ (C \otimes \phi_C \otimes C \otimes C) \circ (C \otimes \delta_C) = \\ &= (\sigma \otimes C \otimes C) \circ (C \otimes \delta_C \otimes C) \circ (C \otimes \phi_C \otimes C \otimes C) \circ (C \otimes \delta_C) \otimes (C \otimes \delta_C \otimes C) \circ (C \otimes \delta_C) \otimes (C \otimes \delta_C) \otimes C) \circ (C \otimes \delta_C \otimes C) \circ (C \otimes \delta_C) \otimes C) \circ (C \otimes \delta_C \otimes C) \circ (C \otimes \delta_C) \otimes C) \circ (C \otimes \delta_C \otimes C) \circ (C \otimes \delta_C) \otimes C) \otimes (C \otimes \delta_C) \otimes C) \circ (C \otimes \delta_C \otimes C) \otimes C) \otimes (C \otimes \delta_C \otimes C) \circ (C \otimes \delta_C \otimes C) \circ (C \otimes \delta_C \otimes C) \circ (C \otimes \delta_C) \otimes C) \circ (C \otimes \delta_C \otimes C) \circ (C \otimes \delta_C \otimes C) \circ (C \otimes \delta_C) \otimes C) \circ (C \otimes \delta_C \otimes C) \otimes (C \otimes \delta_C) \otimes C) \otimes (C \otimes \delta_C \otimes C) \circ (C \otimes \delta_C \otimes C) \otimes (C \otimes \delta_C) \otimes C) \otimes (C \otimes \delta_C) \otimes C) \otimes (C \otimes \delta_C) \otimes C) \otimes (C \otimes \delta_C \otimes C) \otimes (C \otimes \delta_$$

and thus (C_{σ}, δ_C) is a Galois H-object with a normal basis.

Remark. If σ and γ are two 2-cocycles such in Proposition 10 and cohomologous, then $(\bar{e}\otimes C)\circ\delta_C: (\mathbf{C}_{\sigma}, \delta_C) \to (\mathbf{C}_{\gamma}, \delta_C)$ is an isomorphism

of H-comodule monoids where \bar{e} is the morphism which exists because $\sigma \sim \gamma$, and thus, $[(\mathbf{C}_{\sigma}, \delta_C)] = [(\mathbf{C}_{\gamma}, \delta_C)]$ in $\mathbf{N}_C(\mathbf{H})$.

11. Theorem. There is an isomorphism of abelian groups F: $\mathbf{N}_{\mathcal{C}}(\mathbf{H}) \rightarrow H^2(\mathbf{H}, K)$ defined by $F([(\mathbf{B}, \rho_B)]) = [\bar{\sigma}_f]$ with inverse $G([\sigma]) = [(\mathbf{C}_{\sigma}, \delta_C)].$

Proof:

The morphisms F and G are well defined by Propositions 9 and 10. Moreover, the morphism of **H**-comodules $f:(\mathbf{C}_{\bar{\sigma}_f} = (C, \eta_C, \mu_{C_{\sigma_f}}); \delta_C) \rightarrow (\mathbf{B} = (B, \eta_B, \mu_B); \rho_B)$ is a morphism of monoids and therefore it is an isomorphism ([13, (4.3.9)]) and $[(\mathbf{B}, \rho_B)] = [(C_{\bar{\sigma}_f}, \delta_C)]$ in $\mathbf{N}_C(\mathbf{H})$.

If $[\sigma] \in H^2(\mathbf{H}, K)$ then the 2-cocycle γ defined from C_{σ} (Proposition 9) equals to σ :

$$\begin{split} \eta_{C} \circ \gamma &= \mu_{C_{\sigma}} \circ (\mu_{C_{\sigma}} \otimes [(C \otimes \varepsilon_{C}) \circ \gamma_{C_{\sigma}}^{-1} \circ (\eta_{C} \otimes C)]) \circ (C \otimes C \otimes \mu_{C}) \circ (C \otimes \tau_{C}^{C} \otimes C) \circ (\delta_{C} \otimes \delta_{C}) = \\ &= (\sigma \otimes \mu_{C}) \circ (C \otimes \tau_{C}^{C} \otimes C) \circ (\delta_{C} \otimes \delta_{C}) \circ (\sigma \otimes \mu_{C} \otimes \sigma^{-1} \otimes C) \circ \circ (C \otimes \tau_{C}^{C} \otimes C \otimes \lambda \otimes C \otimes \lambda) \circ (\delta_{C} \otimes \delta_{C} \otimes \delta_{C} \otimes C) \circ (C \otimes \tau_{C}^{C} \otimes C \otimes \lambda \otimes C \otimes \lambda) \circ (\delta_{C} \otimes \delta_{C} \otimes \delta_{C}) = \\ &= (\sigma \otimes \mu_{C}) \circ (C \otimes \tau_{C}^{C} \otimes C) \circ (\delta_{C} \otimes \sigma^{-1} \otimes \delta_{C}) \circ \circ (C \otimes \lambda \otimes C \otimes \lambda) \circ (C \otimes \delta_{C} \otimes C) \circ (C \otimes \delta_{C}) \circ \delta_{C} \circ (\sigma \otimes \mu_{C}) \circ (C \otimes \tau_{C}^{C} \otimes C) \circ (\delta_{C} \otimes \delta_{C}) = \\ &= (\sigma \otimes \mu_{C}) \circ (C \otimes \tau_{C}^{C} \otimes C) \circ (\delta_{C} \otimes \sigma^{-1} \otimes C \otimes C) \circ \circ (\sigma \otimes \mu_{C}) \circ (C \otimes \tau_{C}^{C} \otimes C) \circ (\delta_{C} \otimes \delta_{C}) = \\ &= (\sigma \otimes \mu_{C}) \circ (C \otimes \tau_{C}^{C} \otimes C) \circ (\delta_{C} \otimes \sigma^{-1} \otimes C \otimes C) \circ \circ (C \otimes \lambda \otimes C \otimes [(\lambda \otimes \lambda) \circ \tau_{C}^{C} \circ \delta_{C}]) \circ (C \otimes \delta_{C} \otimes \delta_{C}) = \\ &= (\sigma \otimes C \otimes \sigma^{-1}) \circ (C \otimes \tau_{C}^{C} \otimes \lambda \otimes C) \circ (C \otimes \delta_{C} \otimes \delta_{C}) = \\ &= (\sigma \otimes C \otimes \sigma^{-1}) \circ (C \otimes \tau_{C}^{C} \otimes C) \circ (\delta_{C} \otimes \delta_{C}) \circ (C \otimes \delta_{C}) \circ \delta_{C} \circ (\sigma \otimes \mu_{C}) \circ (C \otimes \tau_{C}^{C} \otimes C) \circ (\delta_{C} \otimes \delta_{C}) = \\ &= (\sigma \otimes \sigma^{-1} \otimes \eta_{C}) \circ (C \otimes \lambda \otimes \lambda \otimes C) \circ (\delta_{C} \otimes \delta_{C}) \circ \delta_{C} \circ (\sigma \otimes \mu_{C}) \circ (C \otimes \tau_{C}^{C} \otimes C) \circ (\delta_{C} \otimes \delta_{C}) = \\ &= ([\partial_{1}(\sigma^{-1}) * \partial_{4}(\sigma)] \otimes \eta_{C}) \circ (C \otimes \lambda \otimes C) \circ (C \otimes \delta_{C}) \circ \delta_{C} \circ (\sigma \otimes \mu_{C}) \circ (C \otimes \tau_{C}^{C} \otimes C) \circ (\delta_{C} \otimes \delta_{C}) = \\ &= ([\partial_{2}(\sigma^{-1}) * \partial_{3}(\sigma)] \otimes \eta_{C}) \circ (C \otimes \lambda \otimes C) \circ (C \otimes \delta_{C}) \circ \delta_{C} \circ (\sigma \otimes \mu_{C}) \circ (C \otimes \tau_{C}^{C} \otimes C) \circ (\delta_{C} \otimes \delta_{C}) = \\ &= (\sigma^{-1} \otimes \sigma \otimes \eta_{C}) \circ (\mu_{C} \otimes \tau_{C}^{C} \otimes \mu_{C}) \circ (C \otimes \tau_{C}^{C} \otimes \tau_{C}) \circ (\delta_{C} \otimes \delta_{C}) = \\ &= (\sigma^{-1} \otimes \sigma \otimes \eta_{C}) \circ (\mu_{C} \otimes \tau_{C}^{C} \otimes \mu_{C}) \circ (C \otimes \tau_{C}^{C} \otimes \tau_{C}) \circ (\delta_{C} \otimes \delta_{C}) = \\ &= (\sigma^{-1} \otimes \sigma \otimes \eta_{C}) \circ (\mu_{C} \otimes \tau_{C}^{C} \otimes \mu_{C}) \circ (C \otimes \tau_{C}^{C} \otimes \tau_{C}) \circ (\delta_{C} \otimes \delta_{C}) = \\ &= (\sigma^{-1} \otimes \sigma \otimes \eta_{C}) \circ (\mu_{C} \otimes \tau_{C}^{C} \otimes \mu_{C}) \circ (C \otimes \tau_{C}^{C} \otimes \delta_{C}) \circ \delta_{C} \circ (\delta_{C} \otimes \delta_{C}) = \\ &= (\sigma^{-1} \otimes \sigma \otimes \eta_{C}) \circ (\mu_{C} \otimes \tau_{C}^{C} \otimes \mu_{C}) \circ (C \otimes \tau_{C}^{C} \otimes \delta_{C}) \circ \delta_{C} \circ \delta_{C}) \circ \delta_{C} \circ \delta_{C} \otimes \delta_{C}) \otimes \delta_{C} \otimes \delta_{C}) \otimes \delta_{C} \otimes \delta_{C} \otimes \delta_{C} \otimes \delta_{C} \otimes \delta_{C}) \otimes \delta_{C} \otimes \delta_{C} \otimes \delta_{C} \otimes \delta_{C} \otimes \delta_{C$$

$$\circ (\delta_C \otimes [(\lambda \otimes \lambda) \circ \tau_C^C \circ \delta_C] \otimes \delta_C) \circ (C \otimes \delta_C) \circ \delta_C \circ \\ \circ (\sigma \otimes \mu_C) \circ (C \otimes \tau_C^C \otimes C) \circ (\delta_C \otimes \delta_C) = \\ = (\sigma \otimes \sigma^{-1} \otimes \eta_C) \circ (C \otimes \tau_C^C \otimes C) \circ \\ \circ (C \otimes [\mu_C \circ (C \otimes \lambda) \circ \delta_C] \otimes [\mu_C \circ (\lambda \otimes C) \circ \\ \circ \delta_C] \otimes C) \circ (\delta_C \otimes \delta_C) \circ \delta_C \circ \\ \circ (\sigma \otimes \mu_C) \circ (C \otimes \tau_C^C \otimes C) \circ (\delta_C \otimes \delta_C) = \\ = \eta_C \circ \sigma$$

because σ is a 2-cocyle and **H** a cocommutative Hopf algebra.

If $[(\mathbf{B}, \rho_B)], [(\mathbf{B}', \rho_{B'})] \in \mathbf{N}_{\mathcal{C}}(\mathbf{H})$ then the morphism $(f \otimes g) \circ \delta_{\mathcal{C}} : C \to B \otimes B'$ factors through the equalizer $i_{BB'}$, where f and g are the morphisms defined in Proposition 9 for (\mathbf{B}, ρ_B) and $(\mathbf{B}', \rho_{B'})$ respectively. Let $h: C \to B \circ B'$ be this factorization. The morphism h is in $\operatorname{Reg}(C, B \circ B')$ with inverse the factorization of the morphism $(f^{-1} \otimes g^{-1}) \circ \delta_C$ through the equalizer $i_{BB'}$, and satisfying $h \circ \eta_C = \eta_{BB'}$. Moreover, $\bar{\sigma}_f * \bar{\sigma}_g = \bar{\sigma}_h$.

Remark. If C = K-Mod (K a field), this result has been obtained by Sweedler for the H-module algebra $(K, \varepsilon_H \otimes K)$ in [21].

12. Definition. A monoid $\mathbf{A} = (A, \eta_A, \mu_A)$ is said to be Azumaya if and only if:

- i) A is a progenerator in \mathcal{C} .
- ii) The morphism of monoids $\chi_A : A \otimes A \to [A, A]$; $\chi_A := [A, \mu_A \circ (A \otimes \mu_A) \circ (\tau_A^A \otimes A)] \circ \alpha_A(A \otimes A)$ is an isomorphism.

13. Definition. On the set of H-module monoid isomorphism classes of H-module Azumaya monoids we define the following equivalence relation:

$$(\mathbf{A}, \varphi_A) \sim (\mathbf{B}, \varphi_B) \Longleftrightarrow \mathbf{AE}(M)^{\mathrm{op}} \cong \mathbf{BE}(N)^{\mathrm{op}}$$

for some progenerators **H**-modules (M, φ_M) and (N, φ_N) .

The set of equivalence classes of H-module Azumaya monoids forms a group under the operation induced by the tensor product, $(\mathbf{AB}, \varphi_{A\otimes B} = (\varphi_A \otimes \varphi_B) \circ (C \otimes \tau_A^C \otimes B) \circ (\delta_C \otimes A \otimes B))$. The unit element is the class of the H-module Azumaya monoid:

$$\begin{aligned} &(E(M)^{\circ \mathsf{p}}, \, \varphi_{E(M)} = [M, \varphi_M \circ (C \otimes \beta_M(M)) \circ (\tau_C^M \otimes [M, M]) \circ \\ &\circ (\varphi_M \otimes C \otimes [M, M]) \circ (\tau_C^M \otimes C \otimes [M, M]) \circ (M \otimes \tau_C^C \otimes [M, M]) \circ \\ &\circ (M \otimes C \otimes \lambda \otimes [M, M]) \circ (M \otimes \delta_C \otimes [M, M])] \circ \alpha_M(C \otimes [M, M]) \end{aligned}$$

for some progenerator **H**-module (M, φ_M) ; and the opposite of (A, φ_A) is $(A^{\text{op}}, \varphi_A)$. This group is denoted by $BM(\mathcal{C}, \mathbf{H})$.

If $\mathbf{1} = (1, 1, \tau^{K}, 1)$ is the trivial Hopf algebra in \mathcal{C} , then we define the Brauer group of Azumaya monoids in \mathcal{C} as $\mathbf{BM}(\mathcal{C}, 1)$ and we will denote it by $\mathbf{B}(\mathcal{C})$.

Examples.

- If C is the category of modules over a commutative ring R, then B(C) is the Brauer group of R defined by Auslander and Goldman in [4].
- 2) If C is the category of sheaves of θ -modules, B(C) is the Brauer group defined by Auslander in [3].
- 3) If C is the category of (R, σ) -Mod with σ an idempotent noctherian kernel functor in R-Mod, López and Villapueva obtain, in [17], a homomorphism $Br(R, \sigma) \rightarrow B((R, \sigma)$ -Mod) which is an isomorphism if R is a noetherian ring, where $Br(R, \sigma)$ is the relative Brauer group introduced by Oystaeyen and Verschoren in [22].

14. Definition. We denote by $BM_{inn}(\mathcal{C}, \mathbf{H})$ the subgroup of $BM(\mathcal{C}, \mathbf{H})$ built up with the equivalence classes that can be represented by an H-module Azumaya monoid with inner action.

([2, 16]).

15. Theorem. $BM_{inn}(\mathcal{C}, \mathbf{H}) \cong B(\mathcal{C}) \oplus H^2(\mathbf{H}, K)$.

Proof:

The sequence

$$1 \longrightarrow \mathbf{B}(\mathcal{C}) \stackrel{\imath}{\longrightarrow} \mathbf{BM}_{\mathrm{inn}}(\mathcal{C}, \mathbf{H}) \stackrel{\mathrm{II}}{\longrightarrow} \mathbf{N}_{\mathcal{C}}(\mathbf{H}) \longrightarrow 1$$

is split exact, where the morphism *i* is given by $i[(A)] = [(A, \varepsilon_C \otimes A)]$ and the morphism Π is given by $\Pi[(A, \varphi_A)] := (\Pi(\mathbf{A}), \rho_{\Pi(A)})$ with $\Pi(\mathbf{A}) := \operatorname{Ig}(m, n)$

$$\Pi(A) \xrightarrow{j} A \otimes C \stackrel{m}{\rightrightarrows} [A, A \otimes C]$$

where

$$m = [A, \mu_A \otimes C] \circ \alpha_A (A \otimes C)$$

$$n = [A, (\mu_A \otimes C) \circ (A \otimes (\varphi_A \circ \tau_C^A) \otimes C) \circ (\tau_A^A \otimes \delta_C)] \circ \alpha_A (A \otimes C)$$

([**2**, 17]).

If H is a finitely generated projective, commutative and cocommutative Hopf algebra over a commutative ring K, this result generalizes the one obtained by Beattie in [5], and if the action of H over A is inner, the description of $\Pi(A)$ is due to Beattie and Ulbricht ([6]).

References

- ALONSO ÁLVAREZ, J. N., Extensiones Cleft en categorías cerradas. Interpretación cohomológica, *Alzebra* 58 (1992), Depto. Alxebra, Santiago de Compostela.
- ALONSO ÁLVAREZ, J. N. AND FERNÁNDEZ VILABOA, J. M., Inner actions and Galois H-objects in a symmetric closed category, Depto. Alxebra, Santiago de Compostela (Preprint).
- 3. AUSLANDER, M., The Brauer group of a ringed space, Journal of Algebra 4 (1966), 220-273.
- 4. AUSLANDER, M. AND GOLDMAN, O., The Brauer group of a commutative ring, *Transactions A.M.S.* 97 (1960), 367-409.
- 5. BEATTIE, M., A direct sum decomposition for the Brauer group of *H*-module algebras, *Journal of Algebra* **43** (1976), 686–693.
- 6. BEATTIE, M. AND ULBRICHT, K. H., A Skolem-Noether theorem for Hopf algebra actions, *Comm. in Algebra* 18 (1990), 3713-3724.
- BLATTNER, R. J. AND MONTGOMERY, S., Crossed products and Galois extensions of Hopf algebras, *Pacific J. of Math.* 137 (1989), 37-54.
- 8. CAENEPEEL, S., A note on inner actions of Hopf algebras, *Proc.* A.M.S. 113, no. 1 (1991).
- 9. CHASE, S. U. AND SWEEDLER, M. E., "Hopf algebras and Galois theory," Lect. Notes in Math. 97, 1969.
- DOI, Y., Equivalent crossed products for a Hopf algebra, Communications in Algebra 17 (1989), 3053-3085.
- 11. EARLY, T. E. AND KREIMER, H. F., Galois algebras and Harrison cohomology, *Journal of Algebra* 58 (1979), 136–147.
- 12. EILENBERG, S. AND KELLY, G. M., Closed categories, Proc. of the Conference on Categorical Algebra, La Jolla (1966), 421–562.
- FERNÁNDEZ-VILABOA, J. M., Grupos de Brauer y de Galois de un álgebra de Hopf en una categoría cerrada, Alxebra 42 (1985), Depto. Alxebra, Santiago de Compostela.
- FERNÁNDEZ-VILABOA, J. M. AND LÓPEZ-LÓPEZ, M. P., Cleft comodule triples in a symmetric closed category, Bull. Soc. Math. Belgique, ser. B 40 (1988), 283-297.
- JEREMÍAS-LÓPEZ, A., El grupo fundamental relativo. Teoría de Galois y localización, Alxebra 56 (1991), Depto. Alxebra, Santiago de Compostela.
- 16. KREIMER, H. F. AND TAKEUCHI, M., Hopf algebras and Galois extensions of an algebra, *Indiana Univ. Math. J.* 30 (1981), 675–692.

- 17. LÓPEZ-LÓPEZ, M. P. AND VILLANUEVA-NOVOA, E., The Brauer group of the category (R, σ) -Mod. (An alternative to the theory of relative invariants), Proc. of the first Belgian-Spanish week on Algebra and Geometry (1988), Rijksuniversitair Centrum Antwerpen Groenenborgelaan 171, B-2020 Antwerpen, Belgium, 75-93.
- 18. MAC LANE, S., "Categories for the working mathematicien," G.T.M. 5, Springer, 1971.
- 19. PACHUASHVILI, B., Cohomologies and extensions in monoidal categories, Journal of Pure and Applied Algebra 72 (1991), 109-147.
- PAREIGIS, B., "Non-additive ring and module theory IV: The Brauer group of a symmetric monoidal category," Lecture Notes in Math. 549, 1976, pp. 122-133.
- 21. SWEEDLER, M. E., Cohomology of algebras over Hopf algebras, Transactions of the A.M.S. 133 (1968), 205-239.
- VAN OYSTAEYEN, F. AND VERSCHOREN, A., "Relative invariants of rings. The commutative theory," Lect. Notes in Pure and App. Math. 79, Marcel Dekker, New York, 1983.
- 23. YOKOGAWA, K., The cohomological aspects of Hopf-Galois extensions over a commutative ring, Osaka J. Math. 18 (1981), 75–93.

J. N. Alonso Álvarez: Departamento de Matemáticas Universidad de Vigo Lagoas-Marcosende E-36271 Vigo SPAIN J. M. Fernández Vilaboa: Departamento de Alxebra Universidad de Santiago de Compostela E-15771 Santiago de Compostela SPAIN

Primera versió rebuda el 17 d'Agost de 1992, darrera versió rebuda el 27 d'Abril de 1993