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GALOIS H-OBJECTS WITH A NORMAL BASIS
IN CLOSED CATEGORIES.
A COHOMOLOGICAL INTERPRETATION

J. N. ALONSO ALVAREZ AND J. M. FERNANDEZ VILABOA

Abstract

in this paper, for a cocommutative Hopf algebra H in 2 symmetric
closed category € with basic object K, we get an isomorphism
between the group of isomorphism classes of Galois H-objects with
a normal basis and the second cchomelogy group H2(H, K) of
H with coeflicients in K. Using this result, we obtain a direct
sum decomposition for the Brauver group of H-module Azumaya
monoids with inner action:

BM,;..(C,H) = B(C) & H%(H, K)

In particuiar, if C is the symmetric closed category of K-mo-
dules with K a field, H?(H, K} is the second cohomology group
introduced by Sweedler in [21]. Moreover, if H is a finitely gen-
erated projective, commutative and cocommutative Hopf algebra
over a commutative ring with unit K, then the above decompo-
sition theorem is the one obtained by Beattie [5) for the Brauer
group of H-module algebras.

Preliminary

A monoidal category (C, @, K) consists of a category C with a bifunctor
—&—:CxL — C and a basic object K, and with natural isomorphisms:

gapc AR (BRC)E(A@B)®C
s K@A=A
ra ARK=A

such that

(A®apcp) o easscyp © (ease ® D) = aapcap) © tlagp)on
(A®lig)oasxs =7a®B
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If there is a natural isomorphism 74 : A® B = B ® A such that
Borh = AQ B, 1hgc = (BR7&) 0 (75 ® C), then C is called a
symmetric monoidal category.

A closed category is a symmetric monoidal category in which each
functor — ® 4 : C — C has a specified right adjoint [4, ] : € — C {[12],
[18]).

Examples:

1} The category of sets and mappings.

2} The category of R-modules over & commutative ring R,

3) The category of chain complexes of R-modules and morphisms of
degree 0, with R a commutative ring.

4} The category of sheaves of §-modules over a topological space,
with & a sheaf of commutative rings.

5) The category of coherent sheaves of modules over a scheme.

8} The category of all R-graded modules with morphisms of degree
0 (R is a commutative graded ring}. '

7} (R,0)-Mod, with R a commutative ring and ¢ an idempotent
kernel functor in B-Mod.

In what follows, C denotes a symmetric elosed category with equalizers,
co-equalizers and projective basic objec K. We denote by ans and Sar the
unit and the co-unit, respectively, of the C-adjuntion M ® — 1 [M, -] :
C — € which exists for each object A of C.

1. An object M of C is called profinite in C if the morphism
M, Bu(K)® Mooy (M @ M) : MQM — [M,M] = E(M) is an
isomorphism, where M = [M, K]|. If, moreover, the factorization of
Bu(K) : M ® M — K through the co-equalizer of the morphisms
Brr(M)® M and M ® ([M, far (K) o (Bt (M) ® M)} o car( E(M) @ M) :
M@E(M)®M — M ® M is an isomorphism, we say that M is a
progenerator in C,

2. A moneid in C is a triple A = (A4,n4,p4} where A is an object
inCand ps: A®A — A, na: K — A are morphisms in C such that
pac(A®na)=A=pao(na®A), pao(pa®A)=pac(A®pa) If
@A OTE = ua, then we will say that A is a commutative monoid. Given
two monoids A = (A, 94, pa) and B =(B,ne,pa)inl, f: A—- Bisa
monoid morphism if ppo (f® f) = fous and fona = ng.

A comonoid (cocommutative), D = (D, ep,8p) iIs an object D in €
together with two morphisms ep 1 D — K, ép : D — D ® D), such
that (65 @D) oép = (D@ESD) o fp and {ED ®D) oép=1p = (D@
ep)obp{rh obp = bp). U D = {D,ep,6p) and B = (E,cg,8E) are
comoneids, f: D — F is a comonoid morphism if (f ® flodp =égo f
andego f=¢p.
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3. For a monoid A = (4,14, 14) and a comonoid D = (D,ep, p) in
C, we denote by Reg(D), A} the group of invertible elements in C{D, A)
(morphisms in C from I to A) with the operation “convolution” given
by: fxg=pac(fR9)oép. The unit element is £p & 4.

Observe that Reg(D, A) is ah abelian group when D is cocommutative
and A is commutative.

4. Definition. Let II = {C, 5¢, per) be a monoid and C = {C, e¢, 6¢)
2 comonoid in € and let A : € — ¢ be a morphism. Then H = (C =
(Ciec,éc), 1 = (C, ne, po), 7, A) is a Hopf algebra in C with respect
to the comonoid C if e¢ and 8¢ are monoid morphisms (equivalently, ne
and pe are comoncid morphisms} and A is the inverse of 14 : € — C'in
Reg(C, C).

We say that H is 2 finite Hopf algebra if C is profinite in C.

5. Definition. {A,pa) = (A, na,p4; va) is a left H-module monoid
if:
1y A=1{(A,n4,04) is 2 monoid in C.
i) (A,p4)is aleft H-module (p4o{(C®a) = paocl{pc @A), pao
(nc ® A) = A).
iti) 4, pa are morphisms of left H-modules {g40{CQn4) = na®eg
and 4o (C®ua) = pa0papa, Where paga = (Pa®ya)o(CB®
TS @ A)o (60 @ A® A)).

We say that the action ¢ 4 of H in A is inner if there exists a morphism
f in Reg{C, A) such that 4 = paoc{A®(aoct)) o (fRFf 1@ A)o
(b ® A): C® A — A, where f7! is the convolution inverse of f.

6. Definition. If H is a cocommutative Hopf algebra and (A, w4}
is a commutative H-module monoid, then, we say that a morphism ¢
in Reg{C ® C, A) is a 2-cocycle if 8;{c) « Fz(c} = O2(c} * O4{c), where
01{c) = pa o (C®0), Oz(c) =00 (uc ®C), 83(0) = 0 0 (U B pc) and
B4{o) =0 ®ec.

Two 2-cocycles ¢ and v are said to be cohomologous, written o ~ v,
if there exists a morphism v € Reg(C, 4) such that ¢ * Oy(v) = v *
O3(v}*y, where 81(v} = pao(C®V), So{v) = voyuc and Gi{v) = vQec.

Trivially, “~” is an equivalence relation.

The set of equivalence classes shall be calied the second cohomology
group of the cocommutative Hopf algebra H with the coefficients in the
left H-module monoid (A, p4), and will be denoted by H2(H, A).

If 5 is a 2-cocycle in Reg{C'®C, A), then the morphism & = ¢+ 01{7) *
B2{m~ )% 83(m) is a 2-cocycle in Reg{C'®C, A) cohomologous with ¢ such
that 60 (e ®C) =cc®ns = 60{C®nc), wheren =0 1o (CRnc) is
a morphism in Reg(C, A) with inverse m~! = g o (C ® n¢). Moreover, if
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v is cohomologous with o, then there exists a morphism ¥ € Reg(C, A)
such that Fong = 14 and & * G0} = O1(F) * 3(F) *

Remark. Let € the category of K-modules over a feld. In this case,
H?(H, A) is the second cohomology group of the Sweedler’s complex

{Reg(&C, A); Aglezo

Reg(K, A) 2% Reg(C, 4) 2% ... 2 Reg(éc A)

B, Reg( ® (‘ Ay = Quty
where Ay =8 %85 - x g;é)q.l and for each f ¢ Reg(é)C’, A),
31(f)=(PA°(C®f)

8(f) c{CRIT2RCGuecRCRTITRC)

5q+2( fl=f®¢c

{[21]).

7. Definition. (B,pgr) = {B,ns,¢s; pp) 15 a right H-comodule
monoid if:

i) B =(B,ns,¢p) is 2 monoid in C
i) {B,pg)is aright H-comodule ({ppRC)opp = (BRéc)opn: (BB
ec)opg = B).
iti) pp : B — B® C is a monoid morphism from {B, nB”uB) to the
product monoid BIl = (BRC, s &n¢, (#sRpuc)o (B®TE®C))
(that is, pgonp = np®nc and ppopn = (up B pc) e (BRTE ®
C)o(ps & ps))-

From now on we assume that H is a finite cocommutative and com-
mutative Hopf algebra.

8. Definition. A right H-comodule monoid (B, pg) is said to be a
Galois H-cbject. if and only if:

i) The morphism v = {us @ C)o{B®pp) : BB —- B is
an isomorphism.
i) B is a progenerator in €,

For example, in the case of (R,o)-Mod, a commutative H-comodule
monoid is & couple (B, pg), where B is a commutative (R, o)-algebra
and pg : B = B L H :=Q,(B®g H) 15 & morphism of algebras and it
defines a right H-comodule structure over B.
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(B, pp) is a Galois H-object if and only if B is a (R, 0)-progenerator
and the mapping pff : B#H — Hom(B, B) arising from the left B#H-
o =2

module structure on B is an isomorphism ({15, {1.3.17)]).

If a Galois H-object is isomorphic to H as an H-comodule then we
say that it has a normal basis.

If B; and By are Galois H-objects, f 1 By — B is a morphism of
Galois H-objects if it is a morphism of H-comodules {gp, 0 f = (f R C)o
pr, ) and of monoids.

If {A,pa) and (B, pgy) are H-comodule monoids, then A o B, defined
by the following equalizer diagram

AOB“BAngﬁA
22 4 ®B&C

g
where

84p=(A®75) o (pa® B}, and
ip = A®pg

is an H-comodule monoid to be denoted by (Ao B, pap).

If moreover {A,pa) and (B, pg) are Galois H-objects, then (A o
B,pap) is also a Galois H-object, where pag is the factorization of
the morphism &) 5 0iap (or 845 oiap) through the equalizer iqp @ C.

The set of isomorphism classes of Galois H-objects {with a normal
basis}, with the operation induced by the one given above, is an abelian
group to be denoted by Gale(H)(N¢(H)). The unit element is the class
of (I1,6¢c) and the opposite of [(B, pg}] is [(B°P, {3 & A) o pg)] where
BeP = {B,’J‘?B,HB OTB .

Remark. In the case of a finitely generated projective, commu-
tative and cocommutative Hopf algebra H over a commutative ring
R, Gale(Hj is the group of Galois H-objects in the sense of 8. Chase
and M. Sweedler n [9].

9. Proposition. If [(B,pp)] € Ne(H), then, there is a 2-cocycle ¢
in Reg(C® C,K) satisfyingocofme®@C)=¢ec =co{(C®nc).

Proof:

Let (B, pg) a Galois H-object with a normal basis. Then we have an
isomorphism v : B ®@ B — B ® € and an H-comodule isomorphism
7. C — B. Therefore the morphism of H-comodules f = (¢ ® B) o
(r"'®r)o{nr @ C): C — B is in Reg(C, B) with inverse

frl=ppo(BRec®B)o(Bor ' @r)o(yy ®nc)o(ns ®@C)
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and satisfying f o ne =n8.
Indeed:

frf =ppolec®BRec®B)o(r ' ®BRr I @r)e
o(ns ®7p ®nuc)o(r®C)obe =
=pupolec®BRec®B)o(r ' @Bar ' ®r)o
o(B®p o8l ®C)o(na®ns@BRnc)or =
=(ec®B®ec)o(r ' ®@r®C)o(lppons]®C) =
=& @B

Tl f=pro(Bolcor|®B)o(yg' @r)o(ns@bc) =
=pgo(B®lcorI®ric(B®pp)ovg o (np®C) =
=pupo(B®ec®r)o(BRéc)o (BRr ) evg o(np®C) =
=(BQec)oysovg (e ®C) =
=ec @B

because r is an H-comodule isomorphism and the equalities:

(us ® B)o (B®v5") =75 o (ur ®C)
(ec®B)o(r ' ®@r)o(ns@nc) =(ec ® B)o(r" ' @r}oppons =ns
(' ®C)o(B®éc)=(BRpp)ovg

Trivially, f is a morphism of H-comodules and f one = ng.

The morphism o = (up o (f® f}) x (f 71 Q@ u¢) : C ® C — B factors
through the equalizer

ng 144
K=B 3 BaC
Bene

because H is a Hopf algebra, (B, pp) an H-comodule monoid, f a moz-
phism of H-comodules and the equality ppo f~! = (f7'1 & A o1& 0 é¢
(14, (2.3)]).

Moreover, the factorization, &y, of gy is in Reg(C'®C, K) with inverse
the factorization of the morphism 0'}'1 = (fopc)*(ppoTEo(f 1@ f 1))} :
C © C — B through the equalizer ng.
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The morphism &7 : O ® € — K is a 2-cocycle. Indeed:

np o (01{Gs) % 03(Fy}) =
={(f+f o6 9puc)e(CRIERC)o(bc®@bc)o
o(C®F;Buc)o(CRCRIERC) (C®Ec®bc) =
=upo(B®f')oppofo(a;@uc)o(CBTE ®C)o(bc®bc)o
o (CRF®uc)e (CRCVTERCYo (C®c Q) =
=ppo(B®foppoupo(f®fio(C®F;®uc)e
{CRCR®TERC)o(CRbcRc) =
=pugo(B®f Noppoppo(up®C)o{fRFQf)=
=upo(B®foppofold;@uc)o(C®1E®C)olbe®bcio
0{F;Qpuc@C)o(CRTERCO®C)o(bc@6c®C) =
={(f+f Ho(G;®uc)o(CRTE ®CYo(b¢c ®dc)o
0{(8;Quc®C)o(CRTEQRCRC)o (c®Ec®C) =
=ng o (02(G¢) * Oa(Fy))

because f is a morphism of H-comodules, H a cocommutative Hopf
algebra and the eguality

fo(5;®uc)o(CRTE®C)o(bc®bc) =pno(f®f)

and then, since g is a monomorphism, &y is & 2-cocycle.

Trivially, ;0 (nc ®C) =ec =d;0(C®ne). W

Remark. If {B1,pg,)] = (B2, p.)] € Ne{H) then there is an iso-
morphism of H-comodule monoids h : By — By. Clearly, &7, = Tray, .
(Notice that h o fi € Reg(C,By) with inverse ho f['). Moreover,
Of ~Ofy

Indeed:

The morphism e = {ho f}* f5 ! : C — By factors through the equalizer
B!

pB, o€ = (up, ®pc)o{(ho i) ® T, ® N o (b ® f ' ®Co
0 (C® (16 08c))obe = (B2 ®7c) o€

and then, there cxists & morphism & : ¢ — K such that g, 0 € = e,
Clearly, & o 5o = K. Moreover, & is in Reg(C, K) with inverse €', the
factorization of e~' = fo * (ho fi!) throught the equalizer 75, .
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We also have that:

N8, © (77, * %2(8)) =
= 18, © (113, ® 1B,) © (Thoy * O2(&)} =
=, o (us, B pa,) o[(ho )@ (ho fi) @ ((ho fT1) x(ho f1))®
® f5]o(C® C®8c)o(C® C ® pc)o(C®7E ® C) o (bc ® b¢) =
= up, o (1B, ® By) o (i, ® (15, 0 T57) @ 18, )0
o((ho i) @(ho M)®(f5 '+ )8 f5 9 fa® f ' )o
(CRCRICRICRuc)o(CRCBICRTERC)o
2 (CRCQEcBE)(CRTERC)0(0¢ ®bc) =
= pip, o (us, ® Ba) o ((np, 08) @ (1B, 0 €} ® (N5, 0 Tf,))0
(CRTE®C)a(be ®bc) =
=g, 0 (01(&) x 0a(€) + T3,

and then, since g, is a monomorphism, 7y, ~ T,

10. Proposition. If o is a 2-cocycle in Reg(C @ C, K) such that
co{ne ®C) =ec =00{C@nc), then (C, = (Cine, e, = (0B pc)o
(CRTE R CYo(bc ®8c));8¢) is a Galois H-object with a normal basis.

Proof:

Trivially, {(C,,8¢) is an H-comodule moneid.

The morphism v¢, = (e, ® C)o (C®6c) : CRC — CRCis an
isomorphism with inverse

Yol = (pe®C)o{C®r ' @ARC)(CRURC RS )o{6cRAGTRC)o
o (CBR6c Yo (CRE)

Indeed:

1

Yo, °YC, =
= (e @C)o(pe® o ' @ARC) o (CRCQuc ®C R dc)o

P (CRCRUcV/ARCKRC) o (CRTEQVC B ®Co

o{lo ®8c B ®8c)(CRTE RCR®C)o(é¢ 8 e &C)o(CRSEc) =
=(ue®C)o(pc®0 ' @A) (CBRC B pcRéc 8o

o {CBTE® (e o (C®A)0c)@8c) o (CRC B o

0(68bc®Ec)0(CRTERC)o (b Qéc) =
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=(pc@C)o(pc®o ' @AQC) o (CRTE R[5 0 8] @ Co
(o REcBCREC)o(CRTE ®bc)o(bc® ) =

= (ke ®C) 0 (CB]pc 0 (C®A) 0 8c|®C)o
0{(eRCRCRIRCI(CRCRCYTE R CRC o
c(CRCQEcBEcRC){CRTE ®c)o (b ®bc) =
=(0RCRo ' RC)(CRCYI[TS 08c] Q)0

o (CR®TERC)o (b ®bc) =

=(o+0 ' |RCBCYIo(CRTERC)o (5c ®Sc) =

=C@C

Ve, 0V, =

= (6@uc®RC) o (e ®TERCRC) 0 (CRC O e @60

o (C®TE RCRIC)o(bc R0 R6c0C)o(CRLeRTCBARC)0
(CRERANRCRbc)o (b ®c ®C) o (C@bc) =

= {0®uc®C) o (CRTERCRC) o (nc®pc (78 0 6c]®C)o

o (CRTERCRBEC)0(6c@a 1 ®[(A® A o7S 08| C)o
c(CRucRCRCRL) (e RABC R8g)0
o(CRéc RO {CRbc) =

={eRCR®C)o (CRTERCYo(pe & e ® éc)o

o (CB®TE R uco(M®C)obc]®Clo(bc @ @ARbc)0

0 (CRUcRC®éc) 0 (bc@IQCRC) 0 (C®EcRC) 0 (CRbc) =
=(0®C8C)o{uc®75 @C) o (CRTE ®bc)o

o([r§ 0] @07 RARC) o (CRucRCRC®Clo
(CRCRINICRCRC)o{(6c®6cRC®C)o

{C® (15 0 8c]® C) o (CREc) =
=(CRr®C)o(CRCRIRE)0(C®[6copuc]RCKRCo
{CRCBARCIC)o(bc ®cRC)o{C Q) =
={CReRe'8C)c(CRCRTERCRC o
c{CR6c®Ic8C)o(CRUcBEc) o (bcBARC)o(CRéc) =
=(C&[o*07 R C)o(CQpuc @Sc)o(bc ® AR C)o(C & 8¢) =
=CRC

and thus (C,, 8¢) is a Galois H-object with a normal basis. B

Remark. If o and v are two 2-cocycles such in Proposition 10 and
cohomologous, then (6@ C)oée @ (C,,0¢) — (Cy, b¢) is an isomorphism
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of H-comodule monocids where & is the morphism which exists because
o ~ 7, and thus, [{C,,b¢)] = [{(C,,8¢)] in Ne(H}.

11. Theorem. There is an isomorphism of abelion groups F
Ne(H) — H?(H, K) defined by FU(B,ps)]) = [7;] with inverse
Gllol) = (Ca, bc)]-

Proof:

The merphisms F and & are well defined by Propositions 9 and 10,
Moreover, the morphism of H-comedules f:{Cs, ={C, nc, te,, ) bc) —

(B = (B,np,uB); pp) is & morphism of monoids and therefore it is an
isomorphism ([13, (4.3.9})]) and [(B, pr)] = {{(C5,,6¢}] in Nc(H).

If [¢] € H*(H, K') then the 2-cocycle v defined from C, (Proposition
9) equals to o:

e o = pic, o (o, ® [(CB®ec)ors o (e ®CH) o (COC ® oo
{CRTERC)o(bc B bc) =
= (o@uc)e{CRTERC) o (be®éc)o(0®@uc®c R Co
(CRTERCBARC RN o (bc ®5c®c®C)o
(CRCR[bcopc))o(CRTERC) o (b ®be) =
=(oRpuc)o(C@1E®C)o(6c @™ ®bc)o
c{CRARC@AN(CRcRC)o(CREc)obgo
O(J®;1,C)0(C®TCC®C)O(53®50}=
={0@pc)o(CRTERCYo(bc®c ' RCQC o
(CRARCR[(A®N) 075 06¢]) 0 {C®bc @ C)o
ACR[1§ 0bc))obco(c @ puc) o (CRTE®RC) o (bc ®bc) =
={(eQRCRo o (CRTERARC )0
o {CBpco(CRA)ebc)@ARE) o (CRCQc) o {CR )0
0bcolo@uc)e(CRTERCYo (e ®bc) =
=R '®nc)o(CRIRARC) o (§c ® ¢} oo
o(6®uc) e (C®1ERC) 0 (b ©éc) =
= {([O1(c™" )% 8a(0)] @) {CB®ABC) o (C®8c) 08¢0
olo@uc) o (CRTERC)o(be ®bc) =
= ([82(0™") ¥ 85(0)| ® N} (COARC) 0 (C® b} 0 8o
olo®puc)o(C®TE BC) o (bc®bc) =
=6 '®c®nc)o(uc ®TE @ uc) o (CR1ERTE ® Co
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0 (be ®(A®N) 0TS 0 b ®be) 0 (C®bc)0bco
0 {o®uc) o (CRTEQC)o(bc®ée) =
=(e®0 ' Bnc) o (CRTE®Co

o {CR[uco{(CRA)obc|®[pco(A®Clo
obc] ® C)o{bc &bc}obeo

0 (e @uc)o(CR17EQC) o (b ®bc) =

=Nocoa

because ¢ is a 2-cocyle and H a cocommutative Hopf algebra.

If [(B,pg)], [{B',pp)} € Ne(H} then the morphism {f ® g} ¢ ¢ :
{ — B @ B factors through the cqualizer igg:, where f and g are
the morphisms defined in Proposition 8 for (B, pg) and (B’ pg) re-
spectively. Let h : € — B o B’ be this factorization. The morphism
h is in Reg(C, B o B’} with inverse the factorization of the morphism
(7 '®9 1) through the equalizer ipp., and satisfying hone = nga.
Moreover, 6 * 54 = 55,. R

Remark. If C = K-Mod {K a field), this result has been obtained by
Sweedler for the H-module algebra {K,ey ® K) In [21].

12. Definition. A monoid A = (A, 14, t4) is said to be Azumaya if
and only if:

i) A is a progenerator in C.
ii) The morphism of monoids x4 : A® A — [A,A]; xa = [4d,pae
(AR ua)o(ri® A))oas{A® A)is an isomorphism.

13. Definition. On the set of H-module monoid isomorphism classes

of H-module Azumaya monoids we define the following equivalence re-

lation:
(A,p4) ~ (B,pp) <= AE(M)™ = BE(N)™

for some progenerators H-modules (M, pas} and (N, o).

The set of equivalence classes of H-module Azumaya monoids forms a
group under the operation induced by the tensor product, (AB, page =
(0a®pp)o(C®TY ®B)o{bc ® A® B)}. The unit clement is the class
of the H-module Azumaya monoid:

(E{M)°®, v = [M, om0 (C® Bar(M)) o (7 & [M, M])o
olpmr ®C & (M, M])o (78 @ C® (M, M])o (M ®7E & (M, M])o
o(M®C®A® M, M]) o (M ® b @M, M])] o ans(C @ [M, M]))

for some progenerator H-module {M, ys); and the opposite of {4, ¢4)
is (AP, 4). This group is denoted by BM({C, H}.
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If 1 = (1,1,7%.1) is the trivial Hopf algebra in C, then we define the
Brauer group of Azumaya monoeids in C as BM(C, 1) and we will denote
it by B{C).

Examples.

1} If C is the category of modules over a commutative ring R, then
B(C) is the Brauer group of R defined by Auslander and Goldman
in [4].

2) If C is the category of sheaves of §-modules, B(C) is the Brauer
group defined by Auslander in {3].

3) If C is the category of (R,o)}-Mod with o an idempotent nocthe-
rian kernel functor in R-Mod, Lépez and Villanueva cobtain, in
[17], & homomorphism Br(R,o) — B({R,o0)-Mod) which is an
iscmorphism if R is a noctherian ring, where Br(R, o) is the rel-
ative Brauer group introduced by Oystaeyen and Verschoren in
[22].

14, Definition. We denote by BM;,,(C,H) the subgroup of
BM(C, H) built up with the equivalence classes that can be represented
by an H-modnle Azumaya monoid with inner action.

(2, 18)).
15. Theorem. BM,;,.(C,H) = B(C)® H*(H, K).

Proof:
The scquence

1 — B(C) — BMip(C, H) — Ne(H) — 1

is split exact, where the morphism { is given by #{{A)] = [(4,ec® 4)] and
the morphism II is given by II[(4, pa)] := (II{A), pricay) with II{A) :=
Ig(m,n)

T(A) - ARC 3[4, AR C)

where

m=[A4,pa 8 Cloas(dgC)
n={A(pa®C)o(AB (paoTd)®C) o (74 @ éc) oas(ABC)

([2, 17]).

If H is a finitely generated projective, commutative and cocommuta-
tive Hopf algebra over a commutative ring K, this result generalizes the
one obtained by Beattie in [5], and if the action of H over A is inner,
the description of TI{A) is due to Beattie and Ulbricht ([6]). B
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