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POINTWISE CONVERGENCE
OF THE FOURIER TRANSFORM
ON LOCALLY COMPACT ABELIAN GROUPS

Magria L. TORRES DE SQUIRE*®

Abstract

We extend to locally compact abelian groups, Fejer's theorem on
pointwise convergence of the Fourier transform. We prove that
limey * f{y) = f{y) almost everywhere for any function f in the
space (LT 1°°)(G) (hence in LT(G)), 2 € p £ oo, where {{py}
is Simon's generalization to locally compact abelian groups of the
summability Fejer Kernel. Using this result, we extend to locally
compact abelian groups a thecrem of F. Holland on the Fourier
transform of unbounded measures of type g.

1. Notation and Preliminary Results

Throughout, (7 is a locally compact abelian group, with dual group
I', and Haar measure m. By the structure theorem, & is represented
by R®* x (73, where a is a nonnegative integer and G, is a group which
contains an open compact subgroup H. The set of basic neighbour-
hoods of zeG is denoted by N (G). We write C{G), Co(G) for the
spaces of functions on & that are continucus, with compact support
and vanish at infinity, respectively. We consider the amalgam spaces
(L2190, (Cp, 9GY1 < p,g < o0) as defined in [S]. The Fourier
transform (inverse Fourier transform) of & measure p, is denoted by
i (jz). We let A.(G) be the set of all functions f in Cy(G) such that
f & LY{T). The characteristic function of a subset E of G is denoted by
xe- The conjugate p’ of a number p is such that 1/p+ 1/p’ = 1. For
each U £ Mp{G), A.B. Simon [Si] defined a function ¢y as the product
of two functions ay and 8y defined on R® and on G, respectively.
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The function By is continuous, nonnegative, with L(G)-norm equal
to 1, and

(1} sup |Bu{z)l = By < 2m(U)/1 —2m(U) finite.
G

Hence By — 0as U — 0.

The function «y is defined as follows.

Let {—8,,81) X «-- X (—8,,8,) x Uy be a product neighbourhood con-
tained in U, where §; > 0 (i = 1,... ,e), and Uy is an element of
M(G) included in H. Fori=1,... ,¢ wesect U; = (—6§,8), N, = 1/§;,
and define the function oy, on R by

1 — cos{N;)
() = T
aU‘l( ) WN;tz
For t = (;,...,t,) in R®, the function oy is given by ay(t) =

& o, (t4). Clearly ay is continuous, nonnegative, and its L} (R2)-norm
is equal to 1. Each @y has the following properties. For a proof see [Si].

1.1} py is continuous, nonnegative and bounded
1.2) wrr is integrable and ||pp||; =1
1 3) s??u E C (T') and ”‘:aU”oo <1

1.4) ¢ = [ ¢(y)y(z)dy by 1.3)

1.5) For s > 0 and U £ Mo(G) given, we can find a V' such that if

Vi<Vandz £ U, then py{z) <eand [, . ¢y (z)dr <e.
1.6) limg @p(y) = 1.
1.7) the family {@y|U ¢ Np(G)} is an approximate identity in L'(G).
We add to this list the fact that each ¢ belongs to the Wiener algebra
(Co, 'HG)  [W).

Proposition 1.1. For each U in No(U), the function ay belongs to
(Co, 11 )(R?).

Proof: . Since ay, (i = 1,... ,a) is an even function we have for n in
Z —{0,—1} that

2 1
sup ay,(t+n)= sup ay,(t—(1+n)) < ——.
te[0,1] te[0,1) Nyrn?

If n e {0, -1}, then there exists a constant C; such that

N;
sup ay. (t+n) < —C
tef0,1]
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because the limit '
1—cos Ni(n+1t)

.
t=n (Ni(n +1))2
exists.
Therefore for all 2 = 1,... ,a and all integer n we have that
sup |ag,(t +n)| < ca,
telB,1]
where

c= lrgg;a(z/(Nw), N.Ci/m}

and an, is equal to 1/n? ifne Z — {0,-1}, and to 1 if n e {0, —1}.
Finally, for i = 1,... ,a we have that

lov,lloo: =D sup Jop,(t)]

7, telentl]

=3 sup Jag, (t+n)]
Z tE[O,l]

SCZan<oo.
Z

From the definition of the norm || ||es1, it is easy to see that
liewlloor = oy llew; |loo- ®
Corollary 1.2. For each U in No(G), the function py belongs to
(Co, P Y(G).
Proof: By {1} we have for all (¢,s) in G that
pult,s) = ay{t)Puls) < Byoull),
hence

lloolloos € By D sup low(t)] = Byllavlicr- ®
neZe t+ne(0,1)

For the rest of this paper ¢y, oy, ard Gy are as indicated in this
section.
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2. Main Theorem
In this second section we want to prove that

(2) érimo wu * fly) = f{y) almost everywhere

for all f in (LP,I®}HG)2 < p < o0).
First, we prove two lemmas.

Lemma 2.1. Let V and K be two elements of No{G) of the form
Vi=(=61,81) x -+ x (=84,8,) x Vg

and K = [—v,m] X+ X [=Ya:Ya] X Kz, where §; > 0,% > 0 (¢ =
1,...,a),Vy and Ky are elements of Na(G) contained in H, and Kg
is compact.

Forl < p < o0, we define r; = min(&fp,'yg) (i=1,...,a), and we let
Wy be the interior of Ky. Then the set W = [—ny, 71, ] %+ - X [=14, 7] ¥
Wy belongs to No{G) and for a fixed y = (yo,%0) = (¥1,--- , Ya: S0} In
G, the element Wy, =y + W of N,(G) has the following properties:

2.1) W, Cy+ Kn
22) Ifll, = [-m +y,m + 1] X X [~ + Yar o + Ya), then

1/p
{] ap{ys — :c)pdm} = O, 8;}
Ia

23) R* —1I, C U L,, where {I.} 15 a couniable family of compact
subsets of R, and

; [frn oy (Yo — x)pdx] " O(IIE, &)

2.4) There exists a constont C such that supy C(I,) < C, where C(I,,)
is the cardinality of the set

{JeZ? |G+ 0,1*)N 1 # ¢}

Proof: Several constants will appear during the proof and since their
specific value is irrelevant for our needs we just write Cy,Cy, ... C,. Part
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2.1) is clear. Set J;, = [-m + yi.m + w](e = 1,... ,a). Part 2.2} follows
from the continuity of oy, because

(3)

[_/J GIU‘-{?}‘? - I}pdx] " = [/_1 oy, (z)7dz

1

i/p
< CiNin}"? < Cy8.

Now, foreachi = 1,... ,qa, let L{n, ) and R(n,:){(neN) be the intervals
[~rn-1-m+y,—n—m+yand [n+n+ym.n+1+0n+y)
respectively. Then

R - J; = {~00,~m +9:) U (m + 3,00 C| L zn)UURm
N

and
/ ay, (yi — x)Pdz < C36fay,
Lin.i)

where
1 1

(ng +n)2P=1 " (ny +n+ )21

Ay =

Since T ai’? converges we conclude that

- 11i/p

Z / oy, (y: — 2)Pdz < Cgby.
Liw,i)

N L it J

Similarly
- i/

Z ] ay, (y; — z)’de = Cs6;.
™ Hin,i)

Clearly supn € (L(n, €)) and supyn C {(R(n, z)) are less than or equal to 2,
hence for i = 1,... ,a, the set R — J; is equal to Ul,, where each I, is
compact, supC ([,) < 2 and

(4) > [ / (v — x)pdz] 7 = O(6,).

N Wi

Since R = (R — J,) U J;, and J, is compact, by (3} and (4) we see
that R = UK,,, with each K, compact, sup{{K,) < Cg, and

(%) S| ovntva- z}?dz]w — 0(5.)

N L Kn
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We prove properties 2.3) and 2.4) by induction on a. The case a =1
follows from {3). Suppose that 2.3) and 2.4) held for ¢ — 1. That is,
R¢-1—-Tla—1 C UI,, each I,, a compact subset of R*~!,sup C({I,,) < Cy,
and

1/p
(6) Z [f Ha =1 QU (yz - xt)pdx] = O(Hf’;}lég)
N Wis

By (4) with ¢ = a, we have that R — J; < UIj, each I; a compact
subset of R,supC{f;) < 2 and

i/p
(@) > [ | ovtue - :c)?dx] = 0(.).

N
Then
R® —Ilo = (R* ! x R) ~ (Il{a — 1} x Ja)
=R} -Ma~1)) x (R U I{a - 1}}) x (R - Ja}
< JUn x K| iT(a - 1) % I3).
11,77 N

The sets I, x K, and [I{e — 1) % I§ are compact subsets of R, for
all n,m, j. Hence supC{J, x Kyn) < Cs and supC{ll{a — 1} % [J) < Cs.
Therefore 2.4} holds with C = max{Cy, Cs). Finally, by (5) and (6) we
have that

Z [/{ﬂxxm oy (Yo — ﬁf)pdx] " =

1/p i/p
=2 [ f = o, (s — xs)pdx] > [ ] oy, (ye —2)Pda| =
N N K
= O(II,,4:).
We conclude from {3) and (7) that
i/p
> [/ ay{yo — E)de] =
N Ma—1xij
Vp

e [./; o lys ~ a:)pda:] Z ]:[ oy, (Yo — I)Pd:c] =
N

= O(I}_16:)-
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Lemma 2.2. For each V, in Ny(G) (ysG)

lim wuly — z)f(z)dz =0

=0 Jo.oy,
Jor oll f in (L2 1™)(G)(1 < p < o).

Proof: Let ¥ = {¥1,.-. ,¥a: %0) = (Yo, 50} be an element of R* x G.
We choose two elements V' and K of Aj(G) with the same form as in
Lemma 2.2, such that y+ K C V,and V C U.

Following the notation of Lemma 2.2, we set 1, = min(ﬁf‘”,’yt-)(z’ =
1,...,a), and Wy the interior of K. Then the set W = [—mny,m] x
- % [—mg,1.] X Wy satisfies the properties listed in Lemma 2.2. Hence
by property 2.1} it is enough to prove that

lim wuly — o) flz)dz = 0.
U—0 G-W,

Since
G-W, =(R*~1l,) x Gy U II; x (G| — {sp + Wg)),
we have by the definition of the function ¢y, that
wuly — @) =au{ye —t) Bu (so— ) =0

if sg —s5 £H,and z = {¢.5) in G. Hence

f ouly - 2)f(z)dz = f ouly - ) f(z)dz
-, {Re—Ila)x(sg+H)
(8} + /1._[ CoslHoW) wyly — z) f(z)dz.

Let {I,} be the countable family of sets given by property 2.3). For
each I, we have by the Hélder inequality and (1}

j | puly — 2)F(z) | do < |F Xt ions |l Bo <
lrnx(30+H)

. 1/p
< [f ay({yo — z)? dx
In
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By property 2.4) supy |[S(Jn x (80 + H})| £ C, where C is a-constant,
and |8(I, x (so + H))] is the number of K,'s (as defined in [S]) such
that I, x (sg + H) M K, % ¢. This implies that for all n e N

1 Xzax(so+mllp < 15Un X (80 + H))| [If|lpoe € Clif]poo-

Thus, we conclude from 2.2) that

© | puly =) | 1(z) | do <
(Re-[1.)x G,

Y/
SC“f“coBUZ {/} O.'U(yn—a':)p d:t} =

N
= O(II%_,6; Byy).

Applying Holder's inequality we get

] ouly - D) f(@)ldz <
Max{sp+(H—Wg)}

’

P
< Bullfllpoc]S(Ta x (50 + (H — W)

/ ay(yo - 77 da
la

Note that Ila x (8g+{H —Wg)) is compact {H is compact and H — Wy
is closed), and because By — 0 asl/ — 0

Now,sincclla —y asl/ —= 0 and so+(H -Wg)<sp+H s
independent of I/, we have that |S(Ila x (sg+{(H - Wg)| 2 0as U — 0.
Therefore by property 2.2)

{10) f wuly — z)|f(z)ldz -0 as U —0.
Max(so+(H-—Wx))

The result follows from (8), (9}, and (10}.

Theorem 2.3. For all f in (L7, 1)), 2 < p < o0,

dim, / wuly — ) flz)de = fly)
=0 Jg
almost everywhere.

Proof: Let V;; be in N, compact. We have to show, by Lemma 2.2,
that

m [ uly ~ ) f(eds
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converges to f(z) almost everywhere. Since the function f belongs to
(LP, 1) C (L2,1°), the function g = fxy, belongs to L*(G), and by
Corollary 1.2, 1.1}, and 1.4) each @y also belongs to L?(G). Hence by
the Parseval identity, we have that

/ puly - ) f(z)de = /G ouly — 2)gle)dz

¥

- / pu()a(—2), Eldi

By the Lebesque Dominated Convergence theorem {see properties 1.3
and 1.6) we have that

im, oty =)@ = i [ oo
- /F §(—5)i3lds = g(y)
almost anywhere.

3. Fourier Transform of Unbounded Measures

The space M (G){1 € p < co) of unbounded measures of type
q [S], consists of Radon measures g with finite norm [|u||; given by

> i£[(K,)9Y9. If G = R, then the family {K,} can be taken as
{[n,n+ 1)ineZ}.

In this section we generalize to locally compact abelian groups, the
following theorem due to F. Holland [H].

Theorem 3.1. Let1 < ¢ <2 and pe My(R). Then as N —

1 i —ixt
V5 Ly
converges in the norm of (L€ 1) to a function [ and
[ rariterts = [@idute) ez, YR,

Further
Vori(z) = (C.1) f e~ du(t)
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almost everywhere,

(C.1) means that the integral on the right is summable by the Ceséro
method of order 1 to the value /2 f(x).

It is easy to see, that for any measure ptin M, {1 < ¢<2), thereisa
net o of bounded measures such that lim ||ge — ]|, = 0, and therefore
by [S. Theorem 4.2] lim||iq — {|igoc = 0. This generalizes the first
part of the theorem.

Theorem 3.2. Let pu be an element of M; (1 <4< 2)

i) fr FMEMdy = f, f()du(z) for all f in (L9, 12)(T).

i} (C.1) fé;mdﬂ(m) = limy o [ o (x)v(z)du(z) = i(y) almost
everywhere,

{C.1) means that the integral on the right is summable by the
Cesdro method of order 1 to the value j(v).

Proof: Let p, be the net of bounded measures related to u, as men-
tioned above.

Since (L9,1%) is a subspace of L' [8,(3,4}), we have by the Extended
Parseval Formula [S. Lemma 4.1] that for any f in {L9,11}(T),

(11) /P FDha(v)dy = jc T dba(z)
By the Hélder ineguality
fr FO 1Baly) — AV <

lfq"

i/q
s%}[/x ﬁlf(v)l‘I] VK i) = A0 dﬁ{] g

< ”f”ql”laa - ﬁ'”q’oa-
Similarly

jc F@) dltta — £} < 11 Fllooq et — il

Therefore the left side of (it} converges to f. f{v}du(v}, and the right
side to f,, f(z)du(x). This proves i).

By proposition 1.1 and [8,(3.1)], each ¢y belongs to (L9,{1)(T), so
from i}

/ ouly - i)y = [ ()P (@)du(z).
T G

Hence, part ii) follows from Theorem 2.3.
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