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Abstract

ON CERTAIN CLASSES OF MODULES

K. VARADARAJAN*

Dedicated to the me7nory of Pere Menal

Let X be any class of R-modules containing 0 and closed under
isornorpllic images . With any such X we associate three classes
FX, FX and ¿5X . 7 .'lie study of some of the closure properties
of three classes allows Lis to obtain characterization of Artinian
modules dualizing results of Chatters . The theory of Dual Goldie
dimension as developed by the author in some of his earlier work
plays a crucial role in the present paper.

Introduction

Throughout this paper all the rings R we consider will be associative
with an identity element 1R ,-E 0 . Unless otherwise mentioned all the
notions such as artinianness, noetherianness will be left sided when we
deal with a ring R . The modules we consider will all be unital left
modules . In ring theory there are scores of results dealing with the
structure of a ring R (resp . of a module M) assuming certain classes of
modules (associated to M) posses certain properties and viceversa . The
results in the present paper are of a similar nature and are an outcome
of results proved in [1], [2], [3], [4], [5] ; [6], [8] and [9] . In [1] among
other results A . W . Chatters proves the following :

(i) R is noetherian if and only if every cyclic R-module is a direct
sum of a projective module and of a noetherian module .

(ii) Civen an ordinal ce, if every cyclic R-module is a direct sum of a
projective R-module and an R-module of Krull dimension <_ a,
then the left R-module R has Krull dimension < a + 1 .

*While carrying out this researcli the author was visiting the Tata Institute of Fun-
damental Research on invitation from the National Board for Higher Mathematics of
India . Also part of this research was carried out at Stanford University where the
author spent a portion of his Sabbatical leave . Partial support from NSERC grant
A 8225 is gratefully acknowledged .
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In [4] P . F . Smith, Din Van Huynh and Nguyen V. Dung gen-
eralize these results of Chatters to module theoretic set up . Let
X be any class of R-modules closed under isornorphic images and
satisfying OEX . To any such X, P . F . Smith et all associate three
classes DX, HX and EX and study some of their closure proper-
ties under suitable assumptions on X. This not only led them to
simpler proofs of the aforementioned results of Chatters, but also
to their module theoretic generalizations . Let N, G, Ka denote
respectively the classes of noetherian modules, finitely generated
modules and modules of Krull dimension G a. The module theo-
retic generalizations obtained in [4] could be stated as follows .

(iii) G fl DN = N (generalizing (i)) .
(iv) GnD& C K,:,+r generalizing (ii)) . These are corollaries 3.3 and

2 .8 respectively in [4] .
Suggested by "duality" in the category R~mod of unital left

R-modules we associate to X three more classes FX, OX and
FX (see Section 1 for their definition) . The study of some of
the closure properties of these classes leads to many interesting
results "dualizing" the results of P . F . Smith, Din Van Huynh and
Nguyen V. Dung [4] . The object of the present paper is to carry
out the study of these closure properties and present proofs of the
dual results . For instante one of the results we prove using our
methods is the following:

(v) Let M be a semi-perfect module in the sense of [13] . Assume
that either M is finitely generated or that M is finitely embedded
and J(M) is small in M. Then M is artinian if and only if every
submodule of M is a direct sum of an injective module and an
artinian module .

Actually v) may be regarded as two forms of duals of (iii) . A
corollary of v) is the following characterization of left artinian
rings .

(vi) A ring R is left artinian if and only if it is semi-perfect and every
left ideal of R is a direct sum of an injective left ideal and an
artinian left ideal .

1 . The classes FX, AX and I'X

We will be working in the category R-mod of unitary left R-modules .
The classes X of R-modules we consider will always be assumed to satisfy
the following conditions a and b .

a . ME_X. M' - M =:> NI'cX .
b . OEX .



Proof.
(i) Straight forward .
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To any such X, P . F . Smith et all [4] associated three clases of modules
(though they worked in the category mod-.R, of right R-modules) . Before
recalling the definition of three classes, we first explain the notation that
we will be adopting . For any A/IcR,-rnod, we write N < 11NI to indicate
that N is a submodule of 111 ; Né1VI to indicate that N is an essential
submodule of 111 - and N « AI to denote that N is a. small submodule of
1VI . The three classes DX, TIX and EX were defined as follows in [4] .

DX = {AIcR-modIN < M =111=K®L with N<K and K/N~!} .
HX = {AIcR-modIN <M =~> II/NcX}

EX = {AIcR-modIN:Al =:> AI/NEX} .

Suggested by "duality" we introduce the following clases :

FX = {AIcR-modIN < M

	

M=K®L with K<N and N/KcX} .

FX = {AIcR-modiN < AI

	

NcX}

OX = {McR-modIN «M

	

NcX} .

As in [4] when the ring R is clear from the context, M, Z, P, I, C, G,
N, A, U; Ktt will denote respectively the classes of all R-modules, the
zero modules, projective modules, injective modules, semi-simple mod-
ules, finitely generated modules, noetherian modules, artinian modules,
modules of finite uniform dirnension and modules with Krull dirnension
<_ a . Recall [11] that 116R-mod is said to be of dual Goldie dirnension
<_ k if three exists no surjective map M _

W> Nl x . . . x N,., with each
Ni :~ 0 and r >_ (k + 1) . Here k is an integer >_ 0 . The class of modules
of dual Goldie dirnension <_ k will be denoted by Hk . We write S for
the class constituted by the simple modules together with the zero mod-
ule . We will rnostly be following the notation and terminology in [4] .
The class of modules of finite dual Goldie dirnension (or corank) will be
denoted by H.

Lemma 1 .1 . Let X, Y be classes of R-modules

(i) If X C_ Y then LX C_ Y where L stands for any one of the symbols
D, H, E, r, F or 0.

(ii) FX = F(FX) C X.
(iii) C C FX .
(iv) Fx C F(I (D X) C F(I® X) = F(X) = r(X) C A(x) .
(v) i n rx c F((D x) .
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(ii) From the-very definition of FX it is clear that FX C X . Hence
(i) above yields F(FX) C FX .

Let McFX and N <_ M . Let N' < N. Then N' < M; hence
N'6X yielding NcFX. This in turn implies that AJEF(FX) ;
hence FX C F(FX) .

(iii) Let McC and N < M . Then M = N®L for some L < M. Hence
the choice K = N fulfills the requirement for M to be in FX .

(iv) Since X C_ I ® X, from (i) we get FX C F(I ® X) .
Let McF(I ® X) and N <_ M.

	

Since McF(I ® X) we get
NeI ® X . Thus M = 0 ® M and N/0 - NeI ®X . This means
McF(I ® X) . Hence F(I ® X) C_ F(I ® X).
Because of (i), to prove the equality F(I ® X) = FX we have

only to show that F(I ®_X) C FX . Let Mcr(I ®X) and N < M.
Then M = K ® L with K <_ N and N/K6I ® X. From K < N
we get N = K® (L n N) ; hence L nN - N%KeI®X. This yields
L n N = A ® B with AeI, BcX . Since AeI and A _< L we could
write L = A®C with CeM. Thus M = K®L = K®A®C. Also
K®A<N. HenceN=K®A® (CnN) . AlsoA_<LnN==>
L n N = A ®(C n N n L) = A ®(C n N) since C < L. From
A®B=LnN=A®(CnN) wegetB-(LnN)/A-CnN
yielding C n NeX . Also M = K ® A ® C with K ® A <_ N
and N/(K ® A) - C n NeX . This proves that Mcl'X . Hence
F(I ® X) C FX.
To complete the proof of iv) we have only to show that rX C

AX . Let M6F_X and N « M. Then M = K ® L with K < N
and N/KEX. From K <_ N « M we get K K M. Since K
is a direct summand of M this implies that K = 0; hence NeX
showing that Mc0_X.

(v) Let MeI n FX and N _< M. From MEFX we get M = K ® L
with K <_ N and N/KEX. Then N = K ® (L n N) yielding
N/K - L n NEX. Also MeI ==> KeI; hence NEI ® X. This
means M6F(I ® X) yielding I n FX C F(I ® X) . s

Before stating further results let us recall from [41 the definition of
SX, QX and PX .

SX = {NIN < M, McX} .
QX = {M/NIN < M, M6X} .
PX = {MI there exists a finite chain 0 = No < Nl <

	

< Nk = M
with Ni/N2_leX for 1 < i < k}-

X is said to be S (resp Q or P) closed if SX C_ X (resp . QX C X or
PX C X) .
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Lemma 1.2 . Let X be a class of R-modules . Then
(i) FX, ~X, FX are all S-closed.
(ii) IfX is S-closed, then X C_ FX and XC C_ OX .

(iii) FX ® X = FX if X is {S, P}-closed .
(iv) F(I ® X) = (I ® X) n FX if X is {S, P}-closed.
(v) FX is Q-closed if X is Q-closed .

Proof..
(i) That F_X is S-closed is clear . Let MEIX and M' < M. Let

N'« M' . Then N' « M and hence N'EX . This means M'EOX.
Let MEFX and M' <_ Al . Let N <_ M' . From MEFX we get

M=K®LwithK_<NandN/KEX . From K_<N<M'we
get M'= K ® (M' n L) . Clearly N/KEX; hence M'cI'X .

(ii) Let MEX and N <_ M . Since X is S-closed we have NEX . Thus
M = 0 ® M with N/0 - NEX, yielding MEFX. Hence X C FX.
Let MEX _C .

	

Then there exists a K _< M with KE_X and
M/KEC. Let N « M. Then N <_ J(M), the Jacobson radi-
cal of M. If rl : M --> M/K denotes the canonical quotient map
we get n(N) < 97(J(M)) < J(M/K) = 0 Since MlKEC . Hence
N _< K . Since X is S-closed we get NeX . Thus McAX yielding
_XC C_ 21X .

(iii) Let MEFX ® X, say M = A® B with AEI'X, BEX. Let N <_ Al.
Since AEFX we get A = K®L with K < NnA and (NnA)/KeX .
Thus M = K (D L ® B and M/A - BeX . The exactness of
0 -, N/(N n A) -> M/A together with the S-closed nature of
X yields N/(N n A)cX. The exactness of 0 -> (N n A)/K
N/K -> N/(NnA) -> 0 and the P-closed nature of X imply that
N/KEX . Hence MEFX, yielding I'X ® X C FX . The reverse
inclusion FX C_ FX ® _X is obvious .

(iv) From lemma 1 .1(ii) and (iv) we see that F(1E)X) C (I® X)nrX .
We can write M = A ® B with AEI, BeX. From lemma 1 .2(i)
we see that AEFX. Let N _< M. Since AEFX we get A = K ® L
with K _< A n N and A n N/KEX. Hence M = K® L® B. From
K <_ N we get N = K ® (L ® B) n N . Also AEI => KeI. The
exactness of 0 -> N/(N n A) -> M/A and 0 -> (A n N)/K -~
N/K -> N/(A n N) -~ 0 and {S, P}-closedness of X immediately
yield N/KEX. But N/K - Nn(L®B) . Hence NEI®X, proving
that MEF(I ® X). Hence (I (D X) n FX C_ F(I ® X) .

(v) Let MEFX and N < M. Any submodule of M/N is of the form
L/N with N _< L _< M. From MEFX we infer LEX . Since X is
Q-closed we get LINEX. This implies that M/NEFX.

Remarks 1 .3 . Lemma 1.1(v) in [4] also asserts that EX is S-closed
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if _X is S-closed .

	

The dual result if it were true would, be , that AX is
Q-closed whenever X is Q closed . We now. give an easy esample to show
that the dual result is not true . Let Z denote the class consisting of the
zero modules in Z-mod. Clearly Z is Q-closed . Also AZ = {M6Z-mod
jJ(M) = 0} . Clearly Z6OZ, but Zp 2 1 OZ for any prime p . This shows
that áZ is not Q-closed .

Proposition 1 .4 . Let X be any {S, P}-closed family of modules .
Then FX = FX ® X ® (P n FX) .

Proof. We need only prove the inclusion FX ® X ® (P n FX) C FX .
From lemma 1 .2(iv) we have 1'X ® X = FX. Hence it suffices to prove
that FX® (P n FX) C_ FX. Let M = A®B with AcrX and BeP n FX .
Let N <_ M and PB M = A ® B --> B the projection onto B . From
BerX we get B. = Bl ® B2 with Bl < PB(N) and PB(N)/BlEX. From
BcP we get B1 EP and B2EP. Let n =PBINn(A®B1) : Nn(A®B1 ) -~
B, .

	

Since Bl < PB(N) we see that a : N n (A ® BO -> Bl is onto .
Since B16P, there exists a splitting s : Bl -> N n (A ® Bl) of a . Let
N' = s(Bl). Then N n (A ® Bl) = NI®'Ker a = N'- ® (N n A) . From
AcFX we' get A = A1 ® A2 with A,'<_ N nA and (N n A)/A l eX . Again,
NnA = Al ®(NnAnA2) = A1®(NnA2) yields NnA2 - (NnA)/AleX.
Consider, pB/A ® Bl : A ® Bl �+ B, . Clearly s is also a splitting for
pB/A ® B, . Since Ker pB/A ® Bl = A we see that A ® N' is -another
internal direct sum representation for A ® B, . Hence M = A ® B =
A®Bl®B2=A®N'®B2=A1® A2.®N'® B2. Since Al ®N'<N
wegétN=Al ®N'eNn(A2TB2) . .Lety=PBINn(A2®B2) :
N n (A2 ® B2) - B2. Since pB(Al ® N') < Bl and B = Bl ® B2 we
see that PB(N) n B2 = PB((A2 ® B2) n N) = Image y . But PB(N) _
Bl ® (PB(N) n B2) ; hence Image y = pB(N) n B2 - PB(N)/B, is in X.
Aslo Ker y = N n A2EX . Since X is P-closed we get N n (A2 ® B2)6X.
Also N%(A1 ® N') - N n (A2 (D'B2)cX . This shows that MEFX. Thus
FX ® X ® (P n FX) C FX . This completes the proóf of proposition
1.4 . E

Lemma 1 .5 . If X is Q-closed then OX is closed urider minimal epi-
morphic images.

Proof. Let McAX and M -~ M" a minimal epimorphism (Le . Ker
e « M) . Then N" « M"

	

c -1(N") « M. In particular N" «
M" =~> e -1 (N") « M => e-1 (N")cX

	

N"eX (since X is Q-closed) .
This proves that M"6AX .

Before proceeding further we need to recall some definitions and re-
sults from [7], [111,J12] ; [13] . Let N < M. Then K < M is called a
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(a) K+N=hand
(b) K'<K,K'+N=A,1=~> K'=K.
It is known that K is a supplement of N in M if and only if K+N = M

and Kf1N « K (Lernma 6.2 in [13]) . In [13] we called a module M semi-
perfect if for every N < AJ there exists a supplement in M (Definition
6.6 in [13]) . In [11] we referred to this as property (Pl ) for M. The
module M is said to have property (P2) if for any L _< Al1, N <_ M
satisfying L +N = M there exists a supplement K of N in AJ satisfying
K _< L . If M has property (Pi) then any quotient module of M has
property (Pi ) for i = l, 2 (Proposition 6.20 in [13] and Proposition 2 .29
in [11]) . Clearly P2 => PI .

Lemma 1.6 . Let X be Q-closed and AJEAX . Assume further that AJ
has property (Pi) . Then every epimorphic image of M is in OX .

Proof.. Let q : M -> AJ" be any epirnorphism and N = Ker 91 . Let
K be a supplement of N in M. Then K + N = AJ and K f1 N « K.
In particular 71/K : K -> M" is a minimal epirnorphism . From lemma
1 .2(i) we get KE,~,X . Now lemma 1 .5 yields M"eáX.

Example 1 .7 .
(a) Let T denote the class of torsion abelian groups . In Z-mod,

T is {S, P, Q}-closed . In [4] the class DT is completely determined
(Proposition 1 .6 of [4]) . It is easy te see that ET = A%1 and that
HT = T = FT. For any AJcZ-mod let J(A4) denote its Jacobson
radical . Since J(A11) is the sum of all srnall submodules of All we see
inmmediately that AT = {MEZ -mod jJ(A11)cT} .
From lemma 1 .2(i) we know that FT is S-closed . Since the only direct

surnmands of Z are 0 and Z it follows that Z 1 FT. Combining this
with the S-closed nature of FT we see that FT C_ T . Also lemrna 1 .2(ii)
implies T C FT. Hence FT = T.

(b) Let T' denote the class of torsion free abelian groups . Then T' is
S-closed . It is trivial to see that FT' = T' .
Suppose AftFT' . Since the only torsionfree factor group of a torsion

abelian group is 0 we see that any N < t(AJ) is a direct summand of
1Vl (here t(M) denotes tire torsion subgroup of M) . It follows that any
N <_ t(M) is a direct summand of t(M) and that t(M) itself is a direct
summand of M. Thus t(M)cC and AJ = t(M) ® L with LcT' . This
yields FT' C_ C ® T' . Also AcC <~--> A = t(A) and tp (A) is a vector space
over Zp for every prime p . Let M = A ® B with AcC and BET' . Let
N < AL Then t(N) < t(1V1) = A. Since AEC we get A = t(N) ® L and
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both t(N) and L will be in C . From M = A ® B = t(N) ® L ® B and
N/t(N)cT_' we see that McI'T' . Hence C ®T' C_ I'T' . Using the reverse
inclusion already proved we get

FT' = C T T' .

From lemma 1.1(iv) we have FT' C OT' . We will actually give a com-
plete characterization of the class áT' frorn which it will follow irnrnedi-
ately that the inclusion FT' C_ áT' is a strict inclusion .

Let M6AT' . Suppose for some prime p, the p-primary torsion tp (M)
of M is non-zero . Then there exists a copy of Zp in t p (M). Suppose
N <_ M satisfies Zp + N = M. Either N f1 Zp = Zp or N n Zp = 0, in
the former case N = M and in the latter case M = N ® Zp . If for all
N <_ M satisfying Zp + N = M we have N = M, then Zp « M and
this contradices the assumption that McAT' . Hence M = Zp ® N for
some N <_ M. Thus we have shown that if tp(M) :7É 0, any copy of Zp in
tp (M) is a direct summand of M. In particular this implies that there
are no elements of order p2 in tp (M), hence tp (M) is a vector space over
Zp . Hence t(M) = ®p tp(M) is in C.
We claim that

(4)

	

n T' = {MeZ-mod / any Zp < M
for any prime p is a direct summand of M} .

Because of the observations in the earlier paragraph, to prove (4) we
have only to show that if MeZ-mod has the property mentioned in the
right hand side of (4) and if N « M then NcT'. If on the contrary there
is an N « M with N 0 T', then tp (N) ,-É 0 for some prime p. Then
there is a copy of Zp in tp (N) . Since N « M it will follow that this copy
of Zp is small in M. However, any Zp < M being a direct summand of
M cannot be small in M.
From (4) we see that

(direct product over all primos) is in AT' . However, t(M) = ®p Zp and
it is well-known that t(M) does not split off frorn M. Hence 111 « FT' .
This proves that the inclusion FT' C áT' is strict .

2 . Study of AX when X = A n H,

For results on dual Goldie dimension or corank the reader may refer
to [7], [111 . As already remarked in [11], if the dual Goldie dimension
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of M is infinito we cannot assert that there exists a surjéctive map cp
M -> 11' 1 Ni with each Ni :,A 0 . (See Proposition 1 .6 in [11]) . All we
can assert in this case is that, given any integer d >_ 1 we can find a
certain surjection 9 : M --> Il,q- 1 Lj with each Lj 7~ 0 (the modules L.-
in general will depend on d ) . This different behaviour of dual Goldie
dimension as compared to Goldie dimension necessitates many changos
in the formulation and in the proofs of r esults dual to those obtained
in Section 2 of [4] where the theory of Goldie dimension plays a crucial
role . We first observe that the class Hk is Q-closed .

Lemma 2.1 . Let X be Q-closed with X C_ Hk . Let AllcOX and
N _< M satisfy N + J(A11) = AJ . Assione that Al has property (P1) .
Then M/NcHk .

Proof., Let rl : Al -> M/N denote the quotient map. From N +
J(M) = M we get rl(J(M)) = M/N. Hence J(M/N) = M/N. Suppose
if possible that M/N has dual Goldie dimension > k . Then there exists
a surjection cp : M/N ---> A1 x . . . x Ae with 2 > k and each Aj :y~ 0 .
From J(M/N) = M/N we get J(A;) = Aj for 1 <_ j <_ Q . Since
J(Aj) = Aj ,-á 0 and J(A;) is the sum of all small submodules of Aj we
see that there exists a Bj « Aj with B. :~ 0 . Then B1 x . . . x Bg «
A1 x . . . x Ae . From lemma 1.6 we get A1 x . . . x AecOX . This implies
B1 x . . . x BQcX. This contradicts the assumption that X C_ Hk , since
corank B1 x . . . x BQ > 2 > k .

Corollary 2 .2 . Suppose X is Q-closed and _X C_ Hk . Let McáX .
Suppose M Izas property (P1) and, sati.sfies,I(M) = M . Then McHk .

Proof:: Choose N = 0 in lemma 2 .1 .

Proposition 2 .3 . Let X be Q-closed with X C_ Hk . Let Mci1X and
assume that M has property (P1) . Then there exists an N6X such that
114'/N = B e H with B¿C and HEHk n OX .

Proof.: Let L be a supplement of ..I(A4) in AJ . Then L + J(M) = M
and L n J(M) « L. Also L/(L n J(M)) - AJ/J(AJ)e0X by lemlna 1 .6 .
Since OX is S-closed (lemma 1 .2(i)) we get LcOX . From LnJ(M) « L
we get L n J(M)cX . Since M/J(M) has property (P1) (Proposition 6.1
in [13]) and J(M/J(M)) = 0 from proposition 3 .3 in [11] we see that
M/J(M)cC. Hence L/(LnJ(M))EC. From lemma 2.1 we get MILc_Hk .
lf we set N = LnJ(M) we get NeX and 0 -> L/N -> M/N -> MIL -> 0
exact .
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Since L + J(M) = M any xEM can be written as ex + u x with e,,EL
and u x EJ(M) . If x = ex + ux = ex + uy are two such expressions, we
have ex - e~ = ux - u x is in L n j(m) = N. Thus the element ex in
L/N representad by ea; depends only on x . Moreover, if xcN, x = 0 + x
is such an expression, hence ex = 0 . It follows that one gets a well-
defined map n : M/N --> L/N given by a(x + N) = ex + N. It is
easily checked that a yields a splitting of the inclusion L/N --> M/N.
Hence M/N - L/N ® MIL . Moreover L/NeC and M/LcHk n AX.
That M/LEOX is a consequence of lemma 1.6 . Set B = L/N and
H=M/L.

Proposition 2.4 . Let X be a {P, Q, S}-closed class of R-modules.
Let McR-mod and N <_ M satisfy NcX and M/N = B®(H1+---+Hk)
with BEC and Hl + - - + Hk an irredundant sum of hollow modules (this
sum need not be direct) . Suppose HicAX for 1 < i < k . Then McAX .

Proof. Let K « M. We have to show that Kcx. Let rl : M -> M/N
denote the quotient map. Writing H for Hl + - - - + Hk we have M/N =
B ® H. Since K « M we get K < J(M), hence r7(K) < r1(J(M)) <
J(M/N) = J(H) since BcC.
We claim that 77(K) n Hi 7~ Hi for each i in 1 _< i <_ k . In fact from

H1+ +Hi+ +Hk HwegetL=rl-1 (B®(H1+ +Hi+ +
Hk)) :,A M. Here Hl + + Há + - - - + Hk denotes the sum of the Has
with j 74 i . If r7(K) n Hi = Hi we would have K + L = M contradicting
the fact that K « M. Thus r7(K) n Há :,A Hi . Since Hi is hollow we get
77(K) n Hi « Hi . Since HicAX, this yields r7(K) n HiEX .

For each i in 1 <_ i <_ k let Ai. = r7(K) n (H1 + - - - + Hi) . By inductivn
on i we will show that AjEX for 1 _< i <_ k . We have sean already that
A1 = r7(K) n H1 is in X. Let i _< k - 1 and assume that AicX . From
A¡+, /A¡ - 77(x)nHi+ , . since X is Q-closed we get Ai+l/AicX . Since XAinHi+l
is P-closed and Ai is already in _X we get Ai+1cX, thus completing the
inductiva step . Hence Ak = r1(K)cX . Also NEX implies N n KcX since
X is S-closed . The exactness of 0 -> N n K -> K --> r7(K) --> 0 together
with the P-closedness of X yields KEX.

Remarks 2.5 .
(i) It is clear that any non-artinian module M will contain a proper

non-artinian submodule . Hence if M is a module with the prop-
erty that NEA for all N ~M then M itself is in A . In particular
a hollow module H will satisfy HcOA if and only if HeA.

(ii) The classes A and N are {P, Q, S}-closed . Hence proposition 2.4
is valid when X = A or N.
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(iii) Any AlleA or any MeC or any hollow module M has property (P2) .
Modules with finito spanning dimension in the sense of P . Fleury
(Section 4 of [11]) have property (P2) . All artinian modules have
finito spanning dimension and hence finite corank .

The following results proved in [7], [ll] will be needed later in our
present paper

(iv) If McHk has property (P2) then AJ can be written as an irredun-
dant sum Hl + - - - + H, . of hollow modules with r <_ k . This is
Theorem 2.39(1) in [11] .

(v) If M = Hl + - - - + H, . with Hi hollow, then corank M < ,r . This
is Proposition 1 .7 in [7] . For this part we need not assume that
M has property (P2) .

Let us denote the class of modules with property (P¡) by Mi (i = 1, 2) .
We can state one of our main results as follows .

Theorem 2 .6 .

	

We have following inclusions .
(a) (C ® A)A C DA.
(b) M2 n ~(A n Hk) C (CEDA n Hk)A n Hk .

Proof.. (a) Let Me(C ® A)A. Then there exists an N _< M with NCA
and M/N = B ® L with BcC and L6A . Since L has (P2 ) and of finito
dual Coldie dimension we can write L = II, + - - - + H, . an irredundant
sum of hollow modules (see iv) in remark 2 .5) . From LcA we see that
Hi,EA . Since A is S-closed, we have A C_ AA. From proposition 2 .4 we
see that McAA .

(b) The class A n Hk is Q-closed . Let M,12 n 0(A n _Hk ) . From
proposition 2 .3, there exists an N6A n Hk such that M/N = B ® II
with BEC and HcHk n 0(A n Hk) . Since All has (P2 ) it follows from
proposition 2 .29 in [11] that H has (P2) . Hence H = Hi + - - - + H,. an
irredundant sum of hollow modules with r _< k . Rom lemrna 1 . .2(i) each
IIj is in á(AnHk ) . In particular IhcA(_A) . From remark 2 .5(i) we see
that Hj cA . Thus H6A n Hk by remark 2 .5) . This proves (b) .

Stated in words Theorem 2.6(b) takes the following forro .

Theorem 2 .7 . Let Al be a module with property (P2) . Suppose every
small submodule of M is artinian and of dual Coldie dimension < k .
Then there exists an artinian submodule N of M with corank N <_ k
such that M/N = B ® L with B semi-simple and L artinian of corank
< k .

Corollary 2.8 . Suppose Al is a module with property (P2 ) and of
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finite corank . Suppose every small submodule of M is artinian and of
dual Coldie dimension < k for some fixed integer k . Then M is artinian .

Proo£ From the above theorerri, there exists an artinian submodule
N of M such that M/N = B® L with BEC and LcA. No-,v, corank B <_
corank M/N < corank M < oo . A semi-simple module has finite corank
if and only if it is semi-simple artinian . It follows that BcA and hence
MEA.

We have a variant of corollary 2.8 which is actually easier to prove .

Proposition 2.9 . Let M be a finitely generated module with property
(P1) . Then Mc nA if and only if M is artinian .

Proof.: Since M/J(M) has property (P1) and J(M/J(M)) = 0 it fol-
lows that M/J(11)cC . Since M is finitely generated it follows that
M/J(M) is semi-simple artinian . Since M is finitely generated we also
have J(M) « M. Thus HEAA =* J(M)cA . From 117/J(M)EA we get
MEA. Conversely, we have already observed that A C AA .

Proposition 2.10 . Suppose X is a {P, Q}-closed class satisfyinq S C
X C H. Suppose M is a finitely embedded module with property (P1)
satisfying McFX and J(M)eX . Then McX .

Proof. We will abbreviate finitely generated as f.g and finitely em-
bedded as f .e . We have M/J(M)6C because M/J(M) has (P1) and
J(M/J(M)) = 0 . If we show that M/J(M) is f .g it will follow from
S C_ X and the P-closed nature of X that M/J(111)cX . Again J(M)eX
and M/J(M)EX will yield MeX.
Suppose on the contrary M/J(M) is not f.g . Then M/J(M) = Vi ®V2

with Vi, V2 semi-simple and each not f.g . Since a non f.g semi-simple
module does not have finito corank we see that Vi « X for i = 1, 2 .
Let 91 : .M -> M/J(M) denote the quotient map and L1 = rl-1(V1) .

Since V1 1 X and X is Q-closed it follows that L1 ~ X . From 1V1cFX
we get M = N1 ® Wi with Nr <_ L1 and L1 /NI eX.

	

From L1 1 X
we get Ni

	

0. From J(M) = J(N1 ) ® J(4V1 ) we get j(m) n N1 =

J(NI ) and J(M) n GV1 = J(W1 ) . This yields MIJ(M) = (Ni /J(N,))
(Wi/J(W1)) . Also N1 /J(N1 ) = Nl/J(M) nNi <_ L1/J(M) = Vi . Since
M/J(M) = Vi ®V2 and V2 is not f.g and Nr/J(N1) < V1 it follows that
W1/J(W1) is not f.g . Since Wr is a direct surnmand of M we see that
W1 is f.e . Since Wi is a quotient of M we see that 6V1 has property
(P1) . From lemma 1.2(i), since VV1 <_ M we get WicFX . Since X is
Q-closed, from J(M)eX we get J(W1 )cX . Thus W1 satisfies all the
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conditions imposed on M and further TVl / J(W1 ) is not f.g . Hence the
same arguments as above will yield a decomposition Wl = N2 ®W2 with
N2 0 0, W2 f.e with property (P1 ), W2 EFX, J(W2)EX and W2/J(W2)
semi-simple but not f.g . Iteration of this argument yields for any integer
k >_ 1 a direct sum decomposition M = Ni ® . . . ® Nk ® Wk with each
Nj 5E 0 . This means that the Goldie dimension ofM >_ k for every integer
k > l . However, any Le module trivially has finite Goldie dimension .
This contradiction shown that M/J(M) has to be f.g thus completing
the proof of proposition 2.10 .

3 . Dual of Chatters' result

As stated in the introduction Chatters has proved that if every cyclic
R-module is a direct sum of a projective module and a noetherian mod-
ule, then R is noetherian . The module theoretic generalization obtained
in [4] asserted that G nDN = N. In this section we will prove two forros
of duals for the above mentioned result .

Theorem 3.1 . Let McR-mod satisfy the condition that every sub-
module of M is the direct sum of an injective module and an artinian
module . Suppose further that M satisfies one of the following conditions :

(i) M has (Pl ) and is f. .g or
(ii) M has (P1 ), is f. e and J(117) « M .

Then MeA .

Proof. Part of our hypothesis could be rephrased as MEF(I®A) . Since
A is {S, P}-closed, from lernma 1 .2(iv) we infer that Me(I ® A) nFA.
Lemma 1 .1(iv) yields FA C AA . It follows that MERA.

In case (i) is valid, proposition 2.9 immediately yields MeA. In case
(ii) is valid, the assumption that J(M) « M implies that J(M)EA.
Then proposition 2 .10 yields MEA.

Conversely, if MEA every N < M satisfies NEA. Thus N = 0 ® N
is an expression for N as the direct sum of an injective module and an
artinian module .

Corollary 3 .2 . Let R be a semi-perfect ring . Then every left ideal of
R is a direct sum of an injective left ideal and an artinian left ideal if
and only if R is left artinian .

Proof: This is an immediate consequence of theorem 3 .1(i) .
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Remarks 3.3 .
(a) We have already observed' that if MER-mod satisfies the condition

that NEA for all N C Nl, then MEA. The module Zp_ in Z-mod has
the property that every N C Zp- satisfies NcN but Zp- itself is not in
_N .

(b) Dually if MeR-mod satisfies the condition that M/NeN for all
0 7~ N C_ M then MEN . Z in Z-inod satisfies the condition that for
any 0 :,L N C Z, the factor module Z/N is artinian but Z itself is not
artinian .

(c) Recall that a module M is said to be Hopfian (resp . co-Hopfian) if
every surjectioe (resp . injective) map f : M -> M is an isomorphism . It
is well-known that any MEN is Hopfian (resp . any MEA is co-Hopfian) .
Presently we will see that Hopfian (resp . co-Hopfian)modules satisfy
the property stated in (b) (resp . a)) .

Proposition 3.4 . Suppose MeR-mod satisfies the condition that
M/N is Hopfian for every 0 :~ N C M . Then M itself is Hopfian .

Proof.- Suppose on the contrary M is not Hopfian . Then there exists
a surjection f : M -> M which is not an isomorphism . Let N = ker
f . Then 0'54 N and f induces an isomorphism f : M/N -> M. If

rl : M ---> M/N denotes the canonical quotient map; then M/N "4l
r M/N

is a surjection which is not an isomorphism, contradicting the Hopfian
nature of MIN .

Proposition 3 .5 . Suppose MER-mod satisfies the condition that N
is co-Hopfian for any N C M . Then M itself is co-Hopfian .

Proof..- Suppose on the contrary M is not co-Hopfian . Then there
exists an injective map g : M -> M which is not an isomorphism . Let
N = Image g . Then N C M and g induces an isomorphism g : M ~ N.
Then g/N : N ~ N is an injective map which is not an isomorphism
contradicting the co-Hopfian nature of N. " .

It is easy to see that if M/N is f.g for every 0 :,,~ N C M then M itself
is f.g . We have the following dual result .

Proposition 3 .6 . Let MER-rnod satisfy the condition that for any
N C M, N i .s f. e .

	

Then M itself is f. e .

Proof.- We may assume M :?~ 0 . We first show that Soc All is f.g . It this
is not the case we will have Soc M = ®,jS, with each Sa simple and
J infinito. Let J' = J - {ao} where ao is a chosen element in J . Then
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N = ®,,,j, S,2 C Soc 111 C 117 . Hence by assumption N is f.e . This means
Soc N has te be a direct sum of finitely many simple modules . But Soc
N = ®,YEj , Sn with J' infinito, a contradiction . This contradiction shows
that Soc M = ®,EM S, with each Sa simple and J finite .
Next we claim that Soc Al :7~ 0 . Pither 1V1 is simple in which case

0 :,¿ AI = Soc M or these exists an eleinent x q¿ 0 in All with N = Rx C
M . Then 0 0 N and N is Le by assumption . Hence l5(N) = E(Soc N)
yiclding Soc N 7~ 0 . From Soc N <_ Soc Al we see that Soc AI :7~ 0 . Now
we will show that E(M) = E(Soc M) . This will prove that UVI is f .e . If
E(M) :~ E(Soc M) we can write E(A7) = E® E(Soc M) with 0 :7~ E61 .
Let 0 7~ xEE . Then N = RxnA41 9~ 0 since McE(M). Also xcE => Rxn
Soc M = 0 . If N = AI, we would have Rx = M, hence R.xn Soc M =
Soc M 7É 0 . This shows that N 0 Al . Hence N is f.e . Since N 0 0,
we see that Soc N :,A 0 . Then Soc N _< Soc M will yield NnSocM >_
Soc N 7~ 0 . This contradicts Rxn Soc M = 0 . This contradiction shows
that E(M) = E(Soc M) . a
A ring R is said to be directly finite if xER, ycR, xy = 1 => yx = 1 . It

is well-known and easy to see that R is Hopfian in R,-mod if and only
if R is directly finite [14] . .It is shown in our earlier paper that R is
co-Hopfian in R-mod if and only if every left regular element a of R is
a two sided unit (Proposition 1.4 in [14]) . VVe are led to the following
questions from the results in our present paper .

(1) If every cyclic R-module is a direct sum of a projective module
and a Hopfian module is it true that R is directly finite? More generally
what can we say about a module All which satisfies the condition that
every guotient of M is a direct sum of a projective module and a Hopfian
module'?

(2) If every left ideal of R is a direct sum of an injective left; ideal
and a co-Hopfian left ideal is R, co-Hopfian in R-mod? More generally if
ANIER-mod satisfies tire condition that every subrnodule of AI is a direct
sum of an injective module and a co-Hopfian module what can we say
about the structure of M? Also the study of the following classes may
prove to be fruitful .

LX = {Al-cR,-modiNéM =* N6X}
VX = {M6R-modIN « Al1 =:> M/NeX} .

Concerning these classes the following are easy to prove . L_X C_ X and
VX C_ _X . In fact L_X C_ _X is irnmediate from the fact that A4,eAl and
VX C X is irnmediate from the fact that 0 « Al . lf T denotes the class
of torsion abelian grotrps we get LT = VT = T. If T' denotes the class
of torsion free abelian groups then LT' = T' .
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We will now characterize the class V(T') . We will show that

V(!:') = {McTIJ(M) = 0} .

Let McV(T') . We will show that 0 is the only small submodule of M.
Then it follows that J(M) = 0. Suppose on the contrary 0 :,A N «M.
Since V(T') C_ T' we have MeT' . Hence NcT' . This means there is a
copy of Z in N. Consider the subgroup 2Z of Z . From 2Z <_ Z <_ N « 111
we get 2Z « M. Now, M/2Z has non-zero 2 torsion, contradicting the
fact that McV(T') . Conversely any MeT' with J(M) = 0 is clearly in
V(T') because then 0 is the only small submodule of M and M/0 -
MeT' . This proves (5) . From (5) we see that the inclusion V(!:') C T'
is a strict inclusion ; because Q6T' but Q « V(T') since J(Q) = Q. We
included information en the classes LT, VT,LT' and VT' to complete
the examples discussed in 1.7 .
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