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Abstract

INTERSECTIONS OF TOTALLY REAL
AND HOLOMORPHIC DISKS

TOM DUCHAMP AND FRANC FORSTNERIC

It is shown that a holomorphically embedded open disk in (C2 and
a totally real embedded open disk which have a common smooth
boundary have nontrivial intersection .

1 . Introduction

It is now clear, through the work of Gromov and others, that there
is a strong relationship between the theory of Lagrangian immersions
into symplectic manifolds and the theory of totally real immersions into
complex manifolds . The relation follows from the fact that the Grass-
mann space of Lagrangian subspaces of R2n is homotopy equivalent to
the Grassmann space of totally real subspaces of C' .
There are surprising differences between the two theories, however .

Recall that complex 2-space, (C2 , is a symplectic manifold with symplec-
tic form

w = 2 (dzl A dzl + dz 2 A dz 2) .

Let 0 : 0 ---> (C2 be a symplectic embedding of the open unit disk in
(C, that is, suppose that the pull-back O*w is a symplectic form on A.
It is not difficult to prove that every holomorphic embedding of 0 is
symplectic . Assume further that ~b extends to a smooth embedding of the
closed disk 0. There is no Lagrangian embedding of 0 whose boundary
coincides with 0(0A) . For suppose that 0 is such an embedding . Then
O(0) and 0(,i1) are homologous relative to the boundary ; hence,
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which is a contraction because the first integral is 0 and the second is
positive .
On the other hand, it is easy to construct examples of a pair consisting

of a holomorphically embedded disk and a totally real disk which have a
common smooth boundary (see Section 4 below for one such example) .
In this paper the intersection theory of such a pair is investigated . The
main result is the following .

Intersection Theorem . If a holomorphically embedded disk and a
totally real embedded disk in (CZ have a common boundary then they
intersect in at least one interior point. More precisely, let 0 : 0 -> (C2

be a smooth embedding of the elosed unit disk, holomorphic on A ; and
jet 0 : 0 ~___> C2 be a smooth totally real embedding such that

0(ao) = 0(ao) .

Then the intersection 0(0) f1 O(0) is non-empty.

The proof of the theorem is by contradiction : Suppose the theorem is
false . Then there are embeddings 0 and 0 of 0 with o(0) f1 o(0) = 0
and 0(80) = O(aA) . We will show how to deform the images O( 0) and
0(0) to produce two totally real embeddings which abut smoothly along
the boundary O(80) in such a way that the union of the images of the
deformed totally real embeddings defines a totally real embedding of the
two sphere into C2 . Bishop [1] (see also Wells [5]) proved that there is
no totally real embedding of the two sphere into (C 2 .
Acknowledgment . We wish to thank Professor E . L . Stout for bring-

ing this problem to our attention .

2 . Properties of totally real embeddings

Before beginning the proof it is necessary to review several conditions
which are equivalent to the total reality condition and to define an index
for totally real embeddings of annuli .

2 .1 . Conditions for total reality . An embedding ip : U -> (C2,

U C cC a region, is said to be totally real if for all ~ E U the intersection
0,TCUnJO *TC U is trivial . (Here TU denotes the real tangent bundle of
U and J the complex structure tensor of C2.) Let (z, w) denote complex
coordinates on C2 and (u, v) arbitrary real coordinates on U. The next
lemma gives several characterizations of the total reality condition . They
are more or less well-known and easily verified, so we leave it to the reader
to check them. (See Stout-Zame [4] for a discussion of total reality) .
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Lemma 1 . Let 0 : U - (C 2 be an embedding, U C (C, defined by the
functions z = Z(S), w =W«). Then the following are equivalent :

(i) The embedding 0 is totally real .
(ii) For each ( E U the equality (C - 0,,(TSU) = TC 2 holds l .

az OZ/a~
(iii) The determinant

	

Y

	

never vanishes .
aW/a(

az az
(iv) The determinant

	

au

	

av

	

never vanishes .aW aW
au av

Remark 1. Condition (ii) can be restated as follows . Let X =
(X1 , X2 ) be a basis for the tangent space TAU, ( E U. Then the vectors
~b* (X1) and 0* (X2) form a complex basis for the complex vector space
T,G(C)C2 .

We introduce the notation A~

	

1 - a < l~l < 1} and Aá -
{~ : 1 _< l~i~i <_ 1 + a} for a > 0 . The special case in which ~b is defined
on the annular region AQ , a > 0 and 0 is of the form

f«)=0 for ~(j=1

is of particular interest to us . First observe that condition (iii) reduces
to

a~
o.

It will prove useful to write equation (1) in polar coordinates, z = reie,

(2)

	

00 -irY

	

0 .

Because f(z) vanishes for all 1 z~ = 1, it follows that áe = 0 and total
reality implies that -f =,b 0 for all z with Iz1 = 1 . This implies the
following lemma .

Lemma 2. Let0 be a totally real embedding of the annulus A as given
above. Then there is an annular region of the form 1 <_ Iz1 < 1 + a',
0 < a' < a < 1, on which f can we written in the form

.f (z) = R(z)e¡8(z)

'If V C W is a real subspace of the complex vector space W then (C - V denotes the
complex subspace spanned by V .
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whereR(z) is a non-negative, smooth real-valued function which vanishes
for ~z1 =_1 and where O(z) is smooth modulo 27r .

The inequality

	

8r
arí,(z) > 0 is satisfied for all z in a neighborhood of the

unit circle Iz1 = 1 .

Now suppose that f is any smooth function defined on A of the form

.f (z) = R(z)eio(z)

Substitution of the formulas

_a

	

_

	

aR(z

	

a0_	io

	

af

	

aR(z)

	

0"
ar - (

	

a

	

) +iR(z)
ar

) e

	

and
ó0 = (

	

00

	

+ iR(z)
a0

) ego

into the total reality condition (2) and separating real and imaginary
parts of the coefficient of eio yields the condition

'9R

	

+
R(z)rae

a0)
+ i (R(z) 50 -

r
a
arz))

	

0.

In particular, if the imaginary part of the left hand side is negative, the
embedding is necessarily totally real .

Lemma 3. Let 0 : Aá --> C2, 0 < a < 1, be an embedding of the form
O(z) = (z, R(z)eio(z)), where R and O are real-valued functions with R
smooth and O smooth modulo 27r . If the inequality

aR(z)
>
R(z)a0

r
ar

	

á0

is satisfied then the embedding is totally real .

2.2 . An index for totally real embeddings of annuli. In this
section we define an index for a totally real embedding of an annulus
in (C2 . It is closely related to the Maslov index and is a special case of
an index defined by Kamber and Tondeur [3] . A detailed presentation,
within the context of totally real embeddings of surfaces in C2 , is given
in [2] . We give a self-contained exposition here .

Let 00 : A -> (C2 be any totally real embedding of an annular region
A C C . To define the index of 00 begin by choosing a complex framing2

2By a complex framing we mean a pair of complex vector fields which are pointwise
independent over (C .



f = (f,, f2) for the holomorphic tangent bundle T( 1 , 0)U, where Lf is any
open contractible neighhborhood of A .
Next choose a real framing3 X = (X1, X2) of the real tangent bundle

TA which is compatible with the orientation of A as a subset of (C . By
virtue of Remark 1, there is a smooth matrix-valued function

defined by the formula
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Since C is real, so is det(C), hence,

MO o : A , GL(2, C)

1
(doo(X1)

	

dOo(X2)) = (fl

	

f2)
~m21

Definition 1 . The índex of the embedding 00 : A -> C2 , is the degree
of the map

A -i 80 :

	

--> det(M)
det(M)

and is denoted by Ind(0o) E 7G .
Remark 2. (i) It is easily verified that the integer Ind(oo) is inde-

pendent of the framings X and f . For suppose that X' and f' is another
pair of framings, with f' defined on Ll', a contractible neighborhood
of Oo(A). Then there are smooth maps B : u n u' , GL(2,C) and
C : A E -> GL+ (2, R) such that

f'=f-B and X'=X .C .

If M' : A --> GL(2, C) is the map defined by the formula d0o (X) = f-M',
a straightforward calculation with matrices yields the identity

M'=B-1-M .C .

lm
.2

m2
2

det(M')

	

_

	

det(B --1 ) det(M) det(C)

	

_

	

det(B)j det(M)
det(M')¡

	

det(B-1) 11 det(M) 11 det(C) 1

	

det(B)

	

Idet(M)1

Since U and U' are contractible, each of the framings f and f' are is
homotopic to the framing ( aal , aa2 ) . The map B -1 is, therefore, homo-
topic to the identity. This fact, together with the observation that the

3By a real framing we mean a pair of real vector fields which are pointwise indepen-
dent over R.
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degree depends only on the homotopy class of the map, completes the
argument .

(ii) Note also that the above argument shows that if q> : U , (C2 is a
biholomorphism onto an open set in (C2 then

Ind(-P o 00) = Ind(0o) .

(iii) Finally, because the index depends only on the homotopy class of
the map, 00, it is determined by the image 00 (A) together with an ori-
entation . Thus, if A C C2 is a totally real, oriented, embedded annulus,
the integer Ind(A) is well-defined .

Lemma 4. If A C C2 is a totally real embedded annulus which is
contained in a totally real embedded disk D C

C2 then Ind(A) = 0.

Proof: Let 0 : 0 --> (C2 a smooth map such that O(0) = D and
choose framings X of Tá and f of (C 2. Then let M(S), E 0, be
the GL(2, C)-valued matrix as defined above. The degree of the map
( -> det(M«))/I det(M(~))1,

	

E

	

-I(A) is zero because it is homotopy
to a constant .

3. Reduction to the case of real analytic boundary

Begin by assuming that there are smooth embeddings 0 and 0 of 0
with 0 holomorphic on 0 and totally real and such that the conditions
z/~(0) f1 o(0) = D and O(á0) _ O(á0) are both satisfied .
Without loss of generality we may assume that 0 extends holomorphi-

cally to a neighborhood of 0. To see this we observe that, because the
condition of total reality is an open condition, any Cl-small deformation
of the map 0 is also a totally real embedding . In particular, let

and in such a manner that

0o6 = {~ : 10 =1- 0,

where S > 0 is a small constant to be chosen later. Then 0 can be
deformed to a map 0' so that

0'(ao) = 0(aos)

o(o) n ~b (oó) = 0 .
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One way to accomplish such a deformation is to let 0' be the composition
0 o vó of

	

with the flow, vt , of a vector field which is tangent to the
image of

	

and constructed so that vó (0(OO) = MO5), b > 0 .
The map ~b' : 0 --> CZ defined by the equation

00=v)((1- b)0

extends holomorphically to a neighborhood of 0 C C. Now replace the
pair 0, 0 by the pair 0', 0' . By construction, O(OO) is real analytic .

where

4. Holomorphic disks are relatively isotopic
to totally real disks

Retum now to the problem of replacing 0 by a totally real embedding .
Because 0 extends to a holomorphic embedding of a neighborhood of 0,
there is a biholomorphism (D : U -j C2 , defined on a neighborhood U of
~b(A) such that the composition <D o 0 is the map

Consider the family of maps

0
E :0_(C2, ~ H (z~ w) = (S, fE«)),

fc.(~)
=,E

(1 - 1(I2) ex(1-I(I2) ~

Note that fE satisfies the conditions : fo = 0, f,(~) = 0 for I(I = 1 . By
virtue of equation (1) and the computation

OfE(~) =E {(1
_ 21(12) - (1 - I(I2)I(I 2 i} e'('

_1C12) 0 0

the embedding defined by 0. is totally real for all E > 0 .
Because for E sufficiently small the image of 0. lies in the set <D(u),

the map 0E = P-1 o 0E is well-defined .

Lemma 5 . For e sufficiently small, the family 0E has the following
properties :

( 1) O,Iao = Ojao for all E.

(ii) 0E is a totally real embedding of 0 for E > 0 .
(üi) z/~ E (0) C U .
(iv)

	

E(A) n o(o) _
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Proof. Properties (i) through (iii) are immediate from the definition
of f,
The verification of (iv) is based on the implicit function theorem .

First note that since O(0) is totally real and V)0(0) is holomorphic,
Tp(oo(0)) n Tp(o(0)) = Tp(o(a0)) for all p E 0(á0) . Because ~b E de-
pends smoothly on e, the condition Tp(,pE(0 )) nTp(O(0)) = Tp(O(a0))
holds for all e suficiently small . By the implicit function theorem
and compactness of 80, it follows that there is a number S > 0 such
that 0E(A) U O(A6) _ 0 for all sufficiently small c . Moroeover, since
0o(A) n ~(0) = 0 and PE depends smoothly on e, it follows from the
compactness of 0(0 \ Ab ) that 0, (A) n O(0 \ A6) _ 0 for all sufficiently
small e . Hence, for e sufficiently small, 0,(A) n 0(0) = 0.

5. Modifying two totally real disks to abut smoothly

Consider the small annular neighborhood Ab C 0, 0 < S < 1, of
the boundary 80 . We will modify 0(0) on O(A6) so that O(0) and
0F(0 ) abut in a Cl manner along <b(á0) and thus define a totally real
embedding of the 2-sphere into (C 2 .
By virtue of the equality O(ó0) = 0(80), for S sufficiently small the

imago O(A,) is contained in the neighborhood U of the previous section .
For this reason the map

4) o0 : A6__+ C2

is well-defined and, since we will modify 0 only along A6 , the deforma-
tion of 0 can be reinterpreted as a deformation of 0' . The modification
will be done in two stages : (i) we first deform 0' so that O'(A, ) is the
graph of a function g ; (ii) then we deform g so that O(0) and 0(0) abut
smoothly.

5.1 . Replacing O'(A. ) by the graph of a function. Consider the
neighborhoods of O'(0) of the form

NE,Q = {(z, w)

	

:

	

Iz1 < 1 + e, IWI < Q}

with e > 0 and a > 0 chosen so small that there is an inclusion N3E,, C
-D(U) and such that the condition

~ _1 (N3e,a)n0(0 \A6) =

is satisfied . By choosing S' < S suficiently small we can insure that
inclusion 0'(A,-,) CV,, is satisfied .
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We are going to replace 0' by another totally real embedding ~"
A6 -~ NzE,Q which satisfies the two conditions :

and

"(Ab ) f1

	

{(z, g(z)) : z E Aó,}

	

for o,' < v sufficiently small,

where g is a complex-valued function defined on Aá, . By construction,
the map 4>-1 o Ab _ (C 2 agrees with 0 on the interior boundary
component of the annulus and so defines another totally real embedding,
01 : 0 --> (C 2 which intersects O(0) along the circle O(a0) .
To begin the construction of 0" observe that the image O'(A6 ) is of

the form

where the functions Z and W satisfy the conditions

(4)

	

Z(~) = ( and W«) = 0 for 1(1 = 1 .

Hence, in polar coordinates ( = pee", z = rete we can write

with R(1, a) = 1 and O(1, a) = a . Applying condition (iv) of Lemma 1
yields the inequality

0 :~

aZ aZ
áp 8a
aw aw
ap aa

on the annular regiorl Aó \ Aó,

z = Z(0,

	

w = W(O ,

	

1 - S < j(j< 1,

Z = R(p, a)e2o(P,a)

aZ aReio

áw
ap

aa
0

Thus áP is non-zero for (p, a) = (1, a) .

	

Continuity implies that for
S' > 0 sufficiently small OP does not vanish anywhere on the annulus
Ab . This and equation (4) show that, after possibly decreasing S' still
further, the map ( H (ez© , W) is an embedding of A,, ; and, therefore,
that for any smooth function R(p, a) > 0 the map

0', : ( - (Z(0,w(S)) = (Re20 , w)

_ -i eZa áPW
when p = 1 .

defines an embedding of A,-, . Of course, we wish to choose R so that
the map 0" satisfies the conditions stated above . That we can do so is
implied by the following lemma.
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Lemma 6. There exists a function R such that 0" satisfes the con-
ditions:

aZ aW

	

aWaZ
(5)

	

a

	

aa

	

a

	

aa ~ 0 when p < 1

	

(total reality) .
p p

(6)

	

R(p, a) = R(p, ca) for p < 1 - b' .

(7)

	

R(1, a) = 1.

(8)

	

R(p, a) - 1

	

< 2e for 1 - 6' < p < 1 .

(9)

	

DR(p, a) < 0 for 1 - p sufficiently small.
p

Remark 3.
Condition (5) is the total reality condition .
Conditions (6--8) imply that the formula

_

	

0«)

	

for_

	

1(I < 1 - b',
~1(~)

{ <D-1 o 0"(~)

	

otherwise

defines an embedding of 0 such that

o1 (0) n o( ,á) = 0
01(aA) = O(DA).

Condition (8) also insures that 01 (A,-,) is contained within the upen set
and it implies that the intersection 01(0) no(A,) is empty.

Condition (9) insures that the intersection O'(A. ) n Ar,Q , coincides
with the graph of a function g over the annulus Aó , for sufficiently
small v' > 0

Proof of Lemma 6: Let b = 2 maXCEA' aRpC) + 1 and R(~) = R(C) +
bh(p)(1- p), where h is a real valued, non-decreasing function such that

h(P)

	

1

	

for l - S"/8 < p < 1
- { 0

	

for p < 1 - 76"/8
0 < h'(p) < 2/S"

and 6" < 6'/2 < e is to be determined . (We leave it to the reader to show
that such a function exists .) Conditions (6) and (7) are easily verified .
To check that property (8) is satisfied, note that choosing 8" < e/b

gives the estimate

Ibh(p)(1 - p) 1 < b76"/8 < e,
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from which the inequality,

IR(~)1 < IR(« + b7S"/8 < IR(« + e

easily follows . Next observe that by virtue of equation (4) and the con-
tinuity of R, by choosing b' sufficiently small we can insure that the
inequality IR(~) - 11 < e is satisfied for E A6, . This yields the desired
inequality (8) .
To prove that the inequality (9) is satisfied, first note that for 1 - p <

a"/8, h(p) = 1 and h(p) = 0. Thus,

_OR _ aR
-b<0 .

aP ap

It remains to show that for S" sufficiently small the condition of total
reality is satisfied for p > 1 - 8" . It suffices to show that the expression
ak aw - az aw is positive . Compute as follows :8a ap

	

P 8a

aZ aW

	

akaW

	

a(Z + bh(p)(1 - p)e
i°1 aW

aca ap

	

ap aa

	

áa

	

ap

a(Z + bh(p)(1 - p)e
iol aW

ap aa
_aZ _aw _aZ_aw
aa ap

	

áp aa

+ i (bh(p)(1 - p) e'8)
aó aW
a_ áp

a (bh(p)(1 - p)e
i°) áW

ap aa

It suffices to show that the ex ression z aw - ak aw is positive . Con-p

	

aa aP

	

ap í)a
sider the inequality,

aZaw

	

-5P-
_akáW

	

aZaW

	

aZaW

	

a0aW
aJ ap

	

ap aa

	

aa ap

	

ap 90, ~ -
bh(P)

aJ ap
~

~ 1 - P~

a (bh(p)( 1 - p)éo(P,«)~

	

aW
ap

	

ace~~

The total reality of the original embedding (p, ca) ~--+ (Z(p, a), O(p, a))
guarantees that the first term is bounded below by a positive constant
for1-8"<p<1 .
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By choosing S" small the second term can be made arbitrarily small .
Finally, consider the third term. Recall that the equality W = 0 holds

along the circle p = 1 and that W is a smooth function of p and a . Also
recall the h(p) is bounded above by 2/6", so that jh'(p)(1 - p) 1 < 2 ; this,
in turn, implies that the coefficient of 1 áá 1 is bounded by a constant
which is independent of 8" . But for p sufficiently near 1, the partial
derivative áW/áa can be made arbitrarily small . Thus, for S" sufficiently
small, the third term can be made arbitrarily small and the right hand
side positive .
We have verified the total reality condition for p < 1 - b" . To verify

it for p > 1 - 8", notice that the equality holds for p > 1 - S"
and that 0' is totally real .

5.2 . Smoothly joining ~b(0) and O(0) . By the results above, we
may assume that 0 has been replaced by 01 and S by S' and that e and
a have been shrunk so that the following conditions are satisfied :

(D o O(Aó) n NE,Q = {(z, g(z)) : z E Aó
0(,1 \ Aó ) n P-1 (N,,) _ o .

The next step is to modify the function g on a neighborhood of the unit
circle so that it agrees with f,

Begin by extending fE to the disk of radius 1 + u using formula (3) ;
and observe it has the polar form

f,(z) = e (r 2 - 1) re'(7r+l-rz-a)

on the annulus Aó . Notice the addition of the term ¡ir in the exponent,
and the sign change in the modulus (c .f. equation (3) ) .

Lemma 7. There exist real numbers o,' and Q` with 0 < Q` < o,' < o,
and a complex valued function g, defined on the annulus A-4- , which has
the following properties

(i)

	

jg(z) 1 < e for all z E Aó .
(ü) aáz

	

0for all z E AQ .
(iii) g(z) = g(z) for Izl > 1 +o,' .
(iv) g(z) = f, (z) for 1 < 1 z1 < 1 + o,"' .

Remark 4. Assume for the moment that Lemma 7 has been verified .
We may then define a totally real embedding 02 of the disk O1+, of
radius 1 + a into (f; 2 in the following way . Define f : O1+a -->XE,o by

f(z) =

	

f, (z)

	

for 1 ~ 1 < 1,
{g(z)

	

for1<~z1 <1+u.
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Then set 02 (z) = ~b-1 (z, f(z)) . By construction, the totally real disks
0(1~1) and 02(01+a) intersect smoothly to define a totally real embedding
of the two-sphere into C2 . As already remarked, such embeddings do
not exist . We have arrived at a contradiction, and thus proved the
Intersection Theorem .
Remark 5. The proposition also follows from Gromov's theory of

differential inequalities [6] . The proof we give here does not rely on
Gromov's theory.
The proof of the proposition proceeds in two steps :

Step 1 . Construct g so that it satisfies the conditions,

arg(g(z)) = arg(fE (z))

	

for 1 < Iz1 < 1 + o-"
arg(g(z) = arg(g(z))

	

for Iz1 > 1 +o, '
lg(z) I = Ig(z) 1

	

for all z ,

where o,' and a" satisfy the inequalities 0 < v" < v' < o, .
Step 2 . Modify g(z) on the set 1 <_ Iz1 < v" so that, in addition to the

conditions specified in Step 1, it satisfies the equality

I9(z)I = IfE(z)l

	

for 1 < Iz1 < U"' < u" .

Step 1. Recall that by Lemma 2 we can write g in the form g(z) _
R(z)é'9(-), where R(z) and O(z) are as in the Lmma. We will write g
in the form

where O is to be determined.

g(z) = R(z)e'°(z) ,

Lemma 8.

	

There is a smooth homotopy H : {
(t[0,

, l

z)

.x Aó

	

-> ao
H Ht(z)

1 such that Ho = eiarg(fE) and Hl = e29 .

where

-y : re"e ~--> det(M)/I det(M)1

az ag(z)

	

á(reie )

M(r, 0) = det
( áz

	

óg(z)

	

= det
)

	

( a(
a
ea)

áe ae ae
= eie ag(z) _ ire¡e ag(z) .

ae ar

Proof. By Remark 1 and Lemma 4 the índex of the totally real em-
bedding of Aó , defined by

	

H (~, g«)), is zero .
On the other hand, the índex equals the degree of the map

,9g(z)

,9g(z)
ae )
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Observe that the degree of ,y is the same as the degree of its restriction
to the circle ao. Since ag/O0 = R(r, 0) = 0 and aRar'e > 0 on ao, the
degree of y is the degree of the map

eie
1-4 -¡eieeio (l,e) .

But the degree of -y is zero, hence the degree of the map z H-> ei0(1,9)
equals -1 .

Since the degree of the map zH eiarg(fE(z) = e i(7r+1-r2-e ) is also equal
to -1, the two maps are homotopic .

Next let hs (r) be a smooth family of monotone, non-decreasing func-
tions such that (i) h, (r) = 0 for r _< s/3, and (ii) h,(r) = 1 for r >_ 2s/3 .
The map gs is then defined by the equation

gs(z) = R(z)Hhs(Izl)(z) .

That the modulus of gs is bounded by e is clear from the fact that
gs was obtained from g by only changing its argument; thus, Igs (z) I =
Ig(z) I <_ e .
We need only show that for s sufficiently small, say s = u", the map gs

defines a totally real embedding for 1 <_ r < 1 + v-all other properties
that g must satisfy are clear from its definition . Also, since gs(z) = g(z)

for IzI > 1 + s, we need only verify total reality for 1 < IzI < 1 + s .
Write Ht (z) in the form

Ht (z ) = eot(z)

where 8t (z) is a smooth function modulo 21r of t and z . By virtue of
Lemma 3 it suffices to prove that for s sufficiently small the identity

(10)

	

raR(r, 0) > R(z) aOhs(r) (r, 0)
ar

	

ae

is satisfied for all 1 < r < 1 + s .
Let C > 0 and c > 0 be constante such that the inequalities

aOt (r, 0)

	

< C,

	

(t, r, 0) E [0,1l x A+
ae

	

01

aR(r, 0)
ar >e, 1<r<1+s

are satisfied (the existente of e is implied by total reality) . Because
R(r, 0) is zero for r = 1, for s = u' sufficiently small the inequality
R(z) < c is satisfied, and a fortiori so is the inequality (10) .
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Step 2 . Assume now that g has been replaced by gs and write

so that E) (z) = arg(f,(z)) for 1 < 1zl < 1 + o," .
Define a new function

where R is of the form

and h is a non-decreasing function with h(r) = 0 for r near 1, h(r) = 1
for r > 1 + u", and where u", 0 < o," < a' will be selected shortly. The
modulus of g is then a convex combination of the moduli of fE and g ;
thus lgl is bounded by E .

It remains only to verify that h can be chosen in such a way that the
total reality condition is satisfied by g . By Lemma 3 the following lemma
suffices .

Lemma 9. The function h can be chosen is such a way that the in-
equality

is satisfied for all z E Aá� .

are satisfied for all 1 < 1 zl < 1 + o-' .

R(z) ar

	

-

	

M(r - 1)

g(z) = R(z)e'o('z)

g(z) = R(z)e¡8(Z)

R(z) = (1 - h(r))If,(z)j + h(r)R(z)

r
áR(z)

> R z a0
ar

	

() ae

Proof. By virtue of Lemma 2, and after a possible necessary reduction
in the value of o, , there exist positive constants m, M and C such that
the inequalities,

11,9
<C

	

m< alfel <M

	

m< R <
YO ar ar~

	

~

m(r - 1) < j,(z)l < M(r - 1)

	

m(r - 1) < lR(z)l < M(r - 1)

The function h will be selected so that the inequality
R(z)

aR() > C
is satisfied . Estimate as follows :

1 áfiz m-h'(r)(lf,(z)1-R(z))

> m - (M - m)(r - 1)h'(r) _ m/M

	

M- m

	

h(r)
-

	

M(r - 1)

	

(r - 1) - (

	

M

	

)
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Choose u" > 0 so that m/M > C. We claim that there is a constantQ"' <
v" and a function h such that h(r) = 0 for 1 < r < 1 + o,"' , h(r) = 1 for
r > 1+o,"/2, and h'(r) < H(r) where H(r) = (Mm)-1

((r/M -C) .

That such a function exists is clear because the right hand side of the
last inequality is positive for 1 < r < 1 + u" and because the integral
fl+," H(r) dr diverges to +oo . Hence we may set h(r) = fi k(t)dt where
k(r) is any function satisfying the conditions, (i) 0 <_ k(r) < H(r), (ii)

fi
+alt

k(r)dr = 1, and (iii) k(r) = 0 for 1 <_ r < o,"' < u"/2 and for
r>o,"/2 .
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