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ON ALGEBRAIC CLOSURES

R. RAPHAEL

Abstract

This is a description of some different approaches which have been
taken to the problem of generalizing the algebraic closure of a
field. Work surveyed is by Enochs and Hochster {commutative
algebra), Raphacl (categories and rings of quotients), Horho (the
polynomial approach}, and Carson (legic).

Laler work and applications are given,
P

“Ie was a man, take him for all im all, I shall
not look upon his like again”...Hamlet,

Introduction

The study of field theory, of algebraic extensions, and algebraic clo-
sures for fields is fundamental in algebra. These uotions have many
applications in mathematics, and have their own intrinsic interest.

It is natural to consider the question of their generalization to other
algebraic systems. In the late sixties and early seventics work was under-
taken that led to such generalizations in commutative algebra. It is the
purpose of this article to present the different approaches that were fol-
lowed, to comment upon their methods, and to indicate the work which
has been done more recently. The question of algebraicity was the topic
of my last mathematical discussion with Pere Menal.

Throughout this article all vings will be assumed to have an identity,
and subrings are assumed to have the same identity element as their
overrings. Rings will wsually be commutative. A commutative ring is
called semiprime (or reduced} if it has no nilpotents other than 0.
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I. The various approaches

(a) Totally integrally closed rings. The work of Enochs.

An extension § of a commutative ring is called integral if every element
of S satisfies a monic egualion with coefficients from R. Much is known
about integral extensions, particularly about the relative behaviour of
prime ideals under integral extension [22].

Relative to integral extensions Enochis made the following fortnal def-
inition:

Definition 1 {12] {Enochs). A ring R is called totally integrally
closed if for any ring homomorphism « 1 § — It and any integral exten-
sion T of §, there is a homomorphism T' — R extending ex.

Diaé;rammatically one has

R
A
a T
ST

This is recognized as the diagram [or injectivity, so totally integrally
closed rings are injectives in an appropriate setting, -Lthey are the injec-
tives in the category of commutative rings with the restriction that the
horizontal monomorphism in the diagram for injectivity be integral. (In
the category of cormmutative rings as a whole the only injective object
is the zero ring [19}). Enochs studied these rings and showed that the
totally integraily closed fields were exactly the algebraically closed ones.
His main results were:

Theorem 2 [12]. A commutative ring is e subring of e totally inte-
grally closed ring if and only if it is reduced (semiprime}.

Theorem 3 [12]. If A is a commnutative semiprime ring there is a
totally integrally closed integral extension A of A which is also a tight
extension of A. If A" is any other such extension of A, then aeny A-
homomorphism A" — — — A" is an isomorphismn.

Enochs used the techniques of comntative algebra, including local-
ization and the properties of integral cxtensions. The results are derived
directly from the definition of totally integrally closed rings, which are
investigated as objects of inkerest in their own right. Theorem 3 is de-
scribed as an analogue to the injective hull of a module -and its signifi-
cance as a theorem on algebraic closure is clear. He notes that a monig
polynornial f has a splitting ring -a tight integral extension generated
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by roots of f -with universal properties. Other interesting remarks are
offered, and a question about the preservation of the property “totally
integrally closed” under localization is posed.

(b} The work of Hochster. Totally integrally closed rings,
and applications to rings of continuous functions.

Hochster wrote two articles on this topic shortly after Bnochs’ work
was completed. “Totally lutegrally closed rings and extremal spaces™
[15] has broad results and is the more algebraic in flavour. It gives
several characterizations of totally integrally closed rings (Proposition
1}, shows that their spectra must be extremal spaces, and discusses the
factoring of monics into linear factors. It proves the interesting result
that distinct minimal primes in a totally integrally closed ring must be
comaximal, and that the relative topology on the minimal primes must
be that of an extremally disconnected Boolean space. Hoclister discusses
von Nenmann regularity, and answers (in the negative) Enochs’ question
about localizations of totally integrally closed rings. The methods are
those of commutative algebra with much analysis of the spectrum.

The second article focuses on one particular kind of commutative
semipriine ring -those of the form C(X), the ring ol all continuous real-
valned functions defined on a (completely regular) topological space X.
[C*{X) is the subring of functions in C{X) which are bounded]. These
rings are the subject of an entire text [13]. Much is known about their
algebraic properties, in particular about the structure of their prime and
maximal ideals.

Hochster considered and solved the question - “when is a ring of con-
tinuous funciions totally integrally closed?”. To understand his result we
first need the following notion:-a topological space X is called extremally
disconnected if the closure of each open set is open. Discrete spaces are
extremally disconnected, but so are many others. The characterization
15 as follows:

Theorem 4 {Hochster). [14] The foliowing are equivaelent for a
completely reqular topological space X -

(a) X is extrernally disconnected,

(b) C(X)I#] is totally integrally closed,

(¢) C*(X)[4] is tolally integrally closed.

Hochster’s methods in this article use both topology and algebra and
are different from those in Enochs’ article. His work extended that
of Enochs, gave interesting characterizalions of totally integrally closed
rings, solved the localization problem, and characterized a specific topo-
logical case.
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(c) Algebraic closures. The work of Raphael: Categories and
rings of quotients.

Raphael, unaware of the work by Enochs, was attempting to general-
ize the construction of the algebraic closure for fields. As a student of
Lambek, his methods were more categorical. In any category a monomor-
phism @ : A — — — B is called essential if any morphism #: B~ - = C
must be a monomorphism whenever the composition o : A — = —= C
is a monomeorphism. The best-known instance occurs in the category of
right modules over a fixed ring. Enochs used this notion in commutative
rings and called such extensions “tight”. Lambek pointed out that in
the category of commutative rings an essential extension of a field F is
precisely a field extension, and suggested using the following which is
easily checked:

Lemma 5. Let F be o field and let K be an extension of £. Then
the following are equivaleni:
(i} K is algebraic over I,
(it) every ring between K and F is a field,
(iil}) every ring between K and F is an essential extension of F in the
category of commutative rings.

Lambek also underlined the importance of regular rings as the correct
generalization of fields Lo be considered. Raphael made the following
definition, -{he later added the adjective “weak™).

Definition 6. Let B be a commutative semiprime ring, and let S be
an extension of R. § is a weak-algebraic extension of R if every between
ring of R and S is an essential extension of R, -l.e. every non-zero ideal
in every between ring has non-zero contraction to R.

The following is irnmediate:

Lemma 7. Lel S be an extension of a commulalive semiprime ring
R. Then the following are equivalent:

(i) S is weak-algebraic over R,
(il) every non-zere element of S satisfies a polynomial equation over
R whose constant lerm is non-zero,

This definition had the virtue of being “categorical” bul suffered from
two drawbacks. The minor one was Lhat one could not prove transitivity
for such extensions. The more important one was that it made the
embedding of an integral domain into its field of quotients algebraic,
and this seemed too gencral and unnatural. Ultimately, the following
definition was made.
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Definition 8. S is an algebraic extension of I? if S is essential over
R, and if § is integral over . One has at once:

Lemma 9. Lel 5 be an extension of . The following ure equivalent:
(i} S is algebraic over R,
(ii} every non-zero element of S satisfies ¢ monic polynomial over R
whose constant term 28 non-zero.

This notion had the advantage of access to the existing results on
integral extensions, particularly the theorems concerning the behaviour
of prime ideals. Transilivity was immediate. The final result read:

Theorem 10. Let £ be o semiprime ring. Then R hoes an algebrose
eztension which is alyebraically closed [ealled an alyebroic closure of R).
An algebraic closure contains o copy over I of any algebraic extension
of R. Any two algebraic closures of B are isomorphic over K.

With this result it was possible to return to weak algebraic exteusions
and get Lhe analagons resuli for them by using the theory of rings of
quotients. The weak-algebraic closure is the complete ring of quoticnts
of the algebraic closure. Only then {using abstract nonsense) did the
transitivity of weak-algebraic extensions follow. No direct proof for the
transitivity has yet been given.

In summary, Raphael’s work was rooted in the ideas of categories,
rings of quotients, and the study of regular rings. Baer rings also arose-
a commutative ring is Baer if the annihilator of every subset is a principal
ideal generated by an idempotent. A regular ring is algebraically closed
precisely when it is Baer and all of its factor fields are algebraically
closed. The algebraic closure of a semiprime ring R, can be obtained
by passing to its complete ring of quetients Q(R), known to be regular,
taking the algebraic closure of Q{R), Q(Q(R}) and finally taking the
integral closure of R in Q{Q{&)). In the general semiprime case, an
algebraically closed ring must also be Baer- {this was Hochster’s ¢lemand
that the spectrum be extremal} because one could easily get an algebraic
extension by saking the integral closure in the complete ving of quotients
which is Baer.

(d) The work of Borho. The polynomial approach.

Borho's work was subsequent to that of Enochs, Hochster, and
Raphael. His study was “a contribution to the guestion: Is there any
reasonable analogue for the algebraic closure of a field,... for an arbi-
trary commutative ring?” Together with Weber [4] he gave a proof of
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Encchs' Theorem 2 above. His thesis approaches the problem of alge-
braic closure by studying essential extensions, extensions which adjoin
roots of polynomials, and extensions by idempotents, If f is a monic
polynomial over R, then an f-extension is a ring generated by £ and
roots of f. If F'is & set of monics over I, then an F-extension is one
generated by R and roots of elements of £. An F-splitting extension is
an F-extension in which every element of £ can be written as a product
of linear factors. An essential F-splitting extension always exists for a
given R and I, R is called F-saturated if it has no proper essential
F-extensions. Borho determined [3, 4.2] when an F-saturated extension
exists. 1t must exist for any £ if R is semiprime. A monic polynomial
f is called "saturable® if the number of zeros it ¢can have in an essential
extension of R is bounded. All monics are saturable in the semiprime
case, but in general they can fail to be. A "saturable closure” exists
for all commutative rings. It coincides with Enochs’ total integral clo-
sure in the semiprime case. There are non-semiprime cases, for example,
Noctherian irreducible rings, where uniqueness holds, but in general it
fails. The saturable closure can be viewed as the result of two steps
-the first by adjoining idempotents, and the second by taking a splitting
extension. In the semiprime Baer casc the first step is unnecessary.

Borho’s work gave an independent approach to the subject which
reestablished the semiprime results, and analyzed the pathology of the
general comimutative case.

(e) Carson-a logical approach.

Carson studied algebraically closed commutative regular rings from a
logical and sheaf-theoretic point of view. Such a study is supgested by
the fact that commutative regular rings form an equational category -to
the usual axioms for commutative rings one adds the demand that the
unique quasi-inverse exist for each element. Carson’s terminology is dif-
ferent,, however, and consequently, his results are as well. A commutative
regular ring is algebraically closed if it has a root for each of its monic
polynomials. A sheaf of fields is algebraically closed il all the stalks are
algebraically closed fields. A sheaf K of fields over a Boolean space X
is an algebraic closure of a sheal k of fields over X, if & is a subsheaf
of ¥, and if for each z € X, K, is the algebraic closure of &, The
algebraic closure of a sheaf need neither exist nor be unique. |7, p. 1038]
However when the ring is Baer (7, Corollary 1.6] an algebraic closure will
be unique np lo isomorphism, and under certain general conditions two
algebraically closed rings will be clementarily equivalent. [7, Theorem
2.1

The characlerization of algebraically closed regular rings is the theme
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ol Carson’s work.

IL. Later developments

{a) The non-commutative guestion. At some point Lhe question
was bound to arise as to whether a non-commntative generalization was
possible. No very satisfactory solution has been found. One of the
obstacles is the need for a well behaved notion of integrality. Raphacl
decided to use that due to Atterton [1]; -let R be a subring of a ring S.
5 € 5 is tntegral over R, if there is a finitely geverated R-module M with
generators from Z(5), the centre of S, such that 1 € Af and sM C M.
S is called integral over R if ail elements of 5 are integral over B, A
ring embedding 1 — — — & is algebraic if it is integral and essential (in
the category of rings). It turns out that for rings whose Pierce stalks are
nice enough, an algebraic closure exists. [20, Theorem 13]. The least
technical resull is perhaps

Theorem 11. Let R be regular, right self-injective, directly finite, and
suppose that § (the rational field) lies in Z{R), Then R is algebraically
closed iff Z(R) is.

The conditions required in this theorem give some indication of the
limitations of the results. As a hyproduct, the non-commutative work
gave a new comnitalive result: [20, Corollary 23] If /it is commutative
regular self-injective, and Rlea] is algebraic over R, then Rla] is also self-
injective.

(b). Macoosh and Raphacl {17] investigated the notion “totally in-
tegrally closed” for Azumaya algebras, and showed that an Azumaya
algebra is totally integrally closed exactly when its centre is. Enochs’
theerem on algebraic closures generalizes to Azumayea algebras over com-
mutative semiprime rings. Difficulties are encountered when one moves
to maore general non-commutabive rings.

In a scparate article [16] they gave a short proof of (Hochster’s) The-
orem 4 using techniques from the theory of rings of quotients of rings of
functions.

(c) The hereditary question.

Suppose that [ is a cominubative ring, and that B(R) is its set of
idempotents. B{/} can be made inte a ring by keeping the same mul-
tiplication as in X, but defining the addition by e & f = e+ f — 2ef.
B{R} is called the Boolean ring of idempotents of f1, and is useful for
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the Picrce sheaf representation of B. A commutative ring R is called
hereditary if its ideals are projective as R-modules. The question arose
as to whether the hereditary property was preserved under finite alge-
braic extension. In general the answer is no -the simplest example being
Z[/3) or any other non-Dedekind finite extension of Z. Far the regular
case, however, one can make use of Bergmann’s work which says:

Theorem 12 (Bergman). (2, Corollary 4.6, Lemma 1.1] The fol-
lowing are eguivalent for o commutative regular ring R:
(i} R is hereditary,
(it} B(R) is hereditary,
(iii) ewery ideal of R is genercted by an orthogonel set of idempotents.

By working with idempotents one gets the desired result for the regular
hereditary case:

Theorem 13. {11]. Let R be o commutative hereditary regular ring,
and et S = R[a1,a2,...,¢n] be an algebraic extension of R. Then S is @
hereditary regular ring.

(d) The Galois question.

With a solution of the problem of algebraicity available, one would
expect a discussion of separability and Galois theory. Fortunately, a
relevant theory had already been developed. Let R he a subring of S.
Form § ® S a ring which acts naturally on S.

Sisa sepmubie R algebra (8] if S is projective over & ® 8. When

R and 8§ are fields this is equivalent to the demand that S be a finite
separable extension of R in the usual sense.

S is a Galois extension of R if the following three conditions hold {8}):

(i) R is the fixed ring of a finite group G of automorphisms acting
on S,

(ii}) S is a separable R algebra,

(iii) for each non-zero idempotent ¢ € S, and each pair ¢ # 7 in G,
therc exists z € S with o(a)e # 7(z)e. It follows that S is finitely
generated and projective as a module over R. If ¢ and 1 are the
only idempotents of .9, then condition (iii) can be ignored. Chase,
Harrison, and Rosenberg [8, p. 10, Theorem 2.3] showed that if
S is a Galois extension of R, with Galcis group G, then there is
a Galois-sype theorem exhibiting a 1 — 1 correspondence between
the subgroups of G and certain separable B-subalgebras of 5.
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Villamayor and Zelinsky [21] were interested in the case where 5 can
have an arbitrary mumber of idempotents. [21] § is a week Galots ex-
tension of A if § is a separable R algebra, if § is a finitely generated
projective F-moduile, and if R is the fixed ring of a finite group of auto-
morphisms of S.

If I has no idempotents different from 0 and 1 then a weak Galois
extension S is Galois. In general, when § is weakly Galois over R, there
exists a finite sct of orthogonal idempotents {e;, ..., e, } In B with > ¢; =
1, such that Se; is Galois over Re; for each 2. As well, a Galois-type
thecorem pairs the separabie R-subalgebras of § with certain subgroups
of the group of automorphisms of § over R [21, Theorem 3.8].

A last notion is due Lo DeMeyer '9]. S is a normal separable extension
of R il S is separable over R, i[ § is projective over R, and if R is the
fixed ring of the proup of R-automorphisins of 5.

Should R be the fixed ring of a finite group of R-autemorphisms of
S, then § is weak-Galois over R, but thiz can fail to occur. One has
strict implications from Galois to weak Galois extensions and from weak
Galois to normal separable extensions,

The relevance of these notions to algebraic extensions was studied by
Desrochers and Raphael [10]). The results require assumptions which
prevent. the extensions from gaining idempotents. The main results arc:

Theorem 14. [10, 4.1] Let A be regular and suppose that B(R) =
B(R[a]), where R is semiprime and R[o] is an algebraic extension of R.
Then R[a] is separable as an R-algebra ift for every & € X (R}, the field
extension R[a].,/R. is classically separable,

Theoremn 15 (Primitive element). Lel R be regular and let § =
Riay, ..., ,,] be an algebraic extension of R such that S is separable over
1 and B(S) = B{R). Then 5= R[] for some b e 5.

Theorem 16.  Let R be reguler, and lel R[a] be an olgebraic ex-
tension of R that is R-projective, R-separable, ond such thal B(f) =
B(R[a]). Then Rla] is weakly Galois over R iff for all v € X(R), the
field extension Rla), /Ry is normal.

Theorem 17. Lei R be regulor {Baer) integrolly closed in its complele
ring of quolients, and lel R[a] be an algebraic extension of R. Let p(t} be
o tmonde of minimol degree over R satisfied by o, and let S = Rloy, ..., 04)
be the splitting ring of p(t) in an alyebrase closure of Rla]. Then S is
wenkly Galots over R if 5 is o sepurable R-algebra, or equivalently. if for
every xeX (R}, 5y is separable over R,
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