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Abstract

ON ALGEBRAIC CLOSURES

R. RAPHAEL

This is a description of some different approaches which have been
taken to the problern of generalizing the algebraic closure of a
field . Work surveyed is by Enochs and Hochster (commutative
algebra), Raphael (categories and rings of quotients), Borho (the
polynomial approach), and Carson (logic) .

Later work and applications are given .

"He was a rrian, take him for all in all, 1 shall
not look upon his like again" . . .Hamlet .

Introduction

The study of field theory, of algebraic extensions, and algebraic clo-
sures for fields is fundamental in algebra . These notions have many
applications in inatheinatics, and nave their own intrinsic interest .

It is natural to consider the question of their generalization to other
algebraic systems . In the late sixties and early seventies work was under-
taken that led to such generahrations in comrnutative algebra . It is the
purpose of this article to present Che different approaches that were fol-
lowed, to comment upon their rnethods, and to indicate the work which
has been done more recently . The question of algebraicity was the topic
of my last inathematical discussion with Pere Menal .
Throughout this article all rings will be assumed to have an identity,

and subrings are assurned to have the same identity element as their
overrings . Rings will usually be comrnutative . A commutative ring is
called semiprirne (or reduced) if it has no nilpotents other than 0 .
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I . The various approaches

(a) Totally integrally closed rings . The work of Enochs .
An extension S of a commutative ring is called integral if every element

of S satisfies a monic equation with coefficients from R. Much is known
about integral extensions, particularly about the relative behaviour of
prime ideals under integral extension [22] .

Relative to integral extensions Enochs rnade the following formal def-
inition :

Definition 1 [12] (Enochs) . A ring R, is called totally integrally
closed if for any ring hornomorphism a : S -> R and any integral exten-
sion T of S, there is a homomorphism T -~ R extending a .

Diagrammatically one has

This is recognized as the diagram for injectivity, so totally integrally
closed rings are injectives in an appropriate setting, -they are the injec-
tives in the category of commutative rings with the restriction that the
horizontal monomorphism in the diagram for injectivity be integral . (In
the category of commutative rings as a whole the only injective object
is the zero ring [19]) . Enochs studied these rings and showed that the
totally integrally closed fields were exactly the algebraically closed ones .
His main results were :

Theorem 2 [12] . A commutative ring is a subring of a totally inte-
grally closed ring if and only if it is reduced (semiprime) .

Theorem 3 [l2] . If A i.s a commutative semiprime ring there is a
totally integrally closed integral extension, A' of A which is also a tight
extension of A . If A" is any other such extension of A; then any A-
homomorphism A' - - -> A" is an isomorphism .

Enochs used the techniques of commutative algebra, including local-
ization and the properties of integral extensions . The results are derived
directly from the definition of totally integrally closed rings, which are
investigated as objects of interest in their own right . Theorem 3 is de-
scribed as an analogue to the injective hall of a module -and its signifi-
cance as a theorem on algebraic closure is clear . He notes that a monic
polynomial f has a splitting ring -a tight integral extension generated
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by roots of f -with universal properties . Other interesting remarks are
offered, and a question about the preservation of the property "totally
integrally closed" under localization is posed .

(b) The work of Hochster. Totally integrally closed rings,
and applications to rings of continuous functions.

Hochster wrote two articles on this topic shortly after Enochs' work
was corrrpleted . "'.iota,lly integrally closed rings and extrernal spaces"
[15] has broad results and is the more algebraic in flavour . It gives
severa] characterizations of totally integrally closed rings (Proposition
1), shows that their spectra must be extrema] spaces, and discurses the
factoring of monics ¡rito linear factors . l t proves the interesting result
that distinct minimal primes in a totally integrally closed ring must be
comaxirnal, and that the relative topology on the nrinimal priores must
be that of an extremally disconnected Boolean space . Hochster discurses
von Neurnann regularity, and answers (in the negative) Enochs' question
about localizations of totally integrally closed rings . The rrrethods are
those of comrrrutative algebra with much analysis of the spectrum .
The second article focuses on one particular kind of cornmutative

senriprime ring -those of the form C(X), the ring of all continuous real-
.1functions defined on a, (completely regular) topological space X.

[C*(X) is the subring of functions in C(X) which are bounded] . These
rings are the subject of an entire text [13] . Much is known about their
algebraic properties, in particular about the structure of their prime and
maxirnal ideals .

Hochster considcred and solved the duestion -"wlren is a ring of con-
tinuous functions totally integrally closed?" . To understarxl his result we
first peed the following notion:-a topological space X is called extremally
disconnected if the closure of each open set is open . Discrete spaces are
extremally disconnected, but so are rnany otlrers . The characterization
is as follows :

Theorem 4 (Hochster) . [14] The following are equivalent for a
completely regalar topological space X

(a) X is extr,eznally disconnected,
(b) C(X)[i] is totally integrally closed,
(c) C* (X) [i] is totally integrally closed .

Hoclrster's methods in this article use both topology and algebra, and
are different from those in Enochs' article . His work extended that
of Enochs, gave interesting characterizations of totally integrally closed
rings ; solved the localization problem, and characterized a specific topo-
logical case .
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(c) Algebraic closures . The work of Raphael : Categories and
rings of quotients .

Raphael, unaware of the work by Enochs, was attempting to general-
ize the construction of the algebraic closure for fields . As a student of
Lambek, his methods were more categorical . In any category a monomor-
phism a : A - - --> B is called essential if any morphism,6 : B - - -> C
must be a monomorphism whenever the composition aq : A - - -> C
is a monomorphism . The best-known instante occurs in the category of
right modules over a fixed ring . Enochs used this notion in commutative
rings and called such extensions "tight" . Lambek pointed out that in
the category of commutative rings an essential extension of a field F is
precisely a field extension, and suggested using the following which is
easily checked :

Lemma 5. Let F be a fceld and let K be an extension of F .

	

Then
the following are equivalent :

(i) K is algebraic over F,
(ii) every ring between K and F is a field,
(iii) every ring between K and .F is an essential extension of F in the

category of commutative rings .

Lambek also underlined the importante of regular rings as the correct
generalization of fields to be considered . Raphael made the following
definition, -(he later added the adjective "weak") .

Definition 6. Let R be a commutative semiprime ring ; and let S be
an extension of R. S is a weak-algebraic extension of R, if every between
ring of R and S is an essential extension of R, -Le . every non-zero ideal
in every between ring has non-zero contraction to R .
The following is irnmediate :

Lemma 7. Let S be an extension of a commutative semiprime ring
R . Then the following are equivalent :

(i) S is weak-algebraic over R,
(ii) every non-zero elernent of S satisfies a polynomial equation oven

R whose constant term i .s non-zero .

This definition had the virtue of being "categoricaP but suffered from
two drawbacks . The minor one was that one could not prove transitivity
for such extensions . The more important one was that it made the
embedding of an integral domain into its field of quotients algebraic,
and this seemed too general and unnatural . Ultimately, the following
definition was made.
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Definition 8 . S is an algebraic extension of R if S is essential over
R, and if S is integral over R. One leas at once :

Lemma 9. Let S be an extension of R. Thefollowing are equivalent :

(i) S is algebraic over R,
(ü) every non-zero element of S satisf es a monirc polynomial over R

whose constant terco is non-zero .

This notion had the advantage of access te the existing results en
integral extensions, particularly the theorerns concerning the behaviour
of prime ideals . Transitivity was immediate. The final result read :

Theorem 10. Let R be a semipriime ring. Then R has an algebraic
extension ?cvhich is algebraically closed (called an algeb-raic closure of R).
An algebraic closure contains a, copy over R of any algebraic extension
of R. . Any two algebraic closures of R are isomorphic over R. .

With this result it was possible to return te weak algebraic extensions
and get the aualagous result fe¡ - them by using the theory of rings of
quotients . The weak-algebraic closure is the complete ring of quotients
of the algebraic closure . Only then (using abstract nonsense) did tire
transitivity of weak-algebraic extensions follow . No direct proof for the
transitivity )las yet been given .

In summary, Rapllael's work was rooted in the ideas of categories,
rings of quotients, and the study of regular rings . Baer rings also arose-
a cornmutative ring is Baer if the annihilator of every subset is a principal
ideal generated by an idernpotent . A regular ring is algebraically closed
precisely when it is Baer and all of its factor fields are algebraically
closed . The algebraic closure of a semiprime ring R ., can be obtained
by passing te its complete ring of quotients Q(R), known to be regular,
taking the algebraic closure of Q(R), Q(Q(R)) and finally taking the
integral closure of R in Q(Q(R)) . In the general semiprime case ; an
algebraically closed ring must also be Baer- (this was Hoclister's demand
that the spectrum be extrernal) because one could easily get an algebraic
extension by taking the integral closure in the complete ring of quotients
which is Baer .

(d) The work of Borho. The polynomial approach .
Borho's work was subsequent to that of Enochs, Hochster, and

Raphael . His study was ' 1 a contribution to the question : Is there any
reasonable analogue for the algebraic closure of a field, . . . for an arbi-
trary cornmutative ring?" Together with NVeber [4] he gave a proof of
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Enoclis' Theorem 2 above . His thesis approaches the problem of alge-
braic closure by studying essential extensions, extensions which adjoin
roots of polynomials, and extensions by idempotents . If f is a monic
polynomial over R, then an f-extension is a ring generated by R and
roots of f . If F is a set of monics over R; then an F-extension is one
generated by R and roots of elements of F . An F-splitting extension is
an F-extension in which every element of F can be written as a product
of linear factors . An essential F-splitting extension always exists for a
given R and F. R is called F-saturated if it has no proper essential
F-extensions . Borho determined [3, 4 .2] when an F-saturated extension
exists . It must exist for any F if R is semiprime . A monic polynomial
f is called "saturable" if the number of zeros it can have in an essential
extension of R is bounded . All monics are saturable in the semiprime
case, but in general they can fail to be . A "saturable closure" exists
for all cornmutative rings . It coincides with Enochs' total integral clo-
sure in the semiprime case . There are non-semiprime cases ; for example,
Noetherian irreducible rings, where uniqueness holds, but in general it
fails . The saturable closure can be viewed as the result of two steps
-the first by adjoining idempotents, and the second by taking a splitting
extension . In the semiprime Baer case the first step is unnecessary.

Borho's work gave an independent approach to the subject which
reestablished the semiprime results, and analyzed the pathology of the
general cornmutative case .

(e) Carson-a logical approach .
Carson studied algebraically closed commutative regular rings from a

logical and sheaf-theoretic point of view . Such a study is suggested by
the fact that commutative regular rings form an equational category -to
the usual axioms for commutative rings one adds the demand that the
unique quasi-inverse exist for each element . Carson's terminology is dif-
ferent, however, and consequently, his results are as well . A commutative
regular ring is algebraically closed if it has a root for each of its monic
polynomials . A sheaf of fields is algebraically closed if all the sta,lks are
algebraically closed fields . A sheaf K of fields over a Boolean space X
is an algebraic closure of a sheaf k of fields over X, if k is a subsheaf
of K ; and if for each x E X; K,; is the algebraic closure of ky . The
algebraic closure of a sheaf need neither exist nor be unique . [7, p . 1038]
However when the ring is Baer [7, Corollary 1.6] an algebraic closure will
be unique up to isornorphism, and under certain general conditions two
algebraically closed rings will be elementarily equivalent . [7, Theorem
2 .1]
The characterization of algebraically closed regular rings is the theme
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11 . Later developments

(a) The non-commutative question . At some point the question
was bound to arise as to whether a non-corrrmutative generalization was
possible . No very satisfactory solution tras been found . One of the
obstarles ¡s tire need for a well behaved notion of integrality . Raphael
decided to use that due to Atterton [1] ; -let R be a subring of a ring S .
s E S ¡s integral over R, if there ¡s a finitely generated R-module 1V1 with
generators from Z(S), the centre of S, such that 1 C- M and sAll C M.
S ¡s called integral over R if all elements of S are integral over R . A
ring embedding R - - ~ S ¡s algebraic if ¡t ¡s integral and essential (in
the category of rings) . It turns out that for rings whose Pierce stalks are
nice enough, an algebraic closure exists . [20, Theorem 13] . The least
technical result ¡s perhaps

Theorem 11. LetR be regular, right self-injective, directly finite, and
suppose that Q (the rational field) lies in Z(R) . Then R is algebraically
closed iff Z(R) ¡s .

The conditions reguired iri this theorem give some indication of the
limitations of the results . As a byproduct, the non-commutative work
ga,ve a new commutative result : [20, Corollary 23] If R ¡s commutative
regular self-injective, and R[a] ¡s algebraic over .R, therr R[a] ¡s also self-
injective .

(b) . Macoosh and Raphael [17] investigated the notion "totally in-
tegrally closed" for Azumaya algebras, and showed that an Azumaya
algebra ¡s totally integrally closed exactly when its centre ¡s . Enochs'
theorem on algebraic closures generalizes to Azumaya algebaas over com-
mutative semiprime rings . Difficulties are encountered when one moves
to more general non-commutative rings .
In a separate article [16] they gave a short proof of (Hochster's) The-

orem 4 using techniques from the theory of rings of quotients of rings of
functions .

(c) The hereditary question .
Suppose that R ¡s a commutative ring, and that B(R) ¡s its set of

idenrpotents . B(R) can be rnade ¡rito a ring by keeping the sarne mul-
tiplication as in R, but defining the addition by e ® f = e + f - 2ef.
B(R) ¡s called the Boolean ring of idempotents of R, and ¡s useful for
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the Pierce sheaf representation of R . A commutative ring R is called
hereditary if its ideals are projective as R-modules . The question arose
as to whether the hereditary property was preserved under finite alge-
braic extension . In general the answer is no -the simplest example being
Z[V1-3] or any other non-Dedekind finite extension of Z . For the regular
case, however, one can make use of Bergmann's work which says :

Theorem 12 (Bergman) . [2, Corollary 4.6, Lemma 1.1] The fol-
lowing are equivalent for a commutative regular ring R:

(i) R is hereditary,
(ii) B(R) is hereditary,
(iii) every ideal of R is generated by an orthogonal set of idempotents .

By working with idempotents one gets the desired result for the regular
hereditary case :

Theorem 13. [11] . Let R be a commutative hereditary regular ring,
and let S = R[al, a2, . . ., a n,] be an algebraic extension of R. Then S is a
hereditary regular ring .

(d) The Galois question .
With a solution of the problem of algebraicity available, one would

expect a discussion of separability and Galois theory. Fortunately, a
relevant theory had already been developed . Let R be a subring of S .
Form S ® S a ring which acts naturally on S .

R
S is a separable R algebra [8] if S is projective over S ® S .

	

When
R

R and S are fields this is equivalent to the demand that S be a finito
separable extension of R in the usual sense .
S is a Galois extension of R if the following there conditions hold [8] :

(i) R is the fixed ring of a finite group G of automorphisins acting
on S .

(ii) S is a separable R algebra,
(iii) for each non-zero idempotent e E S; and each pair o- 0 T in G,

there exists x E S with a(x)e :,A -r(x)e . It follows that S is finitely
generated and projective as a module over R. . If 0 and 1 are the
only idempotents of S, then condition (iii) can be ignored . Chale,
Harrison, and Rosenberg [8, p . 10, Theorem 2.3] showed that if
S is a Galois extension of R; with Galois group G, then there is
a Galois-type theorem exhibiting a 1- 1 correspondence between
the subgroups of G and certain separable R-subalgebras of S .
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Villamayor and Zelinsky [21] were interested in the case where S can
have an arbitrary number of idempotents . [21] S is a weak Galois ex-
tension of R if S is a separable R algebra, if S is a finitely generated
projective R-module, and if R is the fixed ring of a finite group of auto-
morphisms of S .

If R, has no idempotents different from 0 and 1 then a weak Galois
extension S is Galois . In general, when S is weakly Galois over R, there
exists a finite set of orthogonal idempotents {el , . . ., en} in R with Z: el =
1, such that Se¡ is Galois over Re¡ for each i . As well, a Galois-type
theorem pairs the separable R-subalgebras of S with certain subgroups
of the group of automorphisms of S over R [21, Theorem 3.8] .
A last notion is due to DeMeyer [9] . S is a normal separable extension

of R if S is separable over R, if S is projective over R, and if R is the
fixed ring of the group of R-automorphisms of S .

Should R be the fixed ring of a finite group of R-automorphisms of
S, then S is weak-Galois over R, but this can fail to oecur . One has
strict implications from Galois to weak Galois extensions and from weak
Galois to normal separable extensions .
The relevante of there notions to algebraic extensions was studied by

Desrochers and Raphael [10] . The results require assumptions which
prevent tire extensions from gaining idempotents . The ina,in results are :

Theorem 14. [10, 4.1] Let R be regular and suppose that B(R) =
B(R[a]), where IR is semiprime and R[a] is an algebraic extension of R.
Then R[a] is separable as an R-algebra iff for every x E X(R), the field
extension R[a],,;/R,,; is classically separable .

Theorem 15 (Primitive element) . Let R be regular and let S =
R[aj, . . ., a�] be an algebraic extension ofR such that S is separable over
R and B(S) = B(R) . Then S = R[b] for some b E S .

Theorem 16.

	

Let, R, be regular; and, let R[a] be an algebraic ex-
tension of R that is R-projective, R.-separable, and such that B(R) =
B(R[a,]) .

	

Then R[a] is weakly Galois over R iff for all x E X(R), th,e
fixed extension R[a],,;/R.,; is normal .

Theorem 17. Let, R be regular (Baer) integrally closed in its complete
ring of guotients, and let R[a] be an algebraic extension of R. Let p(t) be
a monic of rninirnal degree over R satisfied by a, and let S = R[o j, . . ., Q,,]
be the splitting ring of p(t) in an algebraic closare of R[a] . Then S is
weakly Galois over R if S is a separable R-algebra, or eguivalently, if for-
every x6X(R), S,; is separable over .R.,; .
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