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Abstract

VECTOR-VALUED INEQUALITIES
WITH WEIGHTS

LUZ M. FERNÁNDEZ-CABRERA AND JOSÉ L. TORREA(* )

This paper deals with the following problem:
Let T be a given operator . Find conditions on v(x) (resp . u(x))

such that

f ITf(x)IPu(x)dx < C
J

If(x)IPv(x)dx

is satisfied for some u(x) (resp. v(x)) .
Using vector-valued inequalities the problem is solved for : Car-

leson's maximal operator of Fourier partial sums, Littlewood-
Paley square functions, Hilbert transform of functions valued in
U.M.D . Banach spaces and operators in the upper-half plane.

Introduction

This paper deals with the following
Problem A. Let T be a given operator . Find conditions on v(x)

(resp . u(x)) such that

(0.1)

	

¡Tf(x) (Pu(x)dx < Cf lf(x) ¡Pv(x)dx

is satisfied for some u(x) (resp . v(x)) .
This problem was studied for different operators in [C, J], [G, G], [H,

M, S] . The operators treated were singular integrals, fractional integrals,
Hardy-Littlewood maximal operator and fractional maximal operator .
In all the cases the method used was constructive .

(*)Partially sypported by DGICYT . PB90-187 .
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On the other hand it was hnown that a "good" weighted norm in-
equality of type (0.1), for an operator T, gives a vector-valued inequality
of type

(0.2) II(E ITfjlP)1/PIIS < CII(E IfjI P ) 1 lPlls .
.7

	

7

For instante, the vector valued inequalities for the Hardy-Littlewood
maximal operator, M, were obtained in [F, S] from the estimate

f IM.f IPu < C f If IPMu,

	

1 <p < oo.

In 1981, José Luis Rubio de Francia showed that weighted norm in-
equalities and vector valued inequalities were equivalent in some sense,
see [R de F, 1] . Using that equivalente, he developed a non constructive
method in order to solve the Problem A for come operators .

The aim of this paper is to show that a slight generalization of the
method of Rubio de Francia allows us to solve the Problem A for a huge
family of operators . The generalization is two fold :

First we shall consider vector-valued versions of inequality (0.1) and
we shall prove the relation with the corresponding inequality (0 .2), see
Theorem (1 .1) . We use this vector-valued version in order to:

(a) solve partially Problem A for Carleson's maximal operator of
Fourier partial sums, see Theorem (2.9) .

(b) find conditions on v(x) (resp . u(x)) such that

R
IIHf(x) II Éu(x)dx < C fR. II f (x) IIFv(x)dx

is satisfied for some u(x) (resp . v(x)), where H is the Hilbert transform
and E is a U.M.D. Banach space, see Theorem (2.24) .

In the case that E is a U.M.D . Banach lattice we solve the same
problem for the operator

M&)

	

sup -QI fQ
I .f (y) Idy, x E R''

where 1 .1 is the absolute value in E and the supremum is taken in the
lattice order, see Theorem (2.26)

(c) solve Problem A for Littlewood-Paley square functions, see Theo-
rem (2.11) .
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The second generalization is to consider abstract measure spaces, in-
stead of Rn. With these ideas we are able to solve Problem A for opera-
tors which map functions in Rn x [0, oo) into functions in Rn x (0, oo), see
Theorems (2.16) and (2 .17) . The vector-valued inequalities obtained in
this case, see Theorem (3.16), can be of independent interest when work-
ing with operators acting on functions defined on the upper half plane .
These operators include as particular cases Poisson integrals, balayages,
see (2.19), and some well known maximal operators, see (2.23) .
Our method gives in all the cases some extra information about the

size of the weight that is found .
It is an honour for us to use ideas of our friend and advisor José Luis .

Throughout this paper we shall work on general measure spaces
(Y, dv), (X, dp), where dv and dp are positive measures . Given a Banach
space E, we shall denote by LE' (Y, dv), LÉ(Y) or LÉ(dv) the Bochner
space of E-valued strongly measurable functions such that

.lY
I1f(x)IIÉdv(x) < +oo .

Given a positive measurable function w(x), on (Y, dv), we shall denote
by

LÉ(w(x)dv(x)),

or LÉ(w) the space of E-valued strongly measurable functions such that

fY lif(x)IIÉw(x)dv(x)

is finite .
Given a Banach space E, we shall denote by PÉ, or &(E) the Banach

space
00

{{an} C E :

	

IIan1IÉ < +00} .
n=1

If E is a Banach lattice we shall denote by E(P') the lattice

{{xn} : sup Ixnl E E}

with the norm I I {xn } I I E(e-) = II SUP Ixn I II E-n
The organization of the paper is as follows : in Section 1 we state and

prove the abstract results that generalize the previous work of Rubio de
Rancia, in Section 2 we give (without proof) the applications that solve
Problem A for several operators and Section 3 is devoted to the proofs .
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1 . Abstract results

We begin this section with a lemma, that it is known for the scalar
case, see [GC, R de F, VI.4 .21 . The proof in the vector-valued case is
essencially the same, but we include it here for the sake of completeness .

(1.0) Lemma. Let (Y, dv) be a measure space, let F and G be Banach
spaces . Assume that 0 < s < p < oo and T is a sublinear operator which
satisfies

II(E IITfjllF) 1'p iiLs(Y,dv) < G(EIIfj1iG)1'P,
j

	

j

Then, if o,

	

there exists a nonnegative function w(x) with
IIW II Lo-1(Y,dv) < 1 and such that

fY IITfj(x)IIF,w(x)dv(x) < GIIfj1iG

The proof of this lemma is based in the following result, see [GC, R
de F] .

Mini-max Theorem. Let A,B be convex sets in some vector spaces
and assume that B is compact for a certain topology . Let 0 be a function,
0 : A x B --> RU {+oo}, which is concave on A and conex and lower
semicontinuous on B. Then

minsup ~b (a, b) = supmin O(a, b) .
bEB aEA

	

aEA bEB

Proof of the lemma (1 .0): Let A and B given by

A={E IITfjIIF : fjEG,~IIfjIIG<-1}

B = {b E L°(Y) : b(x) > 0, IIbil, < 1}

and we define on A x B the function 0 as

O(a, b) =
f

	

~ITfj (x) IIFb(x)"dv(x),

B is convex and weakly compact, A is convex ; 0 is convex and lower
semicontinuous in B, see VI.4 .3 in [GC, R de F], and 0 is linear on A,
therefore by the Minimax Theorem we have,

min sup O(a, b) = sup min O(a, b) <
bEB aEA

	

aEA bEB

<
sup II(E IITfjII F)lIpllLs(Y,dv) <_
aEA

	

Cp .
j
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Therefore, there exist bo E B such that, for every a E A, we have

the proof of the lemma finishes by choosing w(x) = bo(x)-°' .

(1.1) Theorem . Let (Y, dv) be a measure space, F and G be Ba-
nach spaces, and {Ak}" be a sequence of disjoint sets in Y such that

Uko Ak =Y. Assume that 0 < s < p < oo and T is a sublinear operator
which satisfies

f

	

11Tf;(x)IIFbo(x)"dv(x) < CP,
.7

(1 .2)

	

II(EIITf;IIF)IIPIIL-(A,,dv) <Gk(EIIfj1IG)IIP,	kE0,1,. ..
.7

	

7

where for each k, Ck is a constant depending on G, F, p and s .

Then there exists a positive function u(x) on Y such that

(1.3)

	

( .lY
IITf(x)IIFU(x)dv(x)) 1IP < CIIfJIG

holds, where C is a constant depending on G, F, p and s .

Moreover, given a double sequence {ak}ká such that

and o, = (p~~, u can be found such that

¡¡u-1xAkIIL- i (Ak,dv) ~ (ak1Ck)P .

Proof.. Given k, we define the operator Tk by

Tkf(x) = Tf(x)MA, (x),

	

x E Ak .

Tk satisfies

Ak such that llw-l llL , - 1 (Ak,dv) < 1 and

A
IITkf(x)IIFwk(x)dv(x) <_ Ckliflic*

k

k=0

II(E IITkf; IIFWPII L-(Ak,dv) < Ck(E IIf; IIG)lIP,
7

ak < +oo

then by lemma (1 .0), there exists a nonnegative function wk defined on
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+oo
We define u(x) by u(x) = y~akCkpwk (x)XAk (x),

	

x E Y; then
0

l IITf(x) IIFu(x)dv(x) _

akCk p
J

	

IITj(x) II Fw(x)dv(x) <_ r ak ll f II

+00

	

+00

G =
0

	

Ak

	

0

=Cll.fllG,

and ¡¡u-1XAk IIL-1(Ak,dv) = (ak 1Ck)plluwkIlL--1 (Ak,dv) :5 (ak 1 Ck)p .

We introduce first some notation .

of weights w(x) in Rn .

2 . Applications

Given 1 < p < oo and 0 < -y < n we shall define the following classes

(2 .1)

	

ZP, .y = {w :

	

w(x)(1 + Ixl)(''-n)pdx < +oo}
Rn

(2.2)

	

Dp,_y = {w : L

	

w(x) 1-p ' (1 + IXI)(-y-n)p'dx < +oo}
Rn

(2.3)

	

Dp , ,y = {w : sup R('Y-n)p

	

W1-p (x)dx < +oo},
R>1 fl-I<R

when y = 0, we shall write simply Zp, Dp and D*p ,

Remark.
It is easy to check that if p < q then Dp C Dp C D9, Dp ¢ Dq

and DP ~¿ Dq , in fact the weight v(x) = (1 + IxIn)-1 belongs to DT,
1 < r < oo but v 1 Dq for any q, 1 < q < oo . Finally the weight wp (x) =
IXIn(p-1 ) (1 +. IxIn) -p(1 + I log IXII)2(p-1) belongs to Dp but wp ¢ Dp1 if
pl < p .



(2.5)

(2 .6)
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Analogoulsy, given 1 < p < oc, 0 <_ -y < n and a measure p on the
upper half plane R++ 1 , we shall consider the following classes of weigths
w(x, t) in R++ 1 ,

(2 .4) Zp,7(dp,) = {w :

	

fR'+1
w(x, t)(1 + t + I x1)(

7-n)Pdp(x, t) < +oo}

DP,7(dp) = {w :
fR'+1

w(x~ t)1-p'(1 + t + I xI)(-,-n)Pdp(x, t) < +oo}

D* , , y (dp) = {w : sup R(-1-n)p' f

	

w(x,t) 1-Pdp(x,t) < +oo},
R>1 (xI+t<R

when 7 = 0 we shall write Zp(dp,), Dp(dp) and D* (dp) .

A . Partial sum operators .
Consider a homogeneous function of degree 0 in Rn, p(X) = q(x'),

which we assume to be of class C(1 outside the origin and satisfying the
cancellation property

For each ~ E Rn, we define the kernel kg (y) = e2n2C'yQ(y')IyI -n , and
the corresponding operator

Tgf(x) = p.v . f kg (x - y)f(y)dy =

= e27r2l.xp.v . f

	

q((x - y) ,)IX - yI -n e
-27,i~*y

f(y)dy,
Rn

then, we define the operator

and consider the inequality

SZ(x')dv(x') = 0.
fl-II=l

T*f (x) = sup TI f(x) I

(2 .7)

	

f

	

IT*f(x)IPu(x)dx <_ Cf
n If(x)IPv(x)dx.

R

	

R

We have the following
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(2.8) Theorem. Let 1 < p < oo.

(i) If u E Zp then (2.7) holds for some v, such that va E Zp, for
n<1.

(ii) If v E Dp n Dpl , for some p1 < p, then (2.7) holds for some u,
such that u« E Dp , for a < 1.

When n = 1 and Q(y) = -1 sign (y) then To = H (Hilbert transform)
and the partial sum operarors of the Fourier Series can be expressed in
terms of {Tr},ER: For each interval I = [a, b]

SIf(x) =f f(1)e2-i-ld1 = 2(Tbf(x) - Taf(x)).
I

In this case T* is Carleson's maximal operator, see [C], [H],

and we have

(2 .9) Theorem. Let 1 < p < oo .

(i) u E Zp if and only if (2.7) holds for some v,
(ii) If v E Dp n Dpl , for some p1 < p, then (2.7) holds for some u.

Conversely if (2.7) holds for some u then v E Dp .
(iii) both (i) and (ii) are trae if we replace T* by S* .

B. Littlewood-Paley operators.
Let cP E S(Rn) be such that supp(0) C {1 E Rn : 2 <_

	

<_ 2},

cp( ) = 1 in a neighbourhood of 111 = 1, and

We define the following operator

S* f(x) = sup ¡Sif(x) j < CT*f(x)
I

c0(2kj) = 1 for all l;

	

0.
kEZ

gf(x) = (E I'Pk * f(x)12)1/2,
kEZ

where Wk(x) = 2kn,P(2kx), and we consider the inequality

(2.10)

	

~n.~
IGf (x) Ipu(x)dx < C IR.~

I f(x) Ipv(x)dx

then we have
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(2.11) Theorem. Let 1 < p < oo
(i) If u E Zp , then (2.10) holds for some v, such that v« E Zp for
n<1 .

(ii) If v E Dp , then (2.10) holds for some u, such that ua E Dp for
a<1 .

C. Operators on the upper half plane.
We shall consider the upper half plane R++1 = Rn x [0, 00) .

Given a measure dv on R++1 , we shall say, as usual, that dv is a
Carleson measure if there exists a constant C such that for any cube Q
in Rn, v(Q) <_ CIQ1 where Q = {(x, t) : x E Q, 0 <_ t <_ side length of
Q} and IQI stands for the Lebesgue measure of Q.

Given a measure dp on R++1, we shall consider the following operators :

(2 .12) Generalized fractional integrals. Let 0 < 7 < n and

Ky (x, t, u) = Cn (IXI -}- t + u)?'-n,

	

x E Rn ,

	

t, u E [0, 00) .

Then we define, for compactly supported f on R++1

Tp,yf(XI t) = fR'+1
Ky(x - y, t, u)f(y, u)dp(y, u),

	

x E Rn ,

	

y ? 0.

If f is a compactly supported function on Rn and K. (x, t) = cn(1x1 +
t)y-n, x E Rn, t E [0, 00), we define

T-yf(x, t) = I

	

Ky (x - y, t) f(y)dy,

	

(x, t) E Rn+l
Rn

(2.13) Generalized Poisson integrals and Balayages.
LetK be a function K : Rn xRn x [0, 00) x [0, 00) --> R+ that satisfies

K(x, y, t, u) C (I x - y1 + t + u)n'

	

x,y E Rn, t, u E [0, oc),

we define the operator

Tp,,of (x, t) = P.V .
IR-+1

K(x, y, t, u)f(y, u)dp(y, u),

	

(x, t) E R++1 .



186

	

L. M. FERNÁNDEZ-CABRERA, J . L. TORREA

(2.14) Maximal operators . Let 0 <_ -y < n, we define, for func-
tions f defined on R++1, the following maximal operator Mm,yf(x, t) _
sup{~Q~

	

-1

	

1f (y, s) 1dp(y, s)}, (x, t) E R++ 1 , where the supremum is
Q

taken over the cubes Q in R' centered at x, with cides parallel to the
axes and having side length at least t.

For functions f defined on Rn we define

M.yf(x, t) = sup{IQ 1 ~ -1f
Q

Lf(y) I dy}.	(x,t) E Rn+1

where the supremum is taken over the cubes Q in Rn centered at x, with
sides paralell to the axes and having side length at least t.
We consider the inequality

(2.15)

fItn+1

	

R
ITf(x, t) I

Pu(x, t)dv(x, t) < Cf'+1 J f(x, t) ¡ Pv(x, t)dp(x, t)

(2.16) Theorem. Let 1 < p < oo, 0 <_ -y < n .

	

Let dv, dp be two
measures on R++1 such that dv is Carleson and let v a weight on R++ 1 ,
we have

(i) if v E DP,7(dp) then (2.15) holds for the operator TN,, .y for some
u such that u« E DP , . y (dv) for a < 1,

(ii) v E Dp, ,y(dp) if and only if (2.15) holds for the operator M/b,i'
with u such that ua E DP ,,y(dv) .

(2.17) Theorem. Let 1 < p < oo, 0 <_ -y < n . Let dp and dv be two
measures on R++1 , u(x, t) be a weight on R++1 . Assume that da is a
Carleson measure, then we have

(i) If u E ZP ,,y (dv) then (2.15) holds for Tm,,y with some v such that
va E ZP,7(dp), a < 1 .

(ii) u E ZP , .y (dv) if and only if (2.15) holds for Mm,7 with some v
such that v" E ZP ,,y (dp), a < 1 .

We would like to emphasize some particular cases of the above results.
(2.18) Given a function g : R", -> R we consider its Poisson integral

P9(x, t) = Cn
IR, (IX

	

t
n±2 g(y)dy,

- yj2 + t2)2
(x, t) E R++1 ,
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on the other hand given a measure dp on R++1 the balayage of dp is
defined by

see [A, B].

with

P*(dp)(x) = f

	

Cnt
nnl dp(y, t), x E Rn ,

R++1
(IX - yI2 +t2) 2

We have the following results

(2.19) Corollary . Let 1 < p < oo
(i) If v is a weight in Rn such that v E Dp, then for any Carleson

measure dv there exists a weight u in R++1 such that

(2 .20)

	

fRn+1
I Pg(x, t) I pu(x, t)dv(x, t) < C

IRn
Ig(x) Ipv(x)dx,

and ua E Dp (dv) for a < 1.
(ü) If u is a weight in Rn such that u E Zp then for any Carleson

measure dp there exist a weight v such that

(2 .21)

	

fRn
P* (fdp)p(x)u(x)dx < C

fRn+1
I f(x, t) I pv(x, t)dp(x, t),

and v" E Zp (dp), for a < 1 .
(iii) Given a measure dv in R++1 and a weight u E Zp(dv) then there

exists a weight v such that (2.20) holds and va E Zp , for a < 1 .
(iv) Given a measure dp in R++1 and a weight v E Dp(dp) then there

exists a weight u such that (2.21) holds and ua E Dp , for a < 1.

Proof of Corollary (2.19) :
Proof of parts (i) and (iii) . Take the measure dp(x, t) = dx ® So (t),

where bo(t) is the Dirac's delta at t = 0 . Given a function g(x) we
consider the function f (x, u) = g(x) then

T,,,of(x, t) = Pg(x, t),

Cn t
KN,,o(x, y, t, s) = n+1

(IX - yI 2 + t2 )2

now (i) follows from Theorem (2.16 .1) and (iii) follows from Theorem
(2.17 .1) .
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For the proof of (ii) and (iv), we consider the measure dv(x, t) = dx
So (t) and then (ii) follows from Theorem (2.17. .1) and (iv) follows from
Theorem (2.16.1), since P* (fdM) (x) = T,,,of (x, t) with K,,,o(x, y, t, u) =

Cnu

(IX -
y12 + u2)

n21

(2.22) Remark. This last Corollary should be compared with the
characterization, see [S], of the pairs (v, dv) of weight and measure such
that the Poisson integral maps LP(Rn, v) into LP(R++ 1 , dv) .

(2.23) Remark. It is clear that if we take du(x, t) = dx ® 6o (t) we
get the operator

in particular

On the other hand

in particular

M7f(x) = SUPNIñ-1 fQ 1f(y)1dy},

M7f(x, 0) = MYf(x) =
SEQ jQ 1117/n fQ

I f(y) Idy .

MP,-J(x,o) = suQ
{10-1

fQ
~f(y,u)Idp(y,u)},

Mm,of(x, 6) = Cf(x) = sup » fQ
lf(y, u) dM(y, u) .

Therefore if we call T to any operator M,, M,, or C, then Theorems
(2.16) and (2.17) give necessary and suficient conditions on the weight v
(resp . u) such that

J ¡Tf¡Pu G f lf ~Pv

is satisfied for some u (resp . v) .
The case M,, were studied for Rubio de Rancia, see [R de F, 1] .
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D. U.M.D. Banach spaces .
The class of the Banach spaces E such that the Hilbert transform

Hf(x) = p.v .
£
~(Y) dy

is bounded from L2 (R) into L2 (R) were characterized by Burkholder
and Bourgain, see [Bk], [B], and it is denoted by U.M.D .

If E is a Banach lattice of functions with absolute value

	

then the
following extension of the Hardy-Littlewood maximal operator can be
defined

M&)=
SEQ IQI ~Q

f(y) I dy .

It is known. see [R de F, 2], that a Banach lattice of functions E is
U.M.D . if and only if M maps LÉ(R') into LE(Rn) and LÉ*(Rn) into
LE. (Rn) for some p, 1 < p < oo, and E* is the dual space of E.

(2.24) Theorem. Let 1 < p < oo
(i) A weight v in R belongs to Dp if and only if there exists u, u« E

Dp for a < 1 and such that for any U.M.D . Banach space E, we
have,

(2.25)

	

IR
IIIIf (x) IIÉu(x)dx < C

JR
IIf(x) IIÉV(x)dx .

(ü) A weight u inR belongs to Zp if and only if there exists v, v" E Zp,
for a < 1 and such that (2.25) holds for every U.M.D . Banach
space E .

(2.26) Theorem. Let 1 < p < oo
(i) If a weight v in Rn belongs to Dp then there exists u, u" E Dp for

a < 1, such that

(2.27)

	

f
n

IIMf(x) II Éu(x)dx < C f

	

II f(x) IIÉv(x)dx,
R

	

R

holds for any U.M.D . Banach lattice of functions E. In order to
satisfy (2.27) it is necessary that v E D*P'

(ii) A weight u in Rn belongs to Zp , if and only if there exists v,
v" E Zp for a < 1, such that (2.27) holds for any U.M.D . Banach
lattice offunctions E.
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3 . Proofs

The main ingredient will be to show that the corresponding operator
satisfies inequality (1.2) .

A. Partial sums operators.
We consider the £°°-valued operator

Tf (x) = {p . v.

	

9(x - y),) e27,¡g'yf
(y)dy}¿ER-,JW Ix-yIn

observe that T*f(x) = 11Tf(x)J12_ . Therefore in order to prove Theorem
(2.8) it is enough to find conditions en u and v in order to satisfy

(3.1)

	

fRn
IITf(x) IIé-u(x)dx < C

fR.~
I f(x)Ipv(x)dx .

It is known by Carleson's Theorem, see [C], that T maps L"(Rn) into
L,-(Rn),1 < s < oo . On the other hand T is given by the e°°-kernel

K(x, y) = {
SZ((x - y) , ) e-27rZg-y

Ix - yIn

Tf(x) = p.v .
J
K(x, y)f(y)dy,

i.e .

with these observations it can be proved, see [R de F, R, T], that the
operator defined by

(fj)j - (Tfj)j

maps L,' P (Rn) into Lsp(e-)(Rn),1 < p, s < oo .

We can consider also the transpose operator T, acting on Ql-valued
functions f(x) = (fl(x»1, defined by

Tf(x) = T((f)E)(x) _

	

P.V .

	

SZ((x - y) ,) e27r¡g-x
f(y) dy .

frW Ix - yIn

The operator T is given by the Q°° = G(0, C)-valued kernel

fZ
K(x, y) _ {

	

IX

(x

	

1) , ) e2~¡j

	

}IER,- y n

and again the operator defined by

(fj)j - (Tfj)j
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is bounded from L£P(el)(R-) into L`P(Rn ),1 < p, s < oo, and from

LlP(el)(Rn) into weak-LlP(R''), 1 < p < oo, see [R de F, R, T] .

On the other hand it is clear that u E Zp if and only if u' -P' E
Dp,, hence a simply duality argument says that (i) in Theorem (2.8) is
equivalent to the following statement :

(i)' ff v E Dp , 1 < p < oo, then

(3.2)

	

ITf(x)¡pu(x)dx <_ Cf

	

I)f(x)Ilp,v(x)dx
IR.	R

for some u, such that u« E Dp, for a < 1 .

Now in order to apply Theorem (1 .1) to the operators T and T we
shall need the following

(3.3) Proposition. Let 0 < s < 1 < p
(i) Assume that v E Dp, then we have

1/p

	

1/p

II EITfjlp IILs(S,)~Cg,p2kn/s IIfiliL,,(v)

( j

	

( j

(ii) Assume that v E Dp n Dpl , for some pl < p, then we have

1/p

	

1/p

~~

	

11Tfj JIQ~

	

IILs(Sk) <- Cs,p
2knls	11 fi IILP(v)

k = 0, 1, 2, . . ., where So is the unit ball and each Sk, k >_ 1, is the
spherical shall:

Proof.Given k >_ 0, we decompose each function f as f = f' + f",
where f' = fXs, f" = f - f and Bk = {x : Ix1 < 2k+1} .

It is clear that II K(x, y) II e_ <_ CIxI
-n when ~xI > 2IyI, and therefore

forallxESk .

1Tf11 (x) I <_ f

	

IK(x,y)f(y)Idy <_
J

	

IIf(y)Ile~¡yl-ndy
~y~>2k+1 >21x~

	

~y:2k+i

, 1/P

<_
C

C
1
R~

IIf(y)Ilélv(y)dyJ
1/p

(L (1 + Iy_1)np'dyl

< CII .fIILéI(v),
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where in the last inequality we have used that v E DP , in particular we
have

1/P

	

1/P

sup EITfí'(x)IP

	

<C ~Ilfj~~LP vXESk

	

j

	

j

	

£1 ( )

(

	

)
1

hence

get

II

	

1: IT.ff IP

	

IILs(S i,) <C2kn/s

	

~IIfiIILPl(v)
( j

	

j

On the other hand, as we said before, T maps L'P(Pl) into weak-Ll
therefore we use Cotlar's inequality (see [GC, R de F, V. 2 .8]) and we

1/P

	

1/P

II

	

EITfj IP

	

IILs(S,) < ISkll /S-1 11

	

EITfj IP

	

Leak-L l (SO
( j

	

( j

< CpISki1/S-1 111 E Ilf,llél

	

IILl
j

) 1/P

	

1/P
< CpISkll/S-1

	

fn ( j

	

~
Il .fj(x)~~11

	

v(x)áx

	

fxI<2k+1
v(x)1-p,dx

R I

)

1/P

< Cp2kn/s

	

II fJ II Lel (v )
j

where in the last inequality we have used that v E DP . This finishes the
proof of (i) .

In order to prove (ii) we decompose again each function as before
f=ft+ffl .

Since ~ j K(x, y) II Q- <_ CI X I-n and v E Dp , we have analogously as for
T, that

1/P

	

1/P

II

	

IITfj"IIe-

	

IIL'(Sk) <_ C2knls

	

~IfALP(v)
j

	

j



On the other hand T maps LQP(Rn ) into Lép(e-)(Rn), 1 < r, p < oo,

therefore by Hólder's inequality we have

1/p

	

1/p

11

	

EIITfjllIILs(Sk)

	

ISkls

	

r¡¡

	

EIITfjIIllLr(Sk)

( j

	

( j

<CISkIl rll I I:Ifj lp

	

JIL-
\ .7

< CISk I1/S

	

Ifj l
p

	

v(x)d

	

v(x)-(P)(-,)~ ~~11

r. j

	

IXI<2k+1

Now we choose r such that 2 = p1 and by using the hypothesis v E
Dpl , we have
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II IITfj1Ie-

	

p

)

IILs(Sk) <_ C2kn/s

	

ll fJllLp(v)

	

.
j

	

j

this finishes the proof of (ii) .

Proof of Theorem (2.8) :

Sk

Moreover u can be found such that

As we said above in order to prove (i) it is enough to prove (3 .2) . We
observe that by the last Proposition the operator T satisfies (1.2) with
F = R, Ak = Sk, Ck = C2k,/' and G = LPl (v), then by Theorem (1 .1)
there exists a weight u satisfying (3.2) .

< (ak12kn/s)p

L (1 + lxI)np'
dx < E

2-Knp

~K

U(X)q- 1 dx <L
1

00

	

Q(

	

1 7<
572

-Knp' (aK12kn/s)p(q-1) (2kn) \9-1

K=o

with Q = (P)' and ak such that E aP < oo .

Therefore if we take q, 1 < q < oo, such that q - 1 < p' - 1, we have
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but -p'+ P (q - 1) +

	

_a 1 1

	

,

	

p') + (q - 1) < 0, then if we chose
e-1

aK = 2K,E, with e small enough, we get that u« E DP with a = P .

Analogously in order to prove (ii) we observe that by using Proposition
(3.3) (ii) T satisfies (1 .2) with F = Q°°, Ak = Sk, Ck = C2kn / s and
G= LP(v), then Theorem (1 .1) can be applied as before .
Proof of Theorem (2.9):
The sufficient conditions on (i) and (ii) have been proved in Theorem

(2 .8). In order to obtain the necessary conditions we observe that

T* f(x) ? IHf(x)I,

where H is the Hilbert transform, then the conditions in order to have
(2 .7) are also necessary in order to have

(3.4)

	

~R
IHf(x)IPu(x)dx <

CJR
~f(x)IPv(x)dx,

but it is well known that in order to have (3.4) for some u (resp . some
v) it is necessary that v E DP (resp . u E ZP), see [GC, R de F] .

Finally to prove (iii) we observe that as S* f(x) < CT*f (x) we have
that the sufficient conditions for weigths in order to have (2 .7) are also
sufficient for

(3.5)

	

~S*f(x) ¡Pu(x)dx < Cl If(x) IPv(x)dx .
IR

	

R

On the other hand observe that an inequality of the type (3.5) implies
that for any interval I C R, the inequality

lR ISI f(x) IPu(x)dx < C
fR

If (x) I Pv(x)dx

holds with C independent of I and hence (3.4) holds and the necessary
conditions again are the some that they are for the Hilbert transform .

B . Littlewood-Paley operators.
Our idea is to prove Theorem (2.11) following the lines of the proof of

Theorem (2 .8) .
We consider the PZ-valued operator

Tf(x) = {Wk * f(x)}kEZ
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where Wk are the functions defined in section 2 part B. It is clear that
Gf(x) = II Tf(x) IIQ2 and then we are going to deal with the following
inequality

(3.6)

	

IR. IITf(x)IIé2u(x)dx <CL.n
If(x)Ipv(x)dx,

in instead of (2.10) .
It is known that T is given by the 22-valued kernel K(x, y) = {Wk (x -

y)}kEZ that satisfies

IIK(x,y)11£2 <CIx- y l
-n .

Moreover the operator defined by (fj )j -> (Tfi )j is bounded from
L.1P(Rn ) into weak-L,lP(e2)(Rn) , 1 < p < oo, see [R de F, R, T] .

We can consider also the adjoint operator T, acting on 22-valued func-
tions, f (X) = (fk(x))k, and defined by

Tf(x) = T((fk)k)(x)

	

Wk * f(x),
k

T is defined by the 0 = G(P 2 , C)-valued kernel

K(x, y) = {'Pk(y - x)Ík

and again the operator T((fj )j ) is bounded from LQP(e2) into weak-LlP,
1<p<oo.

Therefore (i) and (ii) of Theorem (2 .11) are equivalent statements and
it is enough to prove (ii) .

In order to prove (ii) we need the following

(3.7) Proposition . Let v E Dp , 1 < p < oo and let s < 1 < p . Then
we have

11(1: IITfj1Ie2WpIILs(Sx) :5 Cs,p
2xn/s(E

IIf II LP (v) ) lip
7

K = 0, 1, 2, . . ., where SK are th sets defined in (3.3) .

The proof of this Proposition follows the pattern of the proof of Propo-
sition (3.3) .
Once we know Proposition (3 .7) the proof of Theorem (2 .11) can be

built as the one of Theorem (2.8) .
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C. Operators on the upper half plane.
Our goal is to establish inequality (1 .2) in this context.
We shall denote by F(x) the cone of aperture one whose vertex is x,

x E Rn, Le .
F(x) = {(Y, t) E R++i :

	

IX _ y I < t} .

(3.8) Definition . Given a positive measure dp on R++1 , we define

Al,f (x) =
f

	

f(y, t)
dp(n, t)

	

x ERn .
r(x) t

(3.9) Proposition. Let 1 < p <_ oc and dp be a measure on
R++1 . Then A~ is a bounded linear operator from L', (R++1, dp) into

Lép (Rn, dx) .

Proof. AP, is a positive linear operator, then it is enough to prove that
Aw maps L' (R+'-'-', dp) roto Ll (Rn, dx), but

JI AWf11L1(d5) =

	

I

	

f(y, t) dp(n, t) jdx
fR r(-) t

fRn+1 CfR~
X,(.) (y, t) ¡f (y, t) I dx)

d~ty' t)
-

	

n

1

< fR++1 (tn fg(y,t) dx)
l f(y, t)idtt(y, t)

< CnilfilL'(R++1,dtt)

(3 .10) Remark. Given a positive measure dp on R++1 , we can define
the operator

Alf(x) = f

	

lf(ylt)l d~tn~ t) , x E Rn .

The operator Al is related with "tent spaces", see [C, M, S] and [R,
T2] . It can be showed that A1 maps Ls(R++1, dp) into LS(Rn, dx),1 <
s < oo, if only if dp is a Carleson measure, see [R, T2] . Therefore,
since Mj f1) (x) = Al (f) (x), we have that Aw maps L', (R++1, dp) into
LQP(Rn , dx),1 < s < oo,1 < p < oo if and only if dp is a Carleson
measure.
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(3.11) Proposition. Let du be a measure on R++1 . The following
inequalities hold:

Where M y , T,y and P are the operators defined on (2.14), (2.12) and
(2.18) . By Cn we denote a constant no necessarily the same at each
ocurrente.

Proof. Let B = B(xo, r), xo E Rn, r > 0, be a ball in Rn . If (x, t) E B
then Ix - xo I +t < r, in particular we have

IBI¡
n-1JB

If(y,u)Idw(y,u)=enIBI n-1fB If(y,u)I (~ J//B(y,u)dz)dp(y,u)

= en IBI n -1

	

RTy'

1 1
R
XB(y, u)XB(Y,u) (z) lf (y, u) l

dzd'(y, u)

< CniBIn-1 fBAl,(If1)(z)dz < cnM,(Al,f)(x,t) .

In order to prove (3.13), we observe that

Tw,7f(x, t) I = ¡en

	

f(y, u)

	

1

	

dz

	

dM(y, u) I
fR7+, (Ix-yI +t+u)n-7 (un

fB(Y,U)

	

)

< Cn

	

If(y, u) I

	

n-7XB(y,u) (z)
dzda(y, u)

fRn+1 IRA (IX - yI + t + u)

	

,un

but if z E B(y, u), then Ix - zI + t < Ix - yI + u + t and we have

Ti.,7f(x, t) I :5: cn fR:

	

fR- (Ix I zIy+ )n-~XB(y,u) (z)
dzdUn	u)

+

-cnR~ (IxA'zll_

	

f+)t))
-~dz=enTy(A~If1)(x,t) .

The proof of (3.14) es analogous .
The following Theorem can be found in [R, T1] .

(3.12) M,,,-,f (x, t) <_ C.M-y (AI, If I) (x, t), (x, t) E R++1

0<y<n

(3.13) IT., .yf(x,t)I <-C.T7(A,.IfI)(x,t), (x,t)ER++1
0<y<n

(3.14) IT,,of(x,«I G CnP(AW If I) (x, t), (x, t) E R++ 1 .
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(3.15) Theorem. Let 1 < p < oo, and dv be a Carleson measure on
R++1 , then the operators ,M.,, with 0 < "y < n, Ty , with 0 < -y < n and
P are bounded from LPp (Rn, dx) finto weak-Lé,7 (R++ 1 , dv) and from
LQP (Rn, dx) finto Lép (R++i , dv), nn~, < S < 00, q =-l + T .

Taking into account this theorem and Proposition (3.11) we shall be
able to prove the following

(3 .16) Theorem. Let 1 < p < oo, 0 < ,y < n and dv be a Carleson
measure in R++1 .

Given a measure dp in R++ 1 then the operators Mand T,,,,-, are
bounded from L'P (R++i, d[t) finto weak L,p" (R++ 1 , dv) .
Moreover if dp is a Carleson measure, then the operators M,,,7 and

TI., ., are bounded from LQp (R++1, d~) finto L'P (R++1, dv) , q = ñ + r .
Proof.. The first part of the theorem is a direct consequence of (3.9),

(3.11) and (3.15) .
The second part is a consequence of (3.10), (3.11) and (3.15) .
(3.17) Remark. The proof of Theorm (3 .15) is based in the theory

of vector-valued Calderón-Zygmund Kernels . That proof is not avalaible
for the case of Theorem (3 .16) .
Now we can prove inequality (1.2) for these operators .

(3.18) Proposition. Let 0 < s < 1 < p < oo, 0 < ,y < n and let dv
a Carleson measure in R++1 .

Let SK, K = 0, 1, 2, . . ., be the sets in R++1 defined by

So ={(x,t)ER+ 1,

	

Ixl+t<1}
SK = {(x, t) E R++1,

	

2K-1 < I XI + t < 2K}, K = 1, 2, . . .

(i) If v E DP,-y (dp) and G = LP(R+1, vdp) then

II(1 ITp,7fif l'P IIL-(SK,dv) < C2K(E IIf;IIG)üP .
7

	

7

(ii) If v E DP , ,y (dp) and G = LP(R++1 , vdp) then

II(1: IMw7fjlp ) 1'p ilLs(SK,dv) <c2~s (EIIf;II G )"P .
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Proof. Given K >_ 0, we decompose each function f = f' + f" where
f=fXBK ,f"=f-f'and

If ¡y¡ + u > 2(Ixl + t) then

Iyl +u < Iy¡ +u+ 4t < Iy1+u+2t+Iy¡+u-2Ixi < 2(Ix-y¡+t+ u) .

Therefore if (x, t) E SK we have

ITil,7f"(x>t)l = 1
/,y¡

	

K7(x - y, t, u)f(y,u)dp(y,u)I
+u>zK+1 >2(Ixl+t)

lyl+u>2K+ 1

flyl+u>2K+ 1

BK = {(x, t) :

	

Ixi +t < 2K+I} .

1 .f (y, u)

	

dp(y, u)
(Iy¡+u)n-7

< Cn (fRn+1 l .f (y, u) IPv(y, u)dp(y, u)

v(y,U)1-P

	

) 1/p

<
(¡y¡ + u)(n-7)P' dl~(y, u

	

.IIf ~~G

Thus

	

sup

	

(E m.,7fi(x,t)IP)1/P < C(57 IIfjIIc)1/P and then,
(a,t)ESK 7

	

.7

II(1ITp,7fii1/PIILs(SK,dv) < CV(5K)1/s(1: IIf;IIG)1/P <

< C2ns (1: lif;IIG)1/P .

On the other hand, as s < nn7, we use Cotlar's inequality (see [GC, R
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de F, V.2.8]) and Theorem (3.16) to get

therefore

11 (1: ITw,y .fj ip) 1 /plILI (SK,dv)
j

< CV(SK

	

n
)1/s_

	

II(Y:ITw,y.fjlp)1/pIILn,ny
(Rn+1,dv)

G C2K s["-(n-y)] ¡¡(Y: 1fi
j

= C2K s

	

(~ Lfj (y, u) Ip)1/p
dp(y, u)

~BK

	

2K(n-y)
j

< C2K s

	

Lfj (y, u) I pv(y, u)dM(y, u)
j

v
l-p,

(y, u

	

11/p

	

n

+u+ 1))-ydu (Y,u)J

	

< C2K!'(1 II .filiG)1/p .

This completes the proof of (i) .
In order to prove (ii), we observe that if (x, t) E SK, then (x, t) E QK

where QK is the cube

QK = {y E Rn "

	

y = (Y1, . . ., yn), INI :~ 2K,

	

i = 1, . . ., n},

1

IQxIn-1 ~GlK I f l~(y,u)Idl~(y, u)

\1/p ,
< Cn II .f II G2K(7-n)

(f

	

v(y u)1-p dp(y, u) I
B/x

1/p'

< CnIIf IIG s11P CR(y-n )p'

	

v(y, u)1-p dM(y, u) I

	

<
R>1 fI.J+U<R

< CnII,f IIG-

Now the rest of the proof follows as in (i) .
Proof of Theorem (2.16) : If v E Dp,y(dp), then, by the last Propo-

sition, inequality (1 .2) is satisfied for Tp,, . y with AK = SK, G =
Lp(vdp), F = R, cK = 2K' . Therefore by Theorem (1 .1) there exists u
satisfying (2.15) for Tp,, y . Moreover u is such that

IIu-I XSK IIL- 1 (AK,dv) < (aK12 sn )p
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with u = (P)r and ~aP < +oo, then

U(X) 1-a

	

°°

n-7)P~ dv(x, t) < ~ 2-K(--7)p' (aK12'-)P(a-1),fRn+1 (1 + t + ~x~)(

	

K=O

but as (2)' < p' we have -(n --y)p' + sp(a - 1) < 0 .

Therefore it is enough to choose aK = 2-K, with E small enough and
then u« E DP,7 with cx - 0 - 1 .p

This finishes the proof of (i) .
The proof of the suffciency of condition DP , ,y (d¡z) in (2,16) is obtained

in a similar way using (3.18) (ii) .
For the necessity observe that for any ball B

B C {(x,t) : Mw,7f(x,t) > IBI~-1

then (2.15) for T = M,,,7 implies that

therefore for f = XBv1-p we get the result .

1f (y, u) Idw(y, u) },

Á u(x,t)dp(x,t) <

< C (Á If (y, u) Idp(y,u»
-P

I BI (!-1)P fR~+1 f (y, u) IPv(y, u)dit(y, u),

Proof of Theorem (2.17) : Since TN,, .y is essentially self-adjoint, a simple
duality argument shows that the pair (u(x, t), v(x, t)) satisfies (2.15) for
the exponent p if and only if the pair (v(x, t) 1-P

,
, u(x, t) 1-P) satisfies

the some inequality with exponent p' . Thus (i) is actually equivalent to
(2.16) (i) .
The necessity of (ii) is obtained as in (2.16) (ii) .
For the sufficiency we consider the Q°°-valued operator

Tw,7f (x, t) = {XQT (x' t)
IQr I1-7/n .fQT f

(y, u)dp,(y, u»IER

where Qr is the cube centered at origine and with side length r .
It is clear that Mm,,f (x, t)

	

=

	

JITN,, yf(x, t) I1E_ .

	

Therefore
(u(x, t), v(x, t)) satisfies (2.15) for MN,,,y if and only if satisfies
(3.19)

a pair

L.+1 IIT~,7f (x, t) IIé-u(x, t)dv(x, t) < C
IRn+1

If(x, t) IPv(x, t)dp(x, t) .
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On the other hand we consider the operator

	

acting on 2 1-valued
functions g (x, t) = (g,(x, t))r, defined by

S"79(x, t) = S, ,7((9'W(x, t) _

-

	

(Qr I 1--y/n fQr
9,(y, u)dp(y, u) I XQr (x, t) .

( l

A simple duality argument shows that (u(x, t), v(x, t)) satisfies (3.19)
if and only if (v(x, t)

	

u(x, t)1-P') satisfies
(3.20)

f I Sv,-,9(x, t) I
P
v(x, t) 1-P dw(x, t) <_ Cf II9(x, t) IIélu(x, t) 1-P dv(x, t) .

It is clear, see the proof of Proposition (3.11), that

where

but, since dv is a Carleson measure, S.y maps LQP(E , ) (dx) into weak-

LQP'' (dv), 1 < p < oo ; therefore by using (3 .9) we conclude that S�,,y
maps L,1P(e,)(dv) into weak-L;," (dp) . Moreover S,, .y has a G(21 , C) -

-valued kernel

that satisfies

Sv,79(x, t) = Sv,7 ((9r)r) (x, t) :5 S7 ((Av (I9, J»,) (x, t)

S.Y((fr)1)(x,t) _

	

C I`wrl l--y/n J`.Gr
fr(y)dy

)
XQ~(x,t),

K(x, y, t, u) _ { XQr (x, t)

IQr I

	

,y/n XQr (y, u)}r'

IIK(x, y, t, u) II <

	

c

(Ix-y¡+t+u)n-^

With the last two ingredients and using the ideas in the proof of (3.18)
(i), one can proof that

(3.21) If u'- P' E DP,,,y (dv) and G = LPl (R++1 , ul-Pdv) then

II(E ISv,79JI P' ) '/P' 11 Ls(Sx,dv) < C2 1 (1: II9jJIG)1/P .

Therefore we can apply Theorem (1.1) and conclude that there exists
a weight v1-P', with v'( 1-P') E DP ,,-y (dp) and such that (3.20) holds .
Now the proof finishes by observing that u1-P' E DP,,,y (dv) if and only

if u E ZP , .y(dv) .
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D. U.M.D. Banach spaces .
Proof of the Theorem (2.24) : It is known that a Banach space E is

U.M.D . if and only if E* is U.M.D., therefore, by duality, a pair satisfies
(2.25) if and only if the pair (v(x) 1-T', u(x) 1-P') satisfies

f IlHf(x)IIÉ.v(x) 1-P ' dx < Cf Ilf(x)llÉ.u(x) I-P dx .
R

	

R

Then (i) and (ii) are equivalent statementes in Theorem (2.24) and we
shall limit ourselves to prove (i) .
Given a vector e E E and a function cp E LP(dx), we consider the

E-valued function f(x) = W(x)e, then (2 .25) implies that

llellE
IR

IH(P(x)IPu(x)dx < CllellE
£ lw(x)IPv(x)dx,

therefore the necessity of the condition DP , follows from the known nec-
essarily condition in order to have

JR
IH&)¡Pu(x)dx <

ClR
Icp(x)IPv(x)dx

see [C, J], [R de F, 1] .
For the sufficiency we need the following

(3.22) Proposition . Let v EDP ,1 < p < oo, and 0 < s < 1.
Then for every K = 0, 1, 2, . . . we have

11 (1: IIHf,IIE) 1'PIILs(SK) -C2ki5(j: llf;IILÉ(v))1/P
7

where So is the unit ball in R and each SK, K > 1, is the spherical shell

SK = {x : 2K-1 < xI < 2K} .

Proof. Given K >_ 0, we decompose each function as f = f' + f",
where f = fXBK , f" = f - f' and BK = {X :

	

Ixl < 2K+I} .
If x E SK, we have

IIHf"(x)IIE <_ f

	

1
lyl?2"+1>2Ix1 Ix - yI

llf(x)IIEdy

< Cl~

	

Ilf(y)IIEIYI-1dy
yl>2K+ 1

< ClIfIILÉ(v),
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thus, Minkowski's inequality gives

sup E II Hff(x) ¡¡E < P(E II fj II LÉ
XESK j

	

j

On the other hand it is well known, see [Bk], that if E is U.M.D . then
H maps LE' (R) into weak-Ll (R) and also that if E is U .M.D then tÉ,
1 < p < oo, is U.M.D. Then by Cotlar's inequality, see [GC, R de F,
V.2 .8], we have

II(1:1IHffllE)"PIIL-(SK) <CISKIlls-lII(~IIHfj IIE)lipIIL ;(R)
j

	

j

Now we continue the proof of the sufficiency in Theorem (2.4) . We
apply Theorem (1.1) with AK = SK, F = E, G = LÉ(v) and we conclude
that there exists u satisfying (2.25) . Moreover u can be found such that

with Q = (~)~ and aK such that Y~ aK < +oo, then

< CISKIIis-1 11(1: IIfj IIE)I ' pIII
j

< CISKIlls f(5-, II fj(x)IIE) llp 2K
7

<CISKII18 1I(1: IIfj1IE) l1plILp(v)
j

- C2K/S (~ IIfiIILÉ( v )) l/p .
j

but as o , = (2)' < p we have -p' + 2(o, - 1) < 0, therefore if we choose
aK = 2-K, with a small enough we obtain that uIX E Dp for a =

	

.

Proof of (2.26) : The necessity condition follows as in Theorem (2.24)
since if we take f(x) = cp(x)e, co E LP(Rn)e E E, we have

IIellE
IR

.MW(x)Pu(x)dx < CIIellE
JRn

I&)Ipv(x)dx .



For the sufficiency we consider the E(Q')-valued operator

where Qr is the cube in R' centered at origine and with side length r .
It is clear that for positive E-valued functions we have

IIMf(x) IIE = IITf(x) II E(1-)

Therefore a pair (u(x), v(x)) satisfies (2.27) if and only if satisfies

(3.23)
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Tf (x) = {XQ, (x)
IQr I IQ, f(y)dy}rER,

f

	

II Tf (x) IIÉ (e- )u(x)dx < Cf n Ilf(x) IIÉv(x)dx .
Rn

	

R

Since E is a U.M.D . Banach lattice, then U(E),1 < p < oc, is a
U.M.D . Banach lattice then the operator (fj) -> (Mfj) is bounded from
LéP(E)(R'') into weak-Lp,(E)(R1), and therefore the operator (fj) ->

(Tfj) is bounded from LIP(E) (R') into weak-LéP(E(e°°))(Rn) .

Moreover T is an operator given by a P°° C £(E, E(2°°))-valued kernel

This kernel obviously satisfies

K(x, y) = { XQ,. (
IQ

IQr (y) }rER,
r

IIK(x,y)II£- <_
Ix

Cyln .

With the last two observations it is easy to follow the patterns of the
proof of Proposition (3.22) in order to prove

(3.24) Proposition . Let v E Dp,1 < p < oo, and 0 < s < 01 .
Then for every K = 0, 1, 2, . . . we have

II(~IITfi1IÉ (Q- ) ) 11pIILs(SK) <<C2 s

n

(ElifiliLE(v) )1ip
j

	

j

where So is the unit ball in Rn and each SK,K > 1, is the spherical shell

SK = {x E Rn : 2K-1 < Ix1 < 2K}.
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Now we aply Theorem (1 .1) with AK = SK .F = E(£°° ), G = LÉ(v)
and we conclude that there exists u satisfying (3.23), hence (2 .27) and
such that

u(x)1-°dx < (aK12s~)P(°-1),
fsK

with a = ( ) and aK such that1:aK < +oo, then proceeding as usual
K

we find u' E DP for a = v-l .
In order to prove the sufficient condition in part (ii) we consider the

operator S, acting on E*(21 )-valued functions, g(x) = (gr(x))T, defined
by

Sg(x)
- ~ ( QQT1L gr(y)dy J XQT(x)

A simple duality argument shows that (u, v) satisfies (3.23) if and only
if (v'-P' , u' -P' ) satisfies

(3.25)

	

L IISg(x)IIÉ.v1-P~(x)dx <
CJR~

IIg(x)IIÉ . (E l )u1-P (x)dx

but as QP(E*),1 < p < oc, is a U.M.D . Banach lattice we have that
the operator (gj )j -> (Sgj )j is bounded from

L?P, (E"(elll (Rn) into weak-
LPP,~E, l(Rn) . Moreover S has the Q°° C G(E*(21), E*)-valued kernel

satisfying JIL(x, y) ¡JP- <

	

C
Ix -

yIn
.

L(x, y) = { XQT (

IQ

IQr (y)
}IER

r

Then we can reproduce the arguments that we did above for T and
obtain that if u'-P' E DP , then (3.25) holds for some v(1-P )« E DP , .
Therefore by duality if u E ZP then (3.23), and hence (2 .27), holds for
some v« E ZP .
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