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VECTOR-VALUED INEQUALITIES
WITH WEIGHTS

LUz M. FERNANDEZ-CABRERA AND JOSE L. TORREA(*)

Abstract

This paper deals with the foliowing problem:

Let T be a given operator. Find conditions on »{z) (resp. u{z}}
such that

/ITf(z)Ipuix)dx SC/If(z)Ipv(z)dr

is satished for some u(z) {resp. viz}}.

Using vector-valued inequalities the problem is solved for: Car-
leson’s maximal operator of Fourier partial sums, Littlewood-
Paley square functions, Hilbert traensform of functions valued in
U.M.D. Banach spaces and operators in the vpper-half plane.

Introduction

This paper deals with the following

Problem A. Let T be a given operator. Find conditions on v{z)
(resp. uf{z}} such that

©1) [ rreyrutes < ¢ [ i@ Poia)e

is satisfied for some u{x} (resp. v(z)).

This problem was studied for different operators in [C, J|, [G, G|, [H,
M, S]. The operators treated were singular integrals, fractional integrals,
Hardy-Littlewood maximal operator and fractional maximal operator.
In all the cases the method used was constructive.

{*)Partially sypported by DGICYT. PB90-187.
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On the other hand it was hnown that a ”"good” weighted norm in-
equality of type (0.1}, for an operator T', gives a vector-valued inequality
of type

(0.2) IO TH Y2, < I 1571
H 3

For instance, the vector valued inequalities for the Hardy-Littlewood
maximal operator, M, were obtained in [F, 8] from the estimate

/|Mf|puSC/|f|pMu, l<p<oo

In 1981, José Luis Rubio de Francia showed that weighted norm in-
equalities and vector valued inequalities were equivalent in some sense,
see [R de F, 1]. Using that equivalence, he developed a non constructive
method in order to solve the Problem A for some operators.

The aim of this paper is to show that a slight generalization of the
method of Rubio de Francia allows us to solve the Problem A for a huge
family of operators. The generalization is two fold:

First we shall consider vector-valued versions of inequality {0.1) and
we shall prove the relation with the corresponding inequality (0.2), see
Theorem (1.1). We use this vector-valued version in order to:

{a) solve partially Problem A for Carleson’s maximal operator of
Fourier partial sums, see Theorem {2.9).

(b} find conditions on v(z) (resp. w(z)) such that

/ 1B (@) Bulz)ds < C / | F(@)Eu(z)dz
R R

1s satisfied for some u(x) (resp. v{z}), where H is the Hilbert transform
and E is a U.M.D. Banach space, see Theorem (2.24}.

In the case that E is a U.M.D. Banach lattice we solve the same
problem for the operator

- 1 N
Mf(@) = sup o fQ Fldy, zeR

where |.| is the absolute value in £ and the supremum is taken in the
lattice order, see Theorem (2.26)

{c) solve Problem A for Littlewcod-Paley square functions, see Thec-
rem (2.11).
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The second generalization is to consider abstract measure spaces, in-
stead of R™. With these ideas we are able to solve Problem A for opera-
tors which map functions in R™ x [, 0o} into functions in R™ x (0, oo}, see
Theorems (2.16) and (2.17). The vector-valued inequalities obtained in
this case, see Theorem (3.16), can be of independent interest when work-
ing with operators acting on functions defined on the upper half plane.
These operators include as particular cases Poisson integrals, balayages,
see (2.19), and some well known maximal operators, see (2.23).

Our method gives in all the cases some extra information about the
size of the weight that is found.

It is an honour for us to use ideas of ¢ur friend and adviscr José Luis.

Throughout this paper we shall work on general measure spaces
(Y,dv), (X, du), where dv and du are positive measures. Given a Banach
space E, we shall denote by LL(Y,dv), L%(Y) or L% (dv) the Bochner
space of E-valued strongly measurable functions such that

[ | F(@)Ediiz) < +oo.
Y

Given a positive measurable function w(z), on (Y, dv), we shall denote
by
Lp(w(z)dv(z)),

or L%.{w) the space of E-valued strongly measurable functions such that

]Y | £ () wz)dv(z)

is finite.

Given a Banach space E, we shall denote by #}., or £#(E) the Banach
space

{an} CE: Y llanl} < +oc}.

=l

If E is a Banach lattice we shall denote by E{£) the lattice
{{zn}: suplz,| € E}
with the norm |[{z.}|| gy = [ sup |2x|li5-
k3

The organization of the paper is as follows: in Section 1 we state and
prove the abstract results that generalize the previous work of Rubio de
Francia, in Section 2 we give (without proof) the applications that solve
Problem A for several operators and Section 3 is devoted to the proofs.
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1. Abstract results

We begin this section with a lemma, that it is known for the scalar
case, see [GC, R de F, VL.4.2]. The proof in the vector-valued case is
essencially the same, but we include it here for the sake of completeness.

(1.0) Lemma. Let(Y,dv) be a measure space, let F and G be Banach
spoces. Assume thot 0 < s < p < oo and T is a sublinear operator which
satisfies

QT H I Pl e vay < CQ 151807
E i

Then, if o = (f)!, there exists a nonnegative function w(z) with
lwhro-1(y.ary < 1 and such that

fy 1T @B (@)dn(@) < Ol 5

The proof of this lemma is based in the following result, see [GC, R
de F].

Mini-max Theorem. Let A, B be conver sets in some vector spaces
and assume that B is compact for a certain topology. Let ¢ be o function,
¢: Ax B — RU{+0o}, which is concave on A and conez and lower
semicontinuous on B. Then

min sup &{a, b} = sup min ¢{a, b).
beﬂﬂegé( ) aeﬂbes(p( )

Proof of the lemma (1.0): Let A and B given by
A={D_ITHlE: f; €GNl <1}
J i
B={beL°(X): b(z) 2 0,[b], <1)
and we define on A x B the function ¢ as

$(a,b) = / ST S5 [Bb() = du(a),
3

B is convex and weakly compact, A is convex; ¢ is convex and lower
semicontinuous in B, see V1.4.3 in [GC, R de F|, and ¢ is linear on A,
therefore by the Minimax Theorem we have,

min sup ¢ia, b) = supmindia, b) <
bEB aegé( ) aeEbEB #ab) <

< sup | ITHIE) 2 s v,y < O
sapll2,
2
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Therefore, there exist by € B such that, for every @ € A4, we have

/ZHTfJ Yoobolz) =7 du{z) < CP,

]

the proof of the lernma finishes by choosing w{z} = bg{z} 7 . B

(1.1} Theorem. Let (Y,dv) be a measure space, F' and G be Be-
nach spaces, and {Ar}+35 be a sequence of disjoint sets in'Y such that

::(’) Ar =Y. Assume that 0 < 3 < p < oo and T is a sublinear operator
which satisfies

(12) O NTHIEY P los (aran < Ced_IAHIEE, ke, ..
i J

where for each k, Cr. is a constant depending on &, F,p and s.
Then there exists a positive function u{z) on'Y such that

(1.3) {/y IT £ (@) 5ulz)d(z))'/? < Cllfllc

holds, where C is a constant depending on G, I\ p and s.
+oo
Moreover, given o double sequence {ap}{% such that Zaﬁ < o0
k=0
and ¢ = (E)!, u can be found such that

™ Xay llzo-1(ar a0y < (@ "Ci)P.
Proof: Given k, we define the operator T, by
TeF(x) = Tz} X4, (2}, z € Ag.
Ty satisfies

II(ZIIT;JJII P77 sty ) < Ok lefgll Ve,

then by lemma (1.0}, there exists a nonnegative function w, defined on
Ay such that |lw™ze-1(a, .00y < 1 and

fA 1T (@) B}z < CEIFIIS
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+exr
We define u(z) by u(z) = Zaick_pwk(:c)XAk {z), z€Y;then
0

[ 1@t ) -
+oe + 00

=S aC” [ Il < Sl -
0 % 0

= ClIfI,

and [u™ Xa, lzo-2(ap,a = (@ " ColP llwillio-2(ac,a0y < (ap Cr)P. W

2. Applications

We introduce first some notation.

Given 1 < p < 0o and 0 < v < n we shall define the following classes
of weights w{z) in R™.

(2.1) Zpy={w: / w(z)(1 + 2} "™2de < +o0}
(2.2) Dp.,={w: f w(z)! 7P (1 + |27 dr < o0}
Rn

(2.3} D, ={w: sup R(T_“)p’f w ¥ (z)dr < +00},
£21 =tz R

when v = 0, we shall write simply Z;, Dy and Dy

Remark.

It is easy to check that if p < g then D, C Dy C Dy, D, ¢ Dy
and Dy ¢ Dy, in fact the weight v(z) = (1 + |z}~ belongs to D7,
l<r<ocobutv & D, for any g, 1 < ¢ < oo. Finally the weight wy(z) =
lz[*P=D(1 + [2|*}P(1 + |log |2|[)2*~ 1) belongs to D, but w, & D} if
n<p
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Analogoulsy, given 1 < p < oq, 0 < 4 < n and a measure p on the
upper half plane R’_,‘_“, we shall consider the following classes of weigths
wlx,t) in RTT,

(2.4) zm(dg):{w:[ wiz, (1 + ¢ + 7)) Pdu(z, £) < +00)
Bt

+
(2.5)
Dy (dp) = {w: / L (@ (Lt + 2O dpa, ) < +oo}
Rﬂ 1

(2.6)

Dj ) = w5 sup RO [ (e, )P du(e, ) <+oo},
|z|+t<R

5
R>1

when ~ = 0 we shall write Zp(du), Dp(dy) and D {dy).

A. Partial sum operators.

Consider a homogencous function of degree 0 in R, Q(z) = Q(z"),
which we assume to be of class C!! outside the origin and satisfying the
cancellation property

] Q(z"Ydo(z') = 0.
lz*|=1

For each £ € R®, we define the kernel kg (y) = e*™$¥Q(y'}|y]~™, and
the corresponding operator

T f(z) = P‘U-]ka(—"? -y} fly)dy =
= ez“i‘ﬁ‘xp.fu‘_/ Qfz —y) )|z —y| eIV fy)dy,
R

then, we define the operator

T (z) = sup T ()]

and consider the inequality

(7 | ri@puaie<c [ @i
R" Rn

We have the following
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(2.8) Theorem. Let1 < p < oo.

(i) If u € Z, then (2.7) holds for some v, such that v* € Z,, for
a < 1.

(i) If v € DN Dy, for some p1 < p, then (2.7) holds for some u,

such that u® € Dy, fora < 1.

When n =1 and i(y) = % sign (y) then Ty = H (Hilbert transform)
and the partial sum operarors of the Fourier Scries can be expressed in
terms of {T}}rer: For each interval I = [a,}]

515 = [ 1Ot = Z(Tf@) - Tf(e)).

In this case T is Carleson’s maximal operator, see [C], [H],

S flz) = sup 19 f(z)] < CT* f(z)

and we have

(2.9) Theorem. Let 1 < p < o0.
(i} u € Zp if and only ¢f (2.7) holds for some v,

(i) Ifv € DN Dy, for some p1 < p, then (2.7) holds for some u.

Conversely if (2.7) holds for some u then v € Dy,
(iii) both (i) and (it} are true if we reploce T* by S5*.

B. Littlewood-Paley operators.

Let ¢ € S(R™) be such that supp(p) C {¢ € R™: § < §¢| < 2},
$(£} = 1 in a neighbourhood of |£] =1, and

Z G(258) = 1 for all £ # 0.

kEZ

We define the following operator

Gf(@) = (3 o » f@)RV2,

keZ

where @i (z) = 25"p(2%2), and we consider the inequality

(2.10) /R G/ @)Pulz)iz < O /R F@)Polaz

then we have
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(2.11) Theorem. Letl < p< oo

(i) If u € Z,, then (2.10} holds for some v, such that v € Z, for
a < 1.

(ii) If v € Dy, then (2.10) holds for some u, such that u® € Dy for
a<l.

C. Operators on the upper half plane.
We shall consider the upper half plane R:‘_“ = R"™ x [0, 00).

Given a measure dv on Ri“, we shall say, as usual, that dv is a
Carleson measure if there exists a constant C such that for any cube @
in R*, »(Q) < C|Q| where Q = {{z,t): x € Q,0 < ¢ < side length of
@} and |@| stands for the Lebesgue measure of Q.

Given a measure dy on RTT!, we shall consider the following operators:
(2.12) Generalized fractional integrals. Let 0 <y < n and

K.z, t,u) =callz| +t+w)"™", ze€R" tuc€(0oc)

Then we define, for compactly supported f on RT*!
TM,'Yf(xtt) = / + K’Y(I - y$t?u)f(y3 u)d'u'(ya u)! T e Rn: i 2 0
R

If f is a compactly supported function on R™ and K, (z,t) = c.{|z| +
Y r e Rt € [0, 00), we define

15 = [ K-/, (@R
(2.13) Generalized Poisson integrals and Balayages.

Let K be a function K : R®xR™x[0,00) % [0,00) — R that satisfies

.

Kx: RTINS K 1
ot S T trar

z,7 € R™ #,u € {0,00),
we define the operator

Tp‘(}f(m$t) =pu. ,/Rnﬂ. K{‘I"’ y,t1u)f(y: u)dlu‘(y: 11,), (fL‘, t) € Ri—’_l'
+
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(2.14) Maximal operators. Let § < v < n, we define, for func-
tions f defined on R, the following maximal operator M,, ,f(z,t) =

sup{|Q|%"1[ |f (v, s)lduy, 53}, (,£) € R%T, where the supremum is
@

taken over the cubes Q in R™ centered at z, with sides parallel to the
axes and having side length at least t.

For functions f defined on R™ we define
Moo = supllQE [ 15wy}, (0 € B

where the supremurm is taken over the cubes @ in R™® centered at x, with
sides paralell to the axes and having side length at least ¢.

We consider the inequality
(2.15)

f (T (z, P u(z, t)dv(z, ) < C / |z, ) Polz, t)dp(z, 1)
R:'H‘ R:+1

(2.16) Theorem. Let 1l < p < 00, 0 € 4 < n. Let dv,dp be two
measures on R%Y? such that dv is Corleson and let v o weight on RITE
we have

(i) of v € D, {dp) then (2.15) Rolds for the operator T,y for some
u such that u® € D, ((dv) fora <1,

(i) v € Dy _(dp) if and only if (2.15) holds for the operator M, .
with v such that u® € D, ,{dv).

(2.17) Theorem. Let 1l <p < oo, 0 <+ < n. Let du and dv be two
measures on R u(z,t) be o weight on RTYY. Assume that dy is
Carleson measure, then we have

(i If v € Z,.,(dv) then (2.15) holds for T, ., with some v such that
v* € Zp o {du), a < 1.

(i) u € Zp(dv) if and only if (2.15) holds for M, 4 with some v
such that v* € Z, ,(du), o < 1.

We would like to emphasize some particular cases of the above results.
(2.18) Given & function g : R® — R. we consider its Poisscn integral

t n
Py(z,t) = ¢, = 9W)dy,  (z,t) e R},
R (|- g2 + )%
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on the other hand given a measure du on R’j_“ the balayage of dp is
defined by

Cnt

P*(dp)(z) = / d(y, 1),z € R,

n+l E_.ﬂ
R (fo -y + )"

see [A, B].
We have the following results

(2.19) Corollary. Let1<p< oo

(1) If v is a weight in R™ such that v € D, then for any Carleson
measure dv there exists @ weight u in RY! such that

(2.20) /R““ |Pg(z, t)[Pulx, Udv{z,t) £ C/ {g{x)|Pu{x)dx,

n

and u® € Dy(dy) for o < 1.
(ii) If v is o weight in R™ such that u € Z, then for any Carleson
measure dit there exist o weight v such that

) [ Pl <C [ | 0Pe ddata),

and v* € Zp(dy)}, for a < 1.
(ili) Given @ measure dv in R and a weight u € Z,(dv) then there
exists a weight v such that (2.20) holds and v® € Z,, for a < 1.
(iv) Given a measure dy in R’}r“ and ¢ weight v € Dp(du) then there
exists a weight u such that (2.21) holds end u® € Dy, for oo < 1.

Proof of Coroliary (2.19):

Proof of parts (i) and (iii). Take the measure dufx, ) = dr ® &¢{t),
where &y(t) is the Dirac’s delta at ¢ = 0. Given a function g{z) we
consider the funetion f(z,u) = g(x) then

Tp,l'.lf(x: t) = Pg(a:, t),

with
Cnt

+1°
(e —yl?+2) "2

KH‘O(Q’;! Loy t: S) =

now (i) follows from Theorem (2.16.i} and (iii) follows from Theorem
(2.17.i).



188 L. M. FERNANDEZ-CABRERA, J. L. TORREA

For the proof of (ii) and (iv), we consider the measure dv(z,t) = dz ®
&o(t) and then {ii) follows from Theorem {2.17.i) and (iv) follows from
Theorem (2.16.1), since P*{fdu}(z) = T, of(z,t) with K, o(z,y,t,u} =

Cnlth
.

(Iz = yI2 + u2)

nti
2

(2.22) Remark. This last Corollary should be compared with the
characterization, see {8], of the pairs (v, dv) of weight and measure such
that the Poisson integral maps LP(R™,v) into LP(R%H! dv).

(2.23) Remark. It is clear that if we take du({z,t) = dr ® 8(t) we
get the operator

M (&) = sup{1QF " [ |1wlidy),
Q
in particular

1
M, 2,0 = M,£(@) = swp mere [ 15wy

On the other hand
My £2,0) = sup(1Q1F [ |50}y ),
e} &
in particular

My of(z,0) = Cf(z) = sup t;—| /Q | ) sl ).

Therefore if we call T to any operator M., M., or C, then Theorems
(2.16) and (2.17) give necessary and suficient conditions on the weight »

(resp. u) such that
[rzsrus [isps

is satisfied for some u (resp. v).
The case M, were studied for Rubio de Francia, see [R de F, 1].



VECTOR-VALUED INEQUALITIES WITH WEIGHTS 185

D. U.M.D. Banach spaces.
The class of the Banach spaces E such that the Hilbert transform

Hflz)= p,v./R :e(—_y)ydy

is bounded from LZ(R) into L%{R) were characterized by Burkholder
and Bourgain, see [Bk] [B], and it is denoted by U.M.D.

If E is a Banach lattice of functions with absclute value | - |, then the

following extension of the Hardy-Littlewood maximal operator can be
defined

- 1
5(s) = sep o fQ £ () ldy.

It is known. see [R de F, 2], that a Banach lattice of functions E is
U.M.D. if and only if M maps LL(R"™) into L%(R") and LE.(R™) into
L% (R™) for some p, 1 < p < 00, and E* is the dual space of E.

{2.24) Theorem. Letl < p< co

(i} A weight v in R belongs to Dy, if and only if there exists u, u® €
D, for a < 1 and such that for any U.M.D. Banach space E, we
have,

(2.25) /R |H f(@)Bu(z)dz < C ]R 1 (@) Bo(z)dz

(ii} A weightu in R belongs to Z, if and only if there exisis v,v* € Zp,
for o < 1 and such that {2.25) holds for every U.M.D. Banach
space E.

{2.26) Theorem. Let1l < p < o0

(i) If a weight v in R™ belongs to D, then there exists u,u® € Dy, for
o < 1, such that

e [ M@l <C [ W@l

holds for any U.M.D. Banach lattice of functions E. In order to
satisfy (2.27) it is necessary thot v € Dy,

(i) A weight u in R™ belongs to Zy, if and only if there exists v,
v € Zp for o < 1, such that {2.27) holds for eny U.M.D. Banach
lattice of functions E.
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3. Proofs

The main ingredient will be to show that the corresponding operator
satisfies inequality (1.2).

A, Partial sums operators,
We consider the £°-valued operator

T1(z) = {po. [ Uz —9) vt i)y cene,

n |z =y

observe that T™ f(z} = ||Tf{z}{{ecc- Therefore in order to prove Theorem
(2.8) it is enough to find conditions en ¥ and v in order to satisfy

6y [ @ <0 [ Ife)Pued

Rn

It is known by Carleson’s Theorem, see [C], that T maps L{R"™) into
300 (R™},1 < 5 < 0o. On the other hand T is given by the £*-kernel

Oz —y)')

~2riey i
T

K(z,y) = {

Ti(z) = po. f K(z,9)f (4)dy,

with these observations it can be proved, see [R de F, R, T, that the
operator defined by

(F3)s = (TH);
maps L, {(R") into Lgp(gm)(R"}, I1<p s <oa.

We can consider also the transpose operator T, acting on #i-valued
functions f(x} = (fe(x))e, defined by

T@) = (el (@) = 3 po. / Mz =) aeice g4y,
£

re jz—yl*

The operator T is given by the £° = L{&*, C)-valued kernel

_ (=)

[z — g™ e e,

K(z,y)
and again the operator defined by

(F); = (TF;);
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is bounded from Lﬁp(el){R“) into L3,{R"},1 < p,s < oo, and from
Loy (R") into weak-L},(R"), 1 < p < 00, see [R de F, R, T].

On the other hand it is clear that u € Z; if and only if wl~? €
Dy, hence a simply duality argument says that (i) in Theorem (2.8) is
equivalent to the following statement:

(1) Ifv e Dy, 1 <p < oo, then

G2 [ FrePu@a<c | 1@k

Jor some u, such that u™ € Dy, fora < 1.

Now in order to apply Theorem (1.1) to the operators T and T we
shall need the following

(3.3) Proposition. Let0<s<1<p
(i) Assume thatv € D, then we have

i/p
. k
l (Z |Tfj|p) lzogsny < Csp2*™/° (Z”fj"ii(vl)
1

i/p

j
(ii) Assume that v € Dy N Dy , for some p1 < p, then we have

i/p

i/p
[ (Z ||Tfj||§m) lee(s,) < Cs p257/° (Zj Ilfjllip(u))
3 J

k=0,1,2,.., where Sy i3 the unit ball and each S, k > 1, is the
spherical shell:

Sy ={z: 2¢7! < |z| < 2F}

Proof: Given k& > 0, we decompose each function f as f = f' + f%,
where f' = fXg,, f'=f— f and By = {z: |z| < 2F*1}.

It is clear that ||[K(z,y)]le= < Clz|™™ when |z} > 2|y|, and therefore
for all x € 55,

5" (2)] < /

lyl>2%+1 > 2]z

& (2, 9)f(w)ldy < /

lyl>2*

1/p U(y)l——p’ L
<C (_/R W @G 'u(y)dy) (_/Rﬂ Wdy)

< c'||f||4r,;?, (v}

o @l [yl dy
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where in the last inequality we have used that v € Dy, in particular we

have
1/p

1/p
sup (Z Ii'"*f}-'(z)lp) <ClY Wil |
; ;

TES,

hence

i/p

ifp
IUSERP] Moy < €20 Zﬂfﬂligm) :
§ F

On the other hand, as we said before, T maps Lépw) into weak-L},,
therefore we use Cotlar’s inequality (see [GC, R de F, V. 2.8]) and we
get

3

3

1ip 1/p
I (Z |Tf;-|?’) lzesy < ISkIM272) (Z |ff;-|p) lweat—z2(si)

i/p
< CplSil'/* 1)) (Z ||f;u:?1) Il 12
7

1/p 15
scp|sk|”3‘l(fﬁ ﬂ(anj(z)u?l)v(md% (fl » u(m)l-iv’d%
7 z| <2kt

1/p
< C,okn/s (Z | £ ||i§,:¢1 (U)) .
3

where in the last inequality we have used that » € D,. This finishes the
procof of {i).

In order to prove {ii) we decompose again each function as before
=7+

Since ||K{z,y)l¢e» < Clz|™™ and v € D,, we have analogously as for
T, that

1/p

1/p
) (Z IITf}-'Ilﬁw) et < €277 [ S 14000,
i 3
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On the other hand T maps L}, (R") into L;,(gm)(R“), T <r p<oo,
therefore by Hdlder's inequality we have
i/p 1/p

IED ITFNE | llzogsa < IS D NIT e | Birgsiy
i 7

1/p

<CSTH DIGP ] e

ifp

scisive( [ 1]t ( |

I|{2k+l

LTS A% @%
v(x)_(i)( 5

Now we choose r such that £ = py and by using the hypothesis v €
Dy, we have

/p i/p

IS ITHNE | llzosa < C25° [ D Nfille,
J i

this finishes the proof of (ii). W

Proof of Theorem (2.8):

As we said above in order to prove (i) it is enough to prove (3.2). We
observe that by the last Proposition the operator 7' satisfies (1.2} with
F =R, Ag = S, Cx = C2¥%/% and G = L, (v), then by Theorem (1.1}
there exists a weight u satisfying {3.2).

Moreover u can be found such that

1fo—1
(/ u(z)l_"d:c> < (a;12k”/3)"
Sk

with o = {2)’ and ax such that 3" a? < oo.
Therefore if we take g, 1 < g < o0, such that g — 1 < p' — 1, we have

-(g-1) s .
f de < Z g~ Krp / w(z)? de <
we (L4 a7 S 2 S

ag—1

oo
< Z 2—Knp"(aIT(len/S)p(q—l)(zkn} (E ,
K=0

(&)
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but _pf+E(q_1)+ﬁ:(1_p’)+(q—l) < 0, then if we chose

g—1

g-1

p-1"
Analogously in order to prove (ii) we observe that by using Proposition

{3.3) (ii} T satisfles (1.2) with F = £, A, = 8, Cr = C2%/% and

G = LP(v), then Theorem (1.1} can be applied as before. B

Proof of Theorem (2.9):

The sufficient conditions on (i} and (ii) have been proved in Theorem
(2.8). In order to obtain the necessary conditions we observe that

ax = 2%7% with ¢ small enough, we get that u® € D, with a =

T f(z) = |H f(x)l,

where H is the Hilbert transform, then the conditions in order to have
{(2.7) are also necessary in order to have

(3.4) /R |H f(2)Pu(z)de < C jR |f@)Pu(a)dz,

but it is well known that in order to have (3.4) for some u (resp. some
v) it is necessary that v € D, (resp. u € Z,), see [GC, R de F].

Finally to prove (iii) we observe that as 5* f(z) € CT* f(x) we have
that the sufficient conditions for weigths in order to have {2.7) are also
sufficient for

(3.5) /R 1S* £ (@) [P} < € ]R | (@) Po(z)dz.

On the other hand observe that an inequality of the type (3.5) implies
that for any interval I C R, the inequality

f 177 (@) Pulz)dz < C / @) Pul(@)dz
R R

holds with € independent of I and hence (3.4) holds and the necessity
conditions again are the some that they are for the Hilbert transform. H

B. Littlewood-Paley operators.

Qur idea is to prove Theorem (2.11) following the lines of the proof of
Theorem (2.8).

We consider the £°-valued operator

Tf(x) = {or* f(2)}rez



VECTOR-VALUED INEQUALITIES WITH WEIGHTS 195

where ; are the functions defined in section 2 part B. It is clear that
Gf(zy = [|[Tf{x)|lez= and then we are going to deal with the following
inequality

(3.6) f ITF@)Buiz)dz < C ] @) Po(z)dz,

in instead of (2.10).

1t is known that T is given by the £%-valued kernel K(z,y) = {¢i{z —
¥ }rez that satisfles

I (z, y)lle= < Clz — 17"
Moreover the operator defined by (f;); — (Tf;); is bounded from
L (R™} into weak-Ly, ey (R™),1 < p < 00, see [R de F, R, T].

We can consider also the adjoint operator ’f‘, acting on #2-valued func-
tions, f(a} = {fr{x))s, and defined by

Tf(z) = T((f)e)z) = Z‘th * flz),

T is defined by the ¢ = £{#?, C)-valued kernel

Kz, y) = {enly — 2)}e

and again the operator T({f;);) is bounded from L;,,( ¢2) 1nto weak-L},,
l<p<oo

Therefore (i} and (it} of Theorem {2.11) are equivalent statements and
it is enough to prove (ii).

In order to prove (i} we need the following

3.7) Proposition. Leftve D, 1 <p<ocoandlets <1l <p Then
P
we have

I NTf515) Plize(siy < Con2 ™/ (DNl 0P
) 7

K =0,1,2,..., where Sig are th sets defined in (3.3).

The proof of this Proposition follows the pattern of the proof of Propo-
sition (3.3).

Once we know Proposition (3.7) the proof of Theorem (2.11) can be
built as the one of Theorem (2.8).
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C. Operators on the upper half plane,
Qur goal is to establish inequality (1.2} in this context.

We shall denote by I'(2) the cone of aperture one whose vertex is z,
r€R" le.
M(z) = {(xt) e RY* : [z -yl <t}

(3.8) Definition. Given a positive measure di on R2, we define

s = | f(y,t)d‘uig‘t), ¢ R™

(3.9) Proposition. Let 1 < p € o and du be a measure on
Ri“. Then A, is a bounded kinear operator from L} (R1r1+1 dp) into
L}, (R, dz).

Proof: A, is a positive linear operator, then it is enough to prove that
A, maps LY{R7T! dy) into LH{R™, dz), but

duly,t
WAu Sl 2 (e —/ y,t) “EE )|d33
T(x)

/Rnﬂ (/ Xre) (¥, )] Sy, )] de )d#g,t)
< L:+l (tin ]‘;(y,t) dx) | £y, t)du(y, )

< Cn”fHLl(R:H i) n

(3.10) Remark. Given a positive measure dy on R’fl, we can define
the operator

i = [ et s ewe

The operator A; is rclated with "tent spaces”, see [C, M, S] and (R,
T2]. It can be showed that 4; maps L*(R?"', dy) inta L*(R", dx),1 <
s < oo, if only if du is a Carleson measure, see R, T2]. Therefore,
since A, (|f|){z) = A1(f)(z), we have that 4, maps L, (R du) into

S(R™,dr),1 < s < oa,1 < p < oo if and only if du is a Carleson
measurc.
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(8.11) Proposition. Let du be a measure on R, The following
inequalities hold:

My f(@,8) < Caly (A, f)(a,1), (2,8) € R

(3.12) o

(3.13) T (8] < CaT (Aulf) (2, ), (2,) € RYT
D<yan

(314)  |Tof(e 1) € CaP(Aulf)(=,8), (3,8) € R

Where M., T, and P are the operotors defined on (2.14), (2.12) end
{2.18). By C, we denote a consiant no necessarily the same at each

ocurrence.,

Proof: Let B = B(zq,7), 70 € R*,7 > 0, be aballin R™. If (z,t) € B
then [ — zg| + ¢t < r, in particular we have

13[%‘1_[3if(y,U)Idu(y,u)=cnIBI%_1/é If(y,u)l(u%fﬁ(y‘u]d»’:)d#(y,u}

3 dzdul{y, u
= Cn|BIn 1/ / Xé(yr U)XB(y,u) (z)|f(ya u)l_“%
RIYIJR u

< calBJF [B A7) (22 < Mo (AL, 8.

In order to prove (3.13), we observe that

[y, u) 1 /
(x,1)] = c.n/ — dz | duly, v
l "Tf | | +1 (|$‘ y|+t+u)" ¥ (u” By.u) ) ”L(y )|

| £y, )l dzdu(y, u)
S XBya ()
/Rnﬂ / o (lz —y| +t+u)- Bly, J(z) un

but if 2 € By, u}, then {z — z| + ¢t < |z — y| + 1z +t and we have
fly,u dzdp(y, v
Tttt e [ [ s Ko (28]

= (| — 2z +t) u™

- AlDE
o fn Tz =2 1 oo @ =~ B Al DD,

The proof of (3.14) es analogous. W
The following Theorem can be found in [R, T1].



198 L. M. FERNANDEZ-CABRERA, J. L. TORREA

(8.15) Theorem. Let 1 < p < oo, and dv be a Carleson measure on
RT’I, then the operators My, with0 <y < n, Ty, with < v < n and
P are bounded from L»(R™,dz) into weak—Lg},T* (Ri“,du) and from

L}, (R*, dz) into L5, (RYF: dv), e <8< oo,% =24 ,l,

Taking into account this theorem and Proposition {3.11) we shall be
able to prove the following

{3.18) Theorem. Let 1 < p < 00,0 < v < n and dv be a Carleson
measure in R

Given a measure dy in R%Y! then the operators M, ., and T, , are
bounded from L, (RI, du) into week Ly, " (R, dv).

Moreover if du is & Ceorleson measure, then the operators M, 4 and
Ty, are bounded from L3, {RTT, du) into L;,,(Ri“,du),é =241

T T

Proof: The first part of the theorem is a direct consequence of {3.9),
(3.11) and (3.15).
The second part is a consequence of {3.10), (3.11} and (3.15}. &

{3.17) Remark. The proof of Theorm {3.15) is based in the theory
of vector-valued Calderdn-Zygmund Kernels. That proof is not avalaible
for the case of Theorem (3.16).

Now we can prove inequality {1.2) for these operators.

{3.18) Proposition. Let$ < s <1 <p < 00,0 <y < n and let dv
a Carleson measure in RTHL.

Let Si, K =0,1,2, ..., be the sets in R defined by

So = {(z, &) e RI, |zl +i< 1}
Sk ={(z,t) e RT", 26-1<|g|+t<2¥}, K =12 ..

1 vE 1) an = ,odp) then
(1) Ifve D,.(d d G = LP(RT vdp) th

ni
IO 1T £517) Pl sy < C275 O N 1%Y2.
ki ki

(i) Ifv e D; . (du) and G = LP(RYH, vdp) then

IO (M £33 7P Lo (55 a0y < 02%(2 LA 153>
b 3
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Proof: Given K > 0, we decompose each function f = f' + f" where

f'=1FfXpe,f"=f—f and

By = {{z,t): ||+t < 25T}

If ly] + u > 2{]z| + t) then

Pl +u <yl tut+ < lyl+ut2t+ |y +uv—2zl <2z —yl+t+u).
Therelore if (z,t) € Sk we have

[Ty "2, t)] = | Ky(z —y, tou) fy, uidu(y, u)l

|y |+uz28+ 5 2{|z|+)

dply, u)
<e / lf @ ull s
" |yl +uz2K+1 ( (|y|+u)n i

= Cn (/
Rﬂ+1

+

4 1/p
vy, u)! =7
Tl o (e 4 < .
</|y|+u22f<+: (Jy} + w)(n—")%’ wly, u) el flle

ifp
| £y, w)Pu(y, uyduly, u))

Thus  sup () |Turfi(z )P)7P < COON1£511%)Y/7 and then,
{z,t)ES 3 j

IO 1Ty F3P) P pesic,amy < CVISKY QI IE)P <
3 3

< 2% N1
3

On the other hand, as 5 < 2, we use Cotlar’s inequality {see [GC, R
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de F, V.2.8]) and Theorem {3.18) to get
"(Z |T#"Yf;1p)”p”L3(SK,du]
b

PHCo ?
S CuSY TN I Tun i _n

f LIV (R dv)

< goKls—tn=) "(Z If_;|p)1/p||L1(Ri+1‘dﬂ)

K
n dply, u)
— (oK . Pyl/p
=02 [ (Sl wm
¥
1/p

<c2t | [ S 15wl uduty o)
3

vl—p’( u} W 5
| ( [Ty, u)) < 25 (15
)

(ol + 2+ )2

This completes the proof of (i).

In order to prove {ii), we observe that if (z,£) € Sk, then (z,¢) € Ox
where @y is the cube

Qr={yeR": y=(y1,...uah | £2%, i=1,..,n},
therefore
1

J_
|QK|”‘ !
< Callfllg2 G ( f

By

[, 1 aiduty <
, /9
vy, w)' 7P duly, u)) <

/e
< CallfllG sup (R(""““” / v{y, ) 7P duly, u)) <
R>1 |

z|+u<h
< Callflle-
Now the rest of the proof follows as in (i). H

Proof of Theorem (2.16): If v € D, {du), then, by the last Propo-
sition, inequality (1.2} is satisfied for T, , with Ag = Sg, G =
LP(vdp), F = R,cx = 2%5. Therefore by Theorem (1.1) there exists u
satisfying (2.15) for 7}, .,. Moreover u is such that

e

”u_l’YSK ”L"—l (Ax dv) < (a'}_(12
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with o = (2)" and Za’}} < +00, then

3

J e, < 3 27K (0205 =)
et (14 ¢+ jz[yn=-"% T2 K

but as (E)’r < p’ we have —(n —v}p' + Zplc — 1} < 0.

Therefore it is enough to choose ax = 27%¢ with ¢ small enough and
-1
then u® € D, with a = Uf—l.
p -—

This finishes the proof of (i).
The proof of the suffciency of condition I
in a similar way using (3.18) (ii}.

~{du) in (2,16} is obtained

For the necessity observe that for any hall B

BC{(@t)s Muaflwt) > 1BIF [B £y )ty )},

then {2.15) for T = M, , implies that
[u(m,t}dﬂ(x, t) <
B
-p
<o [ 1wiuty) 1B [ Pumda. ),
B R

therefore for f = & B’ul_p’ we get the result. W

Proof of Theorem (2.17): Since T, ., is essentially self-adjoint, a simple
duaslity argument shows that the pair {u{z, ), v(x,1}) satisfes {2.15) for
the exponent p if and only if the pair (v(z, )  u(z, )17} satisfies
the some inequality with exponent p’. Thus (i) is actually equivalent to
(2.16) (i).

The necessity of (i) is obtained as in (2.16) (ii).

For the sufficiency we consider the £°°-valued operator

Ty f(28) = X, =) i /Q Py, wduly, w)}rer

where @, is the cube centered at origine and with side length r.

It is clear that M, ,f(x,t) = ||[Tf(z,t)|lecc. Therefore a pair
(u(z,2},v(z, t}) satisfies {2.15) for M,  if and only if satisfies
(3.19)

/ NFoun (2, ) Bz, )iz, £) < © / |z, B o(z, (s, £).
R:+l R:“
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On the other hand we consider the operator ‘§vm acting on ¢1-valued
functions g(x,t) = {g.{z,¢))y, defined by

S‘,,,TQ(I, t) = glv.‘}'((gf)r)(ma t) =

-3 (o [, srtwauty W) g, (@)

A simple duality argument shows that (u(z,t),v(z, t}) satisfies (3.19}
if and only if (v(x, }1~7, u(z,)1~7") satisfies
(3.20)

[ 1ugta@ P (a0 duta,t) < © / gz, )7z, £) % du(z, ).
It is clear, see the proof of Proposition {3.11), that

80 n9(2,8) = S0y ((gr)r) (@, 1) < S0{{Au(lg-))r) (2, 1)

where
57((fr)r)(x,t)=z(|g L. f fr(y)dy) N

but, since dv is a Carleson measure, $, maps Lép(fl)(dw) into weak-
LE';+"' (dv), 1 < p < oo; therefore by using (3.9) we conclude that S, .,
maps Lép(fl)(dv) into weak-L7 7 (du). Moreover S, has a L(£!,C) ~
£%°-valued kernel

. (z,1
Klz.y,t,u) = {@%LJEXQV('Q: u)}r

that satisfies
C
(lz =yl + t +a)n=

K (2, gt u)| £

With the last two ingredients and using the ideas in the proof of (3.18)
(i}, one can proof that

B2 Ifu 1-p" ¢ Dy 4(dv) and G = Lf;: (Riﬂ,ul'p(du) then
- I i ﬂ f r
I 1804 g5lP VP fisisioan) < C2% (3 NgsllB)VP .
3 i
Therefore we can apply Theorem {1.1) and conclude that there exists
a weight 0177, with v*(1—7) ¢ Dy . {dy) and such that (3.20) holds.

Now the proof finishes by observing that u!=*" & Dy (dv) if and only
if u € Zp,{dv). &
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D. U.M.D. Banach spaces.

Proof of the Theorem (2.24): 1t is known that a Banach space E is
U.M.D. if and only if E* is U.M.D., therefore, by duality, a pair satisfies
(2.25) if and only if the pair (v(z)! ™7 ,u(z)} ") satisfies

[ 1@ otay 7 e < © [ @NE. a7 e

Then (i) and (i1} are equivalent statementes in Theorem (2.24) and we
shall limit ourselves to prove (i).

Given a vector ¢ € E and a function ¢ € LP(dz), we consider the
E-valued function f{z} = p(z)e, then {2.25) implies that

lelle [R \Ho(z)Pulz)dz < Cle]s /R (@) Po(z)dz,

therefore the necessity of the condition D), follows from the known nec-
essarily condition in order to have

f \Ho(@)Pu(z)dz < C f lp()Pe(z)dz
R R

see [C, J], [R de F, 1].
For the sufficiency we need the following

(3.22) Proposition. Letv e Dy, 1 <p<oo, and0 < s < 1.
Then for every K =0,1,2, ... we have

I NI Pleeis < C2 (T 15 0
3 7

where Sy is the unit ball in R and each Sy, K > 1, is the spherical shell
Sk ={z: 2571 < |2] < 2%},
Proof: Given K > 0, we decompose each function as f = f' + f,

where f' = fXp,, f" = f— f and B = {z: |z] < 25+1}.
If # € Sk, we have

s [ ey

<cf @ slyldy

< C".f”[.%(t:)s



204 L. M. FERNANDEZ-CABRERA, J. L. TORREA

thus, Minkowski’s inequality gives

sup z |5 i {z)le < C( Z "fj"yv (U) y/7,

On the other hand it is well known, see [Bk], that if E is UM.D. then
H maps LL(R) into weak-LL{R) and also that if £ is UM.D then 4%,
1 < p < 00, is U.M.D. Then by Cotlar’s inequality, see [GC, R de F
V.2.8], we have

WS HEFHIE e gsiy < CISK = I NH £ Pl ey
3 J

< CI8x MO 1A I
j

<cisel” [ 15157 5
J

< CISk MO U518 Plle )
i

= Cok/s Z 12 )77 W

Now we continue the proof of the sufficiency in Theorem {2.4). We
apply Theorem {1.1) with Ax = Sk, F = E,G = LE{v) and we conclude
that there exists u satisfying (2.25). Moreover 2 can be found such that

(/ u(m)l_"dm) < (a;(12%)1?(-:r—1),
Sg

with o = (£)" and ax such that ) _ o < +oo, then

o0

u( i plo—
/R(l+|z|) <27 K2,

but as o = (f)' < p we have —p' + Z(0 — 1) < 0, therefore if we choose

= 27K¢ with ¢ small enough we obtain that u® € D}, for o = %

ag 1

Proof of {2.26): The necessity condition follows as in Theorem {2.24)
since if we take f{z) = p{z)e,p € LP(R")e € E, we have

lelle || Mo(erutads < Clele | lo(e)Paia)ds,
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For the sufficiency we consider the E(£°}-valued operator
- 1
75(e) = (Xo. @) [ fWdghoen,
|Qr' Q-

where @, is the cube in R™ centered at origine and with side length 7.
It is clear that for positive E-valued functions we have

12 £ ()l 2 = |77 {z) | £ges)-

Therefore a pair {u{z}, v{z)) satisfies (2.27) if and only if satisfies

62) [ MW@ <O [ 1f@)fele)s

Since F is a U.M.D. Banach lattice, thea fP(E),1 < p < o0, is &

U.M.D. Banach lattice then the operator {f;) — (M £;) is bounded from
Ly {R"} into weak-L}, 0y (R™), and therefore the operator (f;} —

(Tf) is bourided from Lép(E)(R") into weak—L}?,(E(gM))(R“).
Moreover T is an operator given by a £°° C L(E, E{€™})-valued kernel

O

This kernel obviously satisfies

Rle,)lle € ———.
I lles < oo

With the last two observations it is easy to follow the patterns of the
proof of Proposition (3.22) in order to prove

(3.24) Proposition. Letv € D,,1 <p < oo, and 0 < s < 01.
Then for every K =0,1,2,... we have

B I 151 ooy P ety < C2F (M3l )
7 J

where Sq is the unit ball in R™ and each Sic, K 2 1, is the sphericol shell

Sk ={zeR": 2871 < |g} < 2¥}.
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Now we aply Theorem (1.1) with Ax = Sg.F = E({*), G = L {v)
and we conclude that there exists u satisfying (3.23), hence (2.27} and
such that

Hn

/ u(z)'7dz < (ax'2 e P,
Sx

with o = (f)! and ay such that Zaf( < 400, then proceeding as usual
K
we find u® € D, for a = fr_ll

In order to prove the sufficient condition in part (i) we consider the
operator §, acting on E*{#')-valued functions, g{x) = (g-(z)),, defined
by

So2) = 3 (@ /Q , or(4)dy ) Zo.(a).

A simple duality argument shows that (u,v) satisfies {3.23) if and only
if (177, u!~?") satisfies

625 [ 1Se@l @i <C [ a@ ot )z

but as & (E*),1 < p < o0, is 2 UM.D. Banach lattice we have that
the operator (g;}; — (Sg;); is bounded from Lép,(E,w))(R“} into weak-

L;p,(E,)(R"). Moreover § has the £%° C L(E*(¢"), E*)-valued kernel

Liz,y) = {W}m

C
|z -y

satisfying || L(z, yHjee <

Then we can reproduce the arguments that we did above for T and
obtain that if u!~# € Dy then (3.25) holds for some v(!#)% ¢ D,
Therefore by duality if « € Z, then (3.23), and hence (2.27), holds for
some v* € Z,. W
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