Publicacions Matemàtiques, Vol 37 (1993), 45-55.

POINTWISE CONVERGENCE OF THE FOURIER TRANSFORM ON LOCALLY COMPACT ABELIAN GROUPS

MARIA L. TORRES DE SQUIRE*

Abstract _

We extend to locally compact abelian groups, Fejer's theorem on pointwise convergence of the Fourier transform. We prove that $\lim \varphi_U * f(y) = f(y)$ almost everywhere for any function f in the space $(L^P, l^\infty)(G)$ (hence in $L^P(G)$), $2 \le p \le \infty$, where $\{\varphi_U\}$ is Simon's generalization to locally compact abelian groups of the summability Fejer Kernel. Using this result, we extend to locally compact abelian groups a theorem of F. Holland on the Fourier transform of unbounded measures of type q.

1. Notation and Preliminary Results

Throughout, G is a locally compact abelian group, with dual group Γ , and Haar measure m. By the structure theorem, G is represented by $\mathbf{R}^a \times G_1$, where a is a nonnegative integer and G_1 is a group which contains an open compact subgroup H. The set of basic neighbourhoods of $x \in G$ is denoted by $\mathcal{N}_x(G)$. We write $C_c(G), C_0(G)$ for the spaces of functions on G that are continuous, with compact support and vanish at infinity, respectively. We consider the amalgam spaces $(L^p, l^q)(G), (C_0, l^q)(G)(1 \leq p, q \leq \infty)$ as defined in [S]. The Fourier transform (inverse Fourier transform) of a measure μ , is denoted by $\hat{\mu}$ ($\hat{\mu}$). We let $A_c(G)$ be the set of all functions f in $C_c(G)$ such that $\hat{f} \in L^1(\Gamma)$. The characteristic function of a subset E of G is denoted by χ_E . The conjugate p' of a number p is such that 1/p + 1/p' = 1. For each $U \in \mathcal{N}_0(G)$, A.B. Simon [Si] defined a function φ_U as the product of two functions α_U and β_U defined on \mathbf{R}^a and on G_1 , respectively.

^{*1980} Mathematics Subject Classification (1985 Revision). Primary 43A55, 43A25. Research supported by NSERC grant 7914.

The function β_U is continuous, nonnegative, with $L^1(G)$ -norm equal to 1, and

(1)
$$\sup_{G} |\beta_U(x)| = B_U \le 2m(U)/1 - 2m(U) \quad \text{finite.}$$

Hence $B_U \to 0$ as $U \to 0$.

The function α_U is defined as follows.

Let $(-\delta_1, \delta_1) \times \cdots \times (-\delta_a, \delta_a) \times U_H$ be a product neighbourhood contained in U, where $\delta_i > 0$ (i = 1, ..., a), and U_H is an element of $\mathcal{N}_0(G)$ included in H. For i = 1, ..., a we set $U_i = (-\delta_i, \delta_i), N_i = 1/\delta_i$, and define the function α_{U_i} on \mathbf{R} by

$$\alpha_{U_i}(t) = \frac{1 - \cos(N_i t)}{\pi N_i t^2}$$

For $t = (t_1, \ldots, t_a)$ in \mathbf{R}^a , the function α_U is given by $\alpha_U(t) = \prod_{i=1}^a \alpha_{U_i}(t_i)$. Clearly α_U is continuous, nonnegative, and its $L^1(\mathbf{R}^a)$ -norm is equal to 1. Each φ_U has the following properties. For a proof see [Si].

- 1.1) φ_U is continuous, nonnegative and bounded
- 1.2) φ_U is integrable and $||\varphi_U||_1 = 1$
- 1.3) $\hat{\varphi}_U \in C_c(\Gamma)$ and $||\hat{\varphi}_U||_{\infty} \leq 1$
- 1.4) $\varphi_U(x) = \int_{\Gamma} \hat{\varphi}(\gamma) \gamma(x) d\gamma$ by 1.3)
- 1.5) For $\varepsilon > 0$ and $U \in \mathcal{N}_0(G)$ given, we can find a V such that if $V' \leq V$ and $x \notin U$, then $\varphi_V(x) < \varepsilon$ and $\int_{G-V} \varphi_{V'}(x) dx < \varepsilon$.
- 1.6) $\lim_U \hat{\varphi}_U(\gamma) = 1.$
- 1.7) the family $\{\varphi_U | U \in \mathcal{N}_0(G)\}$ is an approximate identity in $L^1(G)$.

We add to this list the fact that each φ_U belongs to the Wiener algebra $(C_0, l^1)(G) = [W]$.

Proposition 1.1. For each U in $\mathcal{N}_0(U)$, the function α_U belongs to $(C_0, l^1)(\mathbf{R}^a)$.

Proof: . Since $\alpha_{U_i}(i=1,\ldots,a)$ is an even function we have for n in $\mathbb{Z} - \{0,-1\}$ that

$$\sup_{t \in [0,1]} \alpha_{U_i}(t+n) = \sup_{t \in [0,1]} \alpha_{U_i}(t-(1+n)) \le \frac{2}{N_i \pi} \frac{1}{n^2}.$$

If $n \in \{0, -1\}$, then there exists a constant C_i such that

$$\sup_{t\in[0,1]}\alpha_{U_i}(t+n)\leq \frac{N_i}{\pi}C_i$$

because the limit

$$\lim_{t \to -n} \frac{1 - \cos N_i(n+t)}{(N_i(n+t))^2}$$

exists.

Therefore for all i = 1, ..., a and all integer n we have that

$$\sup_{t \in [0,1]} |\alpha_{U_i}(t+n)| \le ca_n$$

where

$$c = \max_{1 \leq i \leq a} (2/(N_i\pi), N_iC_i/\pi)$$

and a_n is equal to $1/n^2$ if $n \in \mathbb{Z} - \{0, -1\}$, and to 1 if $n \in \{0, -1\}$. Finally, for i = 1, ..., a we have that

$$\begin{aligned} ||\alpha_{U_i}||_{\infty 1} &= \sum_{\mathbf{Z}} \sup_{t \in [n, n+1]} |\alpha_{U_i}(t)| \\ &= \sum_{\mathbf{Z}} \sup_{t \in [0, 1]} |\alpha_{U_i}(t+n)| \\ &\leq C \sum_{\mathbf{Z}} a_n < \infty. \end{aligned}$$

From the definition of the norm $|| ||_{\infty 1}$, it is easy to see that

$$||\alpha_U||_{\infty 1} = \prod_{i=1}^{a} ||\alpha_{U_i}||_{\infty 1}.$$

Corollary 1.2. For each U in $\mathcal{N}_0(G)$, the function φ_U belongs to $(C_0, l^1)(G)$.

Proof: By (1) we have for all (t, s) in G that

$$\varphi_U(t,s) = \alpha_U(t)\beta_U(s) \le B_U\alpha_U(t),$$

hence

$$||\varphi_U||_{\infty 1} \leq B_U \sum_{n \in \mathbf{Z}^a} \sup_{t+n \in [0,1]^a} |\alpha_U(t)| = B_U ||\alpha_U||_{\infty 1}. \quad \blacksquare$$

For the rest of this paper φ_U, α_U , and β_U are as indicated in this section.

2. Main Theorem

In this second section we want to prove that

(2)
$$\lim_{U \to 0} \varphi_U * f(y) = f(y) \quad \text{almost everywhere}$$

for all f in $(L^p, l^\infty)(G)(2 .$

First, we prove two lemmas.

Lemma 2.1. Let V and K be two elements of $\mathcal{N}_0(G)$ of the form

$$V = (-\delta_1, \delta_1) imes \cdots imes (-\delta_a, \delta_a) imes V_H$$

and $K = [-\gamma_1, \gamma_1] \times \cdots \times [-\gamma_a, \gamma_a] \times K_H$, where $\delta_i > 0, \gamma_i > 0$ $(i = 1, \ldots, a), V_H$ and K_H are elements of $\mathcal{N}_0(G)$ contained in H, and K_H is compact.

For $1 \leq p < \infty$, we define $\eta_i = \min(\delta_i^{2p}, \gamma_i)$ (i = 1, ..., a), and we let W_H be the interior of K_H . Then the set $W = [-\eta_1, \eta_1,] \times \cdots \times [-\eta_a, \eta_a] \times W_H$ belongs to $\mathcal{N}_0(G)$ and for a fixed $y = (y_0, s_0) = (y_1, \ldots, y_a, s_0)$ in G, the element $W_y = y + W$ of $N_y(G)$ has the following properties:

2.1) $W_y \subseteq y + K_H$ 2.2) If $\Pi_a = [-\eta_1 + y_1, \eta_1 + y_1] \times \cdots \times [-\eta_a + y_a, \eta_a + y_a]$, then

$$\left[\int_{\Pi a} \alpha_U (y_0 - x)^p dx\right]^{1/p} = O(\prod_{i=1}^a \delta_i)$$

2.3) $\mathbf{R}^a - \Pi_a \subseteq \bigcup I_n$, where $\{I_n\}$ is a countable family of compact subsets of \mathbf{R}^a , and

$$\sum_{\mathbf{N}} \left[\int_{In} \alpha_U (y_0 - x)^p dx \right]^{1/p} = O(\prod_{i=1}^a \delta_i).$$

2.4) There exists a constant C such that $\sup_{\mathbb{N}} C(I_n) \leq C$, where $C(I_n)$ is the cardinality of the set

$$\{j \in \mathbf{Z}^a \mid (j + [0, 1]^a) \cap I_n \neq \phi\}.$$

Proof: Several constants will appear during the proof and since their specific value is irrelevant for our needs we just write $C_1, C_2, \ldots C_q$. Part

2.1) is clear. Set $J_i = [-\eta_i + y_i, \eta_i + y_i](i = 1, ..., a)$. Part 2.2) follows from the continuity of α_{U_i} because (3)

$$\left[\int_{J_i} \alpha_{U_i} (y_i - x)^p dx\right]^{1/p} = \left[\int_{-\eta_i}^{\eta_i} \alpha_{U_i} (x)^p dx\right]^{1/p} \le C_1 N_i \eta_i^{1/p} \le C_2 \delta_i.$$

Now, for each i = 1, ..., a, let L(n, i) and $R(n, i)(n \in \mathbb{N})$ be the intervals

$$[-n - 1 - \eta_i + y_i, -n - \eta_i + y_i]$$
 and $[n + \eta_i + y_i, n + 1 + \eta_i + y_i]$

respectively. Then

$$\mathbf{R} - J_i = (-\infty, -\eta_i + y_i) \cup (\eta_i + y_i, \infty) \subseteq \bigcup_{\mathbf{N}} L(i, n) \cup \bigcup_{\mathbf{N}} R(i, n),$$

and

$$\int_{L(n,i)} \alpha_{U_i} (y_i - x)^p dx \le C_3 \delta_i^p a_n$$

where

$$a_n = rac{1}{(n_i+n)^{2p-1}} - rac{1}{(n_i+n+1)^{2p-1}}$$

Since $\sum a_n^{1/p}$ converges we conclude that

$$\sum_{\mathbf{N}} \left[\int_{L(n,i)} lpha_{U_i} (y_i - x)^p dx
ight]^{1/p} \leq C_4 \delta_i.$$

Similarly

$$\sum_{\mathbf{N}}\left[\int_{R(n,i)}lpha_{U_i}(y_i-x)^pdx
ight]^{1/p}=C_5\delta_i.$$

Clearly $\sup_{\mathbf{N}} C(L(n, i))$ and $\sup_{\mathbf{N}} C(R(n, i))$ are less than or equal to 2, hence for i = 1, ..., a, the set $\mathbf{R} - J_i$ is equal to $\bigcup I_n$, where each I_n is compact, $\sup C(I_n) \leq 2$ and

(4)
$$\sum_{\mathbf{N}} \left[\int_{I_n} \alpha_{U_i} (y_i - x)^p dx \right]^{1/p} = O(\delta_i).$$

Since $\mathbf{R} = (\mathbf{R} - J_a) \cup J_a$, and J_a is compact, by (3) and (4) we see that $\mathbf{R} = \bigcup K_n$, with each K_n compact, $\sup \mathcal{C}(K_n) \leq C_6$, and

(5)
$$\sum_{\mathbf{N}} \left[\int_{K_n} \alpha_{U_a} (y_a - x)^p dx \right]^{1/p} = O(\delta_a).$$

49

We prove properties 2.3) and 2.4) by induction on a. The case a = 1 follows from (3). Suppose that 2.3) and 2.4) hold for a - 1. That is, $\mathbf{R}^{a-1} - \prod a - 1 \subseteq \bigcup I_n$, each I_n a compact subset of \mathbf{R}^{a-1} , sup $C(I_n) \leq C_7$, and

(6)
$$\sum_{\mathbf{N}} \left[\int_{I_n} \Pi_{i=1}^{a-1} \alpha_{U_i} (y_i - x_i)^p dx \right]^{1/p} = O(\Pi_{i=1}^{a-1} \delta_i).$$

By (4) with i = a, we have that $\mathbf{R} - J_a \leq \bigcup I_j$, each I_j a compact subset of $\mathbf{R}, \sup \mathcal{C}(I_j) \leq 2$ and

(7)
$$\sum_{\mathbf{N}} \left[\int_{I_j} \alpha_{U_a} (y_a - x)^p dx \right]^{1/p} = O(\delta_a).$$

Then

$$\mathbf{R}^{a} - \Pi a = (\mathbf{R}^{a-1} \times \mathbf{R}) - (\Pi(a-1) \times Ja)$$

= $(\mathbf{R}^{a-1} - \Pi(a-1)) \times (\mathbf{R} \cup \Pi(a-1)) \times (\mathbf{R} - Ja)$
 $\leq \bigcup_{n,m} (I_{n} \times K_{m}) \bigcup_{\mathbf{N}} (\Pi(a-1) \times Ij).$

The sets $I_n \times K_m$ and $\Pi(a-1) \times Ij$ are compact subsets of **R**, for all n, m, j. Hence $\sup \mathcal{C}(I_n \times K_m) \leq C_8$ and $\sup \mathcal{C}(\Pi(a-1) \times Ij) \leq C_9$. Therefore 2.4) holds with $C = \max(C_8, C_9)$. Finally, by (5) and (6) we have that

$$\sum_{n,m} \left[\int_{I_n \times K_m} \alpha_U (y_0 - x)^p dx \right]^{1/p} =$$

$$= \sum_{\mathbf{N}} \left[\int_{I_n} \prod_{i=1}^{a-1} \alpha_{U_i} (y_i - x_i)^p dx \right]^{1/p} \sum_{\mathbf{N}} \left[\int_{K_m} \alpha_{U_a} (y_a - x)^p dx \right]^{1/p} =$$

$$= O(\prod_{i=1}^a \delta_i).$$

We conclude from (3) and (7) that

$$\sum_{N} \left[\int_{\Pi_{a}-1\times I_{j}} \alpha_{U} (y_{0}-x)^{p} dx \right]^{1/p} =$$

= $\prod_{i=1}^{a-1} \left[\int_{I_{i}} \alpha_{U_{i}} (y_{i}-x)^{p} dx \right]^{1/p} \sum_{N} \left[\int_{I_{j}} \alpha_{U_{a}} (y_{a}-x)^{p} dx \right]^{1/p} =$
= $O(\prod_{i=1}^{a} \delta_{i}).$

Lemma 2.2. For each V_y in $\mathcal{N}_y(G)$ ($y \in G$)

$$\lim_{u\to 0} \int_{G-V_y} \varphi_U(y-x) f(x) dx = 0$$

for all f in $(L^p, l^{\infty})(G)(1 .$

Proof: Let $y = (y_1, \ldots, y_a, s_0) = (y_0, s_0)$ be an element of $\mathbb{R}^a \times G_1$. We choose two elements V and K of $\mathcal{N}_0(G)$ with the same form as in Lemma 2.2, such that $y + K \subseteq V_y$ and $V \subseteq U$.

Following the notation of Lemma 2.2, we set $\eta_i = \min(\delta_i^{2p}, \gamma_i)(i = 1, \ldots, a)$, and W_H the interior of K_H . Then the set $W = [-\eta_1, \eta_1] \times \cdots \times [-\eta_a, \eta_a] \times W_H$ satisfies the properties listed in Lemma 2.2. Hence by property 2.1) it is enough to prove that

$$\lim_{U\to 0} \int_{G-W_y} \varphi_U(y-x)f(x)dx = 0.$$

Since

$$G - W_y = (\mathbf{R}^a - \Pi_a) \times G_1 \cup \ \Pi_a \times (G_1 - (s_0 + W_H)),$$

we have by the definition of the function φ_U , that

$$arphi_U(y-x)=lpha_U(y_0-t)\ eta_U\ (s_0-s)=0$$

if $s_0 - s \not\in H$, and x = (t, s) in G. Hence

(8)
$$\int_{G-W_y} \varphi_U(y-x)f(x)dx = \int_{(\mathbf{R}^a - \Pi a) \times (s_0 + H)} \varphi_U(y-x)f(x)dx + \int_{\Pi a \times (s_0 + (H-W_g))} \varphi_U(y-x)f(x)dx.$$

Let $\{I_n\}$ be the countable family of sets given by property 2.3). For each I_n we have by the Hölder inequality and (1)

$$\begin{split} \int_{I_n \times (s_0 + H)} \mid \varphi_U(y - x) f(x) \mid dx &\leq ||f \chi_{I_n \times (s_0 + H)}||_p B_U \leq \\ &\leq \left[\int_{I_n} \alpha_U(y_0 - x)^{p'} dx \right]^{1/p'} \end{split}$$

By property 2.4) $\sup_{\mathbf{N}} |S(I_n \times (s_0 + H))| \leq C$, where C is a constant, and $|S(I_n \times (s_0 + H))|$ is the number of K_{α} 's (as defined in [S]) such that $I_n \times (s_0 + H) \cap K_{\alpha} \neq \phi$. This implies that for all $n \in \mathbf{N}$

$$||f\chi_{I_n \times (s_0 + H)}||_p \le |S(I_n \times (s_0 + H))| ||f||_{p\infty} \le C||f||_{p\infty}.$$

Thus, we conclude from 2.2) that

$$(9) \quad \int_{(\mathbf{R}^{a}-\Pi_{a})\times G_{1}} \varphi_{U}(y-x) \mid f(x) \mid dx \leq \\ \leq C ||f||_{\infty} B_{U} \sum_{\mathbf{N}} \left[\int_{I_{n}} \alpha_{U}(y_{0}-x)^{p'} dx \right]^{1/p'} = \\ = O(\Pi_{i=1}^{a} \delta_{i} B_{U}).$$

Applying Hölder's inequality we get

Note that $\Pi a \times (s_0 + (H - W_H))$ is compact (*H* is compact and $H - W_H$ is closed), and because $B_U \to 0$ as $U \to 0$

Now, since $\Pi a \to y$ as $U \to 0$ and $s_0 + (H - W_H) \leq s_0 + H$ is independent of U, we have that $|S(\Pi a \times (s_0 + (H - W_H))| \to 0$ as $U \to 0$. Therefore by property 2.2)

(10)
$$\int_{\prod a \times (s_0 + (H - W_H))} \varphi_U(y - x) |f(x)| dx \to 0 \quad \text{as} \quad U \to 0.$$

The result follows from (8), (9), and (10).

Theorem 2.3. For all f in $(L^p, l^\infty)(G), 2 \le p \le \infty$,

$$\lim_{U\to 0} \int_G \varphi_U(y-x)f(x)dx = f(y)$$

almost everywhere.

Proof: Let V_y be in N_y compact. We have to show, by Lemma 2.2, that

$$\lim_{V\to 0}\int_{V_y}\varphi_U(y-x)f(x)dx$$

converges to f(x) almost everywhere. Since the function f belongs to $(L^p, l^{\infty}) \subseteq (L^2, l^{\infty})$, the function $g = f\chi_{V_y}$ belongs to $L^2(G)$, and by Corollary 1.2, 1.1), and 1.4) each φ_U also belongs to $L^2(G)$. Hence by the Parseval identity, we have that

$$egin{aligned} &\int_{V_y}arphi_U(y-x)f(x)dx = \int_Garphi_U(y-x)g(x)dx \ &= \int_{\Gamma}\hat{arphi}_U(\hat{x})\hat{g}(-\hat{x})\overline{[y,\hat{x}]}d\hat{x} \end{aligned}$$

By the Lebesque Dominated Convergence theorem (see properties 1.3 and 1.6) we have that

$$\begin{split} \lim_{U \to 0} \int_{V_y} \varphi_U(y-x) f(x) dx &= \lim_{U \to 0} \int_{\Gamma} \hat{\varphi}_U(\hat{x}) \hat{g}(-\hat{x}) \overline{[y,\hat{x}]} d\hat{x} \\ &= \int_{\Gamma} \hat{g}(-\hat{x}) \overline{[y,\hat{x}]} d\hat{x} = g(y) \end{split}$$

almost anywhere.

3. Fourier Transform of Unbounded Measures

The space $M_q(G)(1 \leq p < \infty)$ of unbounded measures of type q [S], consists of Radon measures μ with finite norm $||\mu||_q$ given by $\left|\sum_J |\mu|(K_\alpha)^q\right|^{1/q}$. If $G = \mathbf{R}$, then the family $\{K_\alpha\}$ can be taken as $\{[n, n+1]|n \in \mathbb{Z}\}$.

In this section we generalize to locally compact abelian groups, the following theorem due to F. Holland [H].

Theorem 3.1. Let $1 \leq q \leq 2$ and $\mu \in M_q(\mathbf{R})$. Then as $N \to \infty$

$$\frac{1}{\sqrt{2\pi}}\int_{-N}^{N}e^{-ixt}d\mu(t)$$

converges in the norm of $(L^{q'}, l^{\infty})$ to a function $\hat{\mu}$ and

$$\int h(x)\hat{\mu}(x)dx = \int \hat{h}(x)d\mu(x) \quad (h\epsilon(L^q,l^1)(\mathbf{R})).$$

Further

$$\sqrt{2\pi}\hat{\mu}(x) = (C.1)\int e^{-ixt}d\mu(t)$$

almost everywhere.

(C.1) means that the integral on the right is summable by the Cesáro method of order 1 to the value $\sqrt{2\pi}\hat{\mu}(x)$.

It is easy to see, that for any measure μ in M_q ($1 \le q \le 2$), there is a net μ_{α} of bounded measures such that $\lim ||\mu_{\alpha} - \mu||_q = 0$, and therefore by [S. Theorem 4.2] $\lim ||\hat{\mu}_{\alpha} - \hat{\mu}||_{g\infty} = 0$. This generalizes the first part of the theorem.

Theorem 3.2. Let μ be an element of M_q $(1 \le q \le 2)$

- i) $\int_{\Gamma} \overline{f(\gamma)}\hat{\mu}(\gamma)d\gamma = \int_{G} \overline{\check{f}(x)}d\mu(x)$ for all f in $(L^{q}, l^{1})(\Gamma)$. ii) $(C.1) \int_{G} \overline{\gamma(x)}d\mu(x) := \lim_{U \to 0} \int_{G} \overline{\check{\phi}_{U}(x)\gamma(x)}d\mu(x) = \hat{\mu}(\gamma)$ almost everywhere.

(C.1) means that the integral on the right is summable by the Cesáro method of order 1 to the value $\hat{\mu}(\gamma)$.

Proof: Let μ_{α} be the net of bounded measures related to μ , as mentioned above.

Since (L^q, l^1) is a subspace of L^1 [S,(3,4)], we have by the Extended Parseval Formula [S. Lemma 4.1] that for any f in $(L^q, l^1)(\Gamma)$,

(11)
$$\int_{\Gamma} \overline{f(\gamma)} \hat{\mu}_{\alpha}(\gamma) d\gamma = \int_{G} \overline{\check{f}(x)} d\mu_{\alpha}(x)$$

By the Hölder inequality

$$\begin{split} \int_{\Gamma} |f(\gamma)| \quad |\hat{\mu}_{\alpha}(\gamma) - \hat{\mu}(\gamma)| d\gamma \leq \\ \leq \sum_{J} \left[\int_{K_{\beta}} |f(\gamma)|^{q} \right]^{1/q} \left[\int_{K_{\beta}} |\hat{\mu}_{\alpha}(\gamma) - \hat{\mu}(\gamma)|^{q'} d\gamma \right]^{1/q'} \leq \\ \leq ||f||_{q^{1}} ||\hat{\mu}_{\alpha} - \hat{\mu}||_{q'\infty}. \end{split}$$

Similarly

$$\int_G |\check{f}(x)| \quad d|\mu_lpha-\mu|(x)\leq ||\check{f}||_{\infty q'}||\mu_lpha-\mu||_q.$$

Therefore the left side of (ii) converges to $\int_{\Gamma} \overline{f(\gamma)} d\mu(\gamma)$, and the right side to $\int_G \check{f}(x) d\mu(x)$. This proves i).

By proposition 1.1 and $[\mathbf{S},(3.1)]$, each φ_U belongs to $(L^q, l^1)(\Gamma)$, so from i)

$$\int_{\Gamma} arphi_U(y-\gamma) \hat{\mu}(\gamma) d\gamma = \int_G y(x) \overline{\check{\phi}_U(x)} d\mu(x).$$

Hence, part ii) follows from Theorem 2.3.

References

- [AGL] L. ARGABRIGHT AND J. GIL DE LAMADRID, Fourier analysis of unbounded measures on locally compact abelian groups, *Memoirs* Am. Math. Soc. 145 (1974).
- [F] H. G. FEICHTINGER, On a new segal algebra, Mh. Math. 92 (1981), 269-289.
- [H.] F. HOLLAND, Harmonic analysis on amalgams of L^p and l^q , J. London Math. Soc. (2) 10 (1975), 295–305.
- [L] V. LOSERT, A characterization of the ninimal strongly character invariant segal algebra, Ann. Inst. Fourier 30, 3 (1980), 129–139.
- [Si] A. B. SIMON, Cesáro summability on groups: Characterization of Fourier transforms, Function Algebras. Proc. Internat. Sypos. on Function Algebras, Tulane Univ. (1965).
- [S] J. STEWART, Fourier transforms of unbounded measures, Can. J. Math. 31, no. 6 (1979), 1281–1292.
- [TS] TORRES DE SQUIRE, Multipliers for amalgams and the algebra $S_0(G)$, Can. J. Math. **39**, no. 1 (1987), 123-148.
- [W] N. WIENER, "The Fourier integral and certain of its applications," Cambridge Univ. Press, 1958.

University of Regina Regina, Saskatchewan S4S 0A2 CANADA

Primera versio rebuda el 8 d'Abril de 1991, darrera versió rebuda el 8 de Setembre de 1992