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Abstract
In this paper we study the Hopl adjoinl action of group algebras
and enveloping algebras. We are particularly concerned with de-
termining when these representations are faithful. Delta methods
allow us to reduce the problen to cortain better behaved subalge-
bras. Mevertheless, the problem remains open in the finitc group
and finite-dimensional Lic algebra cases.

1. Group Algebras

Suppose H is o Hopf algebra with comultiplication H — H @ H given
by i — Z(h) hy&hy and with antipode 5: H — H. Then the left adjoint,
action of M on H is defined by h-a =37, mzS(hs} for all b,z € H.
In this way, H becomes a left H-module and therefore the kernel of this
action

IH)={heH|h-H=0}

is a two-sided ideal of H. It is of interest to determine when H acls
fFaithfully, that is when Z(H) = 0. In this paper, we will be concerned
with the Hopf algebras H = K|G: and N = U(L).

If H = K|[G] is the group algebra of & over the field K, then the
comultiplication and antipode are given by ¢ — g & g and S{g} = g ",
respectively, for all ¢ € ¢, In particular, the Ieft adjoint action is just
g - = gug~!, ordinary conjngation by the group element g. Tt follows
that if z is a central element of G, then z — 1 € Z(G). Here, for conve-
nience, we have abhreviated Z{(K[G]) by Z(G). Thus Z(() # 1 implies
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that Z(G) # 0. As we will see, the converse of Lhis statement is definitely
not true. Nevertheless, be begin by proving that Z{G) is controlled by
the f.¢c. center of G, namely

A=A(G)={zeCl|0:Cs(z)| <0}

Theorem 1.1. If T(() is the kernel of the adjoint representation of
K|[G], then

(G} = (Z(G) N K[A)) K[G] = K[GI(Z(G) n K[4A]).
In particular, if A(G) =1, then I{3) = 0.

Proof: As usual, let 4: K[G] — K|[A] denote the K-lincar projection
map defined on G by 8{g) = g if g € A and 8(g) = 0 otherwise. If
=3 ccag9 € I(G), then for all § € K[G] we have

O=c-B=)_ amgBs"

gEG

Thus [P, Lemma 4.2.5] applied to this linear identity yields

0= 6(ayg)Bg™" = ag9B9~" = 0(a) B

ge G geEL

and hence 8(a) € Z(G). [P, Lemma 1.1.5] now implies that A(G) con-
trols Z(G), that is

I{G) = (Z{G) N K[A}) K[G] = K[G}{Z(G) n K[A]).

Finally, if A = 1, then certainly Z(G) N K[A] = Z(G)N K = 0 and
I(Gy=0. =

To proceed further we require a better understanding of Z(GYN K[A].
As we see below, there is an easy description of this ideal, and of Z{G)
for that matter, based on the fact that the adjoint representation is a
permutation representation. Suppose G permnutes a set £} and consider
the K-vector space V = K having £ as a basis. Then V is naturally a
left K[G)-module, the permutation module associated with (G, ). Fur-
thermore, if x € Q, then the annihilator of z in K|[G] is clearly equal to
K|G)w(G ;) where G, 1s the stabilizer of x in G and where w(G.) denotes
the augmentation ideal of K|G.|. In particular, since the adjoint repre-
sentation of A[G] corresponds to the conjugation permutation module
with § = G and with G, = Cg(x), the preceding considerations applied
to G and to & yield
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Lemma 1.2. With the above noiation

G = ﬂ K[Glw(Ca{z))

rEG

and
I(G) N KlA] = [ K[Alw(Calz))-
TElT

It is a simple consequence of this result that if F is a [ield extension
of K, then T(F|G]) = F ® Z(K|G]). Thus the vanishing of Z(C} de-
pends only upon & and the characteristic of the [ield. Somne interesting
examples are as follows.

Lemma 1.3. i Suppose G has o nonideniily normal torsion-free
abelian subgroup A with |G/A| < co and Cg(A) = A. Then Z{(G) =0 4f
and only if some element of G/ A acts without fized points on A

#. Let p and g be primes with p | ¢—1 and form the group G = @ P.
Here P is en clementary abelian p-group of order p*, Q is an clementary
abelian q-group of order ¢P*! and euch subygroup of P of ovder p is the
keinel of the action of P on u cyclic factor of Q. Then Z{G} =1, but
(@) £ 0.

Proof: (i) Since A is self-centralizing, /A acts faithfully on A, Fur-
thermore, since /A is Anite and A is torsion free, it follows that A =
A(G) and that K[A] is a commutative domain. Now the preceding
lernmea implies that

LGN KA} = (] K[AJw(Calg))-

geG/A

In particular, if some €Ca{g) = 1, then Z{G) N K[A] = 0 and Z(G) = 0
by Theorem 1.1. On the other hand, if all C4(g) # 1, then each of the
finitely many ideals K[Alw(Ca(g)) is nonzero. Thus, since K[A] is a
domain, it follows that Z{G} N K[A] # 0 and henee that Z{G) # 0.

(i) Write Q = Qo X @y x -+ x ¢, where each ; is cyclic of order
g. Since p | ¢ — 1 and P has precisely p + 1 subgroups of order p, say
Fo, Py, ..., Py, we can certainly define the action of P on € so that
the cyclic group P/P; acts faithfully on Q;. Tt then follows easily that
for each ¢ € G = Q X P, there exists a subscript ¢ with Cg{g) 2 Q.
Thus the preceding temma implics that Z(G) 2 T10_,w(@Q:} # 0. Since
Z(G) =1, the result follows. W

There are of course numerous variants of the construction in (ii).
Lemma 1.2 also yields a second characterization of T(G).
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Lemma 1.4. For each z € G, let mp: K[G) — K[€g(z)] denote the
natural projection map. Then Z(G) is the largest two-sided ideal [ of
K|G) wnth 7o(I) C w(Cg(z)) for ell z € G. In particular, I(G) is also
the kernel of the right adjoint represeniation of K[G)].

Proof: For any z € G we have Z(G) C K[Glw(Cx(z)) and hence
72(Z{G)) C w(Cq(z}). Conversely, suppose that [ is a two-sided ideal
of K[G] with m,{I) C w(Cg(z)) for all z € G. Since ! is a left ideal,
it follows from [P, Lemma 1.1.3] that I C K{Glw(Ceg{x)}) for all such
and therefore that / C 7(G) by Lemma 1.2, Finally, this description of
Z(G) is right-left symmetric, and thus we conclude that Z(G) is also the
kernel of the right adjoint representation. ®

Now Theorem 1.1 reduces the study of T{G} to K[A] and we know that
A{G) contains all the finite normal subgroups of G. Thus an appropriate
first step in studying K'[A] is to consider the case where G is finite.

We assume throughout the remainder of this section that G is a finite
group. If H is a subgroup of &, define

H=) heK[H CKI[G.

Notice that gHg—! = gHg~ ! and that if H; € Hy, then H; divides H5.
Furthermore, let A{G) denote the two-sided ideal of K[G] generated by
the elements Colz) for all 2 € G.

Lemma 1.5. If G is a finite group, then
anng(¢) Z(G) = A(G)

and
annyig; A(G) = I(C).

In particular, T{G) = 0 if and only if 1 € A(G).

Proof: Set A(G) = 3 e Celz)KIG] so that A'(G) is a right ideal of
KG] contained in A(G). Since Ce(x?) = Co(x)9, it follows that A'(G)
is a G-stable right ideal and therefore a two-sided ideal of K[G]. Thus
clearly A'(G) = A(G). Now if H is a subgroup ol G, then we know that
lann H = K[G|w{H). Thus, the above description of A(G) implies that

Lann A(G) = (] K[Glw(Ce(z)) = I(G)
zEelX
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by Lemma 1.2, Furthermore, since K[G] is a Frobenius algebra, we
conclude that

rann ZI{G) = r.ann{l.ann A(G)) = A(G).

Finally, since A(G) is symmetrically defined, we can use the right-left
symmelry of T{G) given by Lhe previons lemma to reverse the roles of
the right and left annihilators in the above formulas. Thus

Z(G) = Lann A(G) = r.ann A(G)

and similarly
A(G) = r.aunI{G) = Lann Z(G)

as required. Alternately, we can use the fact that K[G] is a symmetric
algebra and that in such algebras right and lelt annihilators of two-sided
idcals are equal. W

For convenicnce, we say that a subset X of G “spans 1” if the element
1 is contained in the two-sided ideal of K[G] generated by the elements
Ce(x) for all z € X. Obviously, if some such subscl spans 1, then
1 € A(G) and Z{G) = 0. Our next examnples are Frobenius groups.

Lemma 1.6. i Let K be o field of characteristic p > 2 and let G be
the difiedral group of order 2p. Then Z(G) # 0 even though 2(G) = L.

it. Let K be a field of characteristic § and let G = NC be a Frobenius
group with kernel N and complesnent C. If 1 £z € N and 1 £y € (),
then {x,y} spans ! and hence T(G} = 0.

Proof: (i) Let P be the subgroup of G of order p and let €y, Co, ... ,Cp
be the subgroups of G of order 2. Then these subgroups and G itsell
are the centralizers of elements of G. Now let A: K[G] — K he the
K-homemorphism defined by A{g) = 1if g € P and Mg) = —-1if g €
G\ P. Since K has characteristic p, it follows that P, C; and G arc
all contained in the kernel of A. Thus A(G) # K[C] and Z{(G)} # 0.
Tndeed, 0 # G — 2F € Z(() since this element is central and annihilates
all generators of A(G.

(ii) Basic properties of G imply that €g(x) € N and Ce(y) € C.
Therefore N, G, and gCg—" arc all contained in the ideal I of K|[G]
generated by Co(z) and C(y). Finally, if [N = n, then we know that
G is the “disjoint” union of N and of the # conjugates C1,Cy, ..., C;, of
C. Thus

nI:N-i-ZE;—EE.’
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and, since K has characteristic 0, we conclude that 1 =1¢ /1. ®

Since the dihedral group of order 2p with p > 2 is a Frobenius group,
the preceding lemma shows that the vanishing of Z(G} does indeed de-
pend on the characteristic of the field. For the remainder of this section
we will assume that K has characteristic 0. For the most part, we will
be concerned with the symmetric groups Sym,,. To start with, we have

Lemma 1.7. Let K be a field of characteristic 0, let G = Sym,, and
lef p be an odd prime.
i. Suppose n 2 p, let P be lhe cyclic subgroup of G generated by
a p-cycle and let Q be the cyclic subgroup of G generated by a
{p— 1}-cycle. Then

K|G|PK[G] + K[CIQK[G) = K[G).

il. If n =p, then the sel consisting of any p-cycle end any (p — 1)-
cyele spans 1.

iii. Ifn =4, then the set consisting of any nonidentity 2-element and
any non-identity S-element spans I,

Proof: (1)(ii} Assume that » > p. Let F = GF(p) and consider the
usual group H of linear functions on £ described by ¢ — af + b for all
a,b € Fwitha # 0. Then £ = NC is aFrobenius group with kernel IV of
order p and complement € of arder p—1. Since A [aithfully permutes the
elements ol £, we can view H as being embedded in Syr,, C Sym,, = G.
In this embedding, IV is generated by a p-cycle x and C is generated by a
{p— 1)-cycle y. Hence, since Cy(z) = N and Cy(y) = C, Lemma 1.6{i1)
implies that

1€ K|H|NK[H| + K[H|CK|H] € K[GINK|C] + K[G]CK[G)].
But P is conjugate to N in G and ¢} is conjugate to C in | s0
1 € K[GIPKI[G] + K[G|QK|[G)

and (i) is proved. Finally, if n = p, then P is the centralizer in G of a
p-cycle and @ is the centralizer in G of a (p — 1)-¢ycle. Thus (ii) follows.

(ii) In G = Syms, let A = Alty and let N denote the Klein four
subgroup. Furthermore let 1), D and D5 be the Sylow 2-subgroups of
G and let (7, Co, C5 and C4 be the Sylow 3-subgroups. Notice that

D:nD; =N and C; N =1 for all appropriate £ # 7. Thus since all
elemenis of G are either 2-elements or 3-elements; we have

ZFH- > C;=G+2N+4L
; ;
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Similarly, by considering the alternating group A, we obtain

N+> C=4+4T

M

‘Thus, adding twice the second equation to the first and canceling the N
terms yields
> Di+3) Cj=CG+2A+121
i J

Finally, if 2 is a nonidentity 2-element of ¢ and if % is a nonidentity
3-element, then Cq(x) © D; and Ce(y) = C; for some 4,j. Thus the
ideal T of K[G)] generated by Ce(z) and Cely) contains D, and all
its conjugates as well as C_} and all its conjugates. Furthermore, since
C; C A C G, we see that I contains 4 and G. Thus 127 € F and, since
K has characteristic 0, we conclude that 1=T € /. B

It is obvious that T(Symq) = 0 and that Z{Symy)} = w(Syms) # 0.
Our goal is to show that I(Sym, ) = 0 for all » > 3 and the proof will
proceed by induction on . The following lemma shows how the inductive
hypothesis is used. Part (i} is an unpleasant techiical formulation which
is needed to handle a few small cases.

Lemma 1.8. Let G = Sym,,, let C be the cyclic subgroup of G gen-
erated by ¢ k-cycle ¢ and lel H = Sym, .

i. Suppose that X is the set of elemenis of H which do not have a
k-cycle in their cycle decomposition and assumne that X spans 1
in K[H|. IfY is the set of elements of G which have precisely
one k-cycle in their decomposilion, then

C e > KIGICa(y}K[G] € AG).

yeY
i If k> n/2 and A(H) = K[H), then C € A(G).

Proof: (i) Consider the usual embedding of Symy x Syma—x in G =
Sym,, and suppose that ¢ € Symy and that H = Sym,_;. fx € X C H,
then Ca{ex) = C x Culz) since ¢ is a k-cycle and since, by hypothesis,
& has no k-cycle in its decomposition. Thus, since cr € ¥, we see
that CCpu(z) = Calex) is contained in I = 3. .\ K[G]Ca(y)KIG].
Furthermore, since C commutes with i [H], it follows that I contains

S| KHICCh(m)K([H] =Ty K[H|Cule)K[H).

wE X TEX
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But 1€ 3 K{H|Cx(2)K[H], by assumption, and therefore C' € I C
A(G) as required.

(i} 1 A(JT) = K[H], then obviously X = H spans 1 in K|H|. Further-
more, since k& > n/2, we have k > n — k and therefore X consists of the
elements of H which do not have a k-cycle in their cycle decomposition.
The result now follows from (i). ®

Next we consider two special cases with small values of n.

Lemma 1.9. Let & = 8ym,.

t. If n =6 and 3f X is the set of all elements of G which ure not

G-cycles, then X spans |{.
it. Ifn=29, then A(G) = K[G].

Proof: We start with a general observation. Let o: G — {+1} be
the natural group homomorphism determined by the parity map ¢ and
extend this to a K-algebra homomorphism o: K[G] — K. Notice that
if £ is a transposition in G, then 1 + ¢ € Ker{o). Indeed, we claim that
K[GK1l + t)K[G] = Ker(o). To this end, let / denote the left-hand
ideal and sct W = {g € G | g — ofg) € I'}. Then W is easily seen
to be a normal subgroup of G and, since t € W, we have W = G and
hence clearly 7 = Ker(o). Define T to be the subgroup of G of order 2
generated by £.

(i} Let n = 6 and continue with the above notation. Furthermore, let
Y be the set of elements of G which contain precisely one 2-cycle in their
decomposition. If H = Sym,, then we know from Lemma 1.7(iii} that
the set X C H consisting of a 4-cycle and a 3-cycle spans 1. Thus since
t is a 2-cycle, Lemma 1.8(1) implies that

l+t=Te Y K[GICcHK[C]

yeY

and, by the observation of the Arst paragraph, the preceding ideal con-
tains Ker{c) and has codimension at most 1. But ify = (12)(3456) € V',
then Cg(y) € Altg and hence Co{y) ¢ Ker(o). With this, we conclude
that Y spans ! and, since Y contains no G-cycle, this part is proved.

(ii} Similarly, let n = 9 and sct H = Symy. Then, by Lemma 1.7(ii),
the set X C H consisting of a 7T-cycle and a G-cycle spans 1. Again,
Lemma 1.8(i) implies that 1 +¢ = T € A{G) and therefore A(G) D
Ker(e¢). But if ¥ € G is a 9-cycle, then Cr{y) C Altg and therefore
Ceily) ¢ Ker(o). As before, it follows that A{G) = K[G]. m

We now use Bertrand’s Postulate to handle the remaining symmetric
Eroups. ’
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Theorem 1.10. If K has characteristic 0, then Z{Sym,,) =0 for all
n > 3.

Proof: Write G = Sym,, and proceed by induction on n > 3. In view
of Lemma 1.5, our goal is to show that A(G) = K[C)]. I n is a prime,
shen this is certainly the case by Lemuma L7(ii) and, in particular, this
starts the induction when n = 3. We can now assune that n is not s
prime and that n > 4.

Suppose that there exists a prime number p with /2 < p € n and
withp#£n-—1,n—-2 {n+4+1}/2 or (n+2)/2. In this case, since n # p
by assumption, wesee that f kA =porp— 1, thenn>n— %k > 3 and
furthermore & > n/2. By induction we know that 1 € A{Sym,_;) and
therefore Lemma 1.8(ii) implies that A(G) contains P and ) where P
is generated by a p-cycle and @ is generated by a (p - 1}-cycle. Since
p > n/2is odd, we conclude from Lemma 1.7(1) that A(G) = K[G] and
hence that T{(G) = 0.

It remains to show that such a prime p exists except for a few small
values of . For any positive real number €, let 7{{} denote the number of
primes less than or equad to ¢. Then the set of primes p withn/2 < p < n
has size w{n) — 7(n/2). Now according 10 [RS8, Theorem 2, Corollary 3
we have

w{20) — 7 () > 3(/5log { for all £ > 2056

and hence
win) —w(n/2) > 3(20.5)/5lcg(20.5) > 4 for all n = 41,
With this, it is simple to check that
w(n) —w{n/2) 23 for all m > 17.

In particular, if . > 17 then there are at least three primes p with
n/2 < p <n. On the other hand, we note that » — 1 and n — 2 cannot
hoth be prime and that (n+1)/2 and (n+ 2)/2 cannot both be integers.
Thus the restriction p £ n—1, n—2, (n+1)/2 or {(n+2)/2 eliminates at
most two primes from this segment and we conclude that an appropriate
p does indeed exist for n > 17. Therefore the nduction step carries
through in this range.

Recall that n > 4 and that n is not a prime. Furthermore, note
that we do not really need w{n) — w{n/2} to be > 3. Rather, we just
need the existence of an appropriate prime and clearly p = 11 works for
n = 16,15,14 and p = 7 works for n = 18. This leaves only the special
cases i = 4,6,8,9,. 12 to be considered and we already have affirmative
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answers for n = 4 from Lermma 1.7(iit} and for n = 6,9 from Lemma 1.9.
Thus there are only two inlegers left.

Ifn =12, let p = 7. Then it follows from Lemma 1.8(ii) that P € A(G)
where P is the subgroup of G generated by a 7-cycle. Furthermore, by
Lemma 1.9{i), the set of elements of Symg which are not 6-cycles spans
1. Thus Lemma 1.8{i) with £ = p — 1 = 6 and n — &k = 6 implies that
Q € A(C) where Q is generated by a 6-cycle. Lemma 1.7{i} therefore
yields the result in this case. Similarly, if n = 8 then we let p = 5 and
use the fact, given in Lemma 1.7{1ii), that a 2-cycle and a 3-cycle span 1
in K|[Symy]. This again guarantees that A{G) contains an appropriate
P and Q and the theorem is proved. B

If K is an algebraically closed field of characteristic 0, then the rep-
resentation theory of K|G] is equivalent, in some seuse, to the character
theory of the finite group . Thus it is reasonable to translate the prob-
lem studied here into character-theoretic language. Since this transiation
is well known, we will just mention a few basic facts. We follow the no-
tation of [I].

Lemma 1.11. Assume that K is algebraicatly closed and let ¢:C —
K denote the character of the adjoint representation of K|[G]. Then

i #{g) =Cqalg)| forallge G and

¢ = Z(ICG(I))G

where the sum is over representatives x of the congugacy classes

of G.

o= > Yy

welrr(G)

where ¥(g) =¥(g~!) forallg € G,

Proof: (1) Since ¢ is the character of the conjugation permutation
representation, it is clear that ¢{g) = |Cg(g)l, the number of elements
z € (G which are fixed by g. The second formula is also clear since ¢
is the sum of the characters which correspond to the action of & on
individual conjugacy classes.

(if) The expression ¢ = 3,5y ¥¥ can be deduced from the char-
acter orthogonality relations [I, Theorem 2.18] and the fact that ¢(g) =
|Cc(g)l. A more natural proof starts by writing K(G]=5_,e1rr(cy M (1),
a direct sum of full matrix rings over K, with M%) corresponding to
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the character 4. Then cach M(3) is a submodule of K[G] under the
adjoint action and, as is well known, the character of this submodule is
vo. |

It is obvious that the adjoint representation of K[G] is faithful if and
only if gvery irreducible character x € Irr{ () is a constituent of ¢. Thus
the above and Frobenius veciprocivy yield

Lemma 1.12. If K is algebraically closed, then T{G) = 0 if and only
if. for euch x € re(G), we have

i. x is u constiluent of (lcc_,(‘.i,))c for same x € G, or
i, log(w) 5 @ constituent of x restricted to Calz) for some z € G,
or
. x is @ constituent of W for some ¢ € I{G).

There is obviously a good deal yet to be done on this topic.

2. Enveloping Algebras

Now let I be a Lie algebra over the field K and let (L) denote
its universal enveloping algebra. Then H = U{L) is a Hopf algebra
with comultiplication and antipode determined by £ — {® 1 +1&¢
and S(f) = —£, respoctively, for all £ € L. Of course, 1 — 1® 1 and
S(1) = 1. It follows that the Hopf left adjoint action of U(L) on itself
is determined by £-z = €z —z€ for all £ € L and x € U(L). Tn other
words, £-2 = [€,2] = (ad £}z, Again we are concerned with the kernel of
the adjoint represeniation, namely

L) =TUL)) = {acUL} | a-UL)=0}.

Tt is clear thay Z(L) N L = Z(L) and sherefore, as with groups, Z(L) # 0
implies that Z(L) # 0.

One might expect the study of the adjoint actions of U(L) and of
K[G] to be somewhat similar because of the common Hopf algebra root.
However, this is apparently not the case and indeed Lie results scem
to be considerably more clusive. Nevertheless, since delta methods are
now available for U(L), there does exist an appropriate Lie analog of
Theorem 1.1. For this, let A = {£ € L | dimg[€,L] < oo} and let Ay
denote the subspace of L generated by all finite-dimensional Lie ideals
of L. Then Ay C A are characleristic Lie ideals of L and we have
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Theorem 2.1. If L is a Lie algebra over a field K of characteristic
4, then

I(Ly = (T(L)NU(ALYU(L) = ULNI(LY N U(AL)).
In particular, if Ay =0 then T(L) = 0.

Proof: We follow the notation of |BP2|. Let & € T{L}, choose a com-
plementary basis X for Ay in L and use it to write o = 3 pov, based
on Ay. Thus each o, € U{A) and each u is a distinct straightened
monomial in X. Qur goal is to show that o, € Z{L) for ali .

It is convenient to use the Hopf comultiplication notation. For ex-
ample, since g is a monomial in X, we can write the comultiplication
of u as Z(“) i1 ® po where the sum contains all ordered pairs { gy, 2 }
which are complementary partial products of p. Since p 1s s straightened
monomial in X, so also are 1 and uz. Furthermore, since o, € U{A ),
the comultiplication of «, is contained in U{AL)®U(AL). Therefore we
can assume that the sum 3 . (@)1 ® (o, )2 involves only terms from
U{AL). We use both these assumptions when we write the comultiphi-
cation of uor, as

3 o)1 @ (o) = 3> o @ palo)e.

{rear,) () {au}

Now o« € T(L}, so for all r € U({L) we have

O=ar= Z(»U'ap) r= Z Z (o) TS((#‘O‘#b)

# (o)

Z Z: Z 231 (a,u)l T S(P’*E(aﬂ)?)

# () (o)

and hence

0= Z Z Z TICMI, 5((%)2)3(#2) for all r € U(L).
i {u) (o)

Notice that the latter formula is a linear identity in U(L). Further-
more, cach {c, )1 is contained in U{A,)} and each p; is a straightened
monomial in X. Thus, for any monomial ¢, [BP2, Theorem 4.5(i})] im-

plies that . ’
0= 3" > (@mhrS{(au)e)Su)

# (g} (o)
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wliere me indicates the partial sum of those terms with g = ¢. In
particular, if we take ¢ = 1, then gy = 1 implies that ps = p and the
preceding displayed equation becomes

0= (a7 S((au2)Sp)  forallr € U(L).

o {ey)

Again, the latter formula is a linear identity in {/{L} and this time
we obscrve that S({a,)2) € U{AL) and that S{u) = *p is plus or
minus a straightened monomial in X. Thus, for any monomial 7, [BP2,
Theorem 4.5(ii)] yields

0= Z(ar)lrS((aT)g) =, -7 foralreU(L).
far-)

In other words, o, € Z(L) N U(AL} and, since this holds for all such 7,
we have

a-ZrareU (L)ﬂU(/-\r))

Thus, since Z{L) N U(AL) is an L-stable ideal of U{Ag], we conclude
that
(LY = ULYI(L)n U(A L) = (T{LynU(AL)YU(L)

and the result follows. Furthermore, if Ar, = 0, then clearly we have
TYNU{AL) = T{LYN K = 0 and therefore Z{L) = 0 as required. &

The corresponding resuit in characteristic p > 0 is decidedly false. For
example, let L = Ax B where A = (4,02, .. .) is an infinite-dimensional
abelian ideal, B = Kbis a one-dimensional complement and {a;, b = @i
for all i. Then it follows easily that Ay, = 0 and that a? € Z(U(L)} for all
a€ A Thus 0 =ade? = (ade)?, so a? € Z(L) and therefore Z(L) # 0.

As is well known, such examnples occur because, in characteristic p > 0,
ordinary enveloping algebras do not adequately reflect their Hopf algebra
structure. Indeed, in this context, one knows that it is more appropriate
to consider restricted Lie aIgcl)r'us TFurthermore, il L is any Lic algebra,
then there exists a restricted Lie algebra L with U(L) = u(L). Thus, in
positive characteristics, the restricted case is really the gencral case.

If L is a restricted Lie algebra over a field K of characteristic p > 0,
then we let w(L) denote its restricted enveloping algebra. The formulas
for the comultiplication, antipode and left adjoint action are of course
the same as in the ordinary case and we write

I(L)y=T(uw(Ll)) = {aculL)|a-u(l)=0}
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for the kernel of the adjoint representation. Again Ag denotes the subal-
gebra of L generated by all finite-dimensional (not necessarily restricted)
Lie ideals and we let A be as before.

Now delta methods exist for u{Z), but unfortunately their statements
in the lilerature are not quite what we require. Nevertheless, the neces-
sary results are true, follow fairly easy from whal is known and will be
published at some later time. For now we just make two quick observa-
tions. First, it is an sasy exercise to show that A; = A in the restricted
case and, in particular, we see that A is a characteristic restricted ideal
of :L.. Second, the argument of {|BP2, Proposition 4.2] applies equally
well to restricted enveloping algebras and yields the necessary sharpening
of [BP1, Theorem 5.1}, With this, the exact restricted analog of [BP2,
Theorem 4.5] holds and therefore a direct application of the preceding
proof yields

Theorem 2.2. If L is a restricted Lie elgebra over a field K of char-
acteristic p > 0, then

T(L) = (T{Lynu(AL))u(L) = w{L)(T(L) Nu(AL)).
in particular, if Ay, =0 then Z{L) = 0.

The similarity of the preceding two theorems suggests that we should
modify our notation somewhat. Thus, for the remainder of this section,
we will observe the following conventions.

(1) If K has characteristic 0, then L is an ordinary Lie algebra and

U{L) is, as usual, its ordinary enveloping algebra.

(2) If K has characteristic p > 0, then L will be a restricted Lie
algebra and we change notation to let /(L) denote its restricted
enveloping algebra.

As will be apparent, this change allows us to avoid unnecessary repeti-
fions.

Next, we also modify our direction somewhat. We know that I is
a submodule of U(L) under the adjoint action and, for many reasons,
this is a more interesting module structure to study. Thus we will be
concerned with faithfulness in this context and we let

J(L)={acU(L)|a-L=0}

denote the ideal of U{L) which is the kernel of the action of U(1L) on L.
Obviously J(L) D Z(L) and J(L} # 0 when L is abelian.

If L is a finite-dimensional Lie algebra, then it is well known that
J(L) # 0. Indeed, in characteristic 0, every O # £ € L is transcendental
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as an elernent of U{L}, but of course ad £ is an algebraic lincar transfor-
mation on the finite-diimensional space L. On the other hand, in charac-
teristic p > 0, the dimension of U(L) is just too large. To be precise, if
ditng £ =n > 2, then we have dimy U{L) = p" > n? = dimy Endx (L).
Furthermore, equality can only occur when p = n = 2 and this case is
then easily checked by hand. As we will see in the next two lemmas,
J(L) # 0 scems to be the rule even in infinite-dimensional situations.
Nevertheless, in the final result of this section we will apply delta meth-
ods to show that there is an abundant supply of Lie algebras L with
J(Ly = 0.

Lemma 2.3. Let A be an associative algebra over the field K and let
L be a K-subspace of A closed under the Lie bracket [z,y] = zy — ye.
Furthermore, if K hes characteristic p > 0, assume thet L is closed
under taking pth powers. Then J{L) # 0 if either

i. K has characteristic 0 and L contains a nonzero algebroic element
of A, or

il. K has characteristic p > 5 und L contains ¢ nonzero idempotent
of A or a nonzere element of A of square 0.

Proof: Notice that L acts on A via £-a = (adf)a = [({,¢0] for all
£ Lo c A and hence the adjoint action of U{L) on L extends to an
action on 4. Furthermore, we have adf = £, — Ry where LA — A
denotes left multiplication by ¢ and where Re: A — A denotes right
multiplication. Of course £ and 7y comnnite as operators.

Now if 0 # ¢ € L is an algebraic element of A, then clearly £ and R,
are algebraic operators on A and, since they commute, so is ad € = L¢ —
Re¢. Thus the result follows in characteristic 0 since £ is transcendental
as an element of U(L).

Finally, if ¢ is an idempotent element of A, then £; and R are com-
muting idempotent operators and it follows easily that (ad €)* = adZ.
Similarly, if £ is an element of A of square 0, then £3 = R% = 0 and hence
(ad &)* = 0. In cither case, ad ¢ is algebraic of degree < 3. On the other
hand, if K has characteristic p > 0 and if ¢ # 0, then 1,¢,¢%, ... 7!
are K-linearly independent when viewed as elements of U{L). Thus, if
¢ > 5, we conclude that U(L) is not faithful on L. M

In other words, the usual constructions for infinite-dimensional Lie
algcbras lead to situations which are not faithful. One such construction
of particular interest is as follows. If W is a subspace of the vector space
V., we let

Endg(V;W) = {t € Endx(V) [ (V) C W }.
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Then End(V; W) is a subalgebra (without 1} of End(V) and, in par-
ticular, it gives rise to a {restricted) Lie algebra which we denote by
gl(V; W),

Lemma 2.4. Let L = gl{V; W) with W an infinile-dimensional
proper subspace of V. Then A =0, but J(L) # 0.

Proof: We can easily see that A = 0 by looking at matrices, but a
simple direct proof is as follows. Let ¢ be a nonzero element of £ =
End(V;W). Since t # 0 and V # W, it follows that ¢ does not vanish
on V' \ W. Thus we can choose v € V \ W with t(v) = w # 0 and we
note that {»,w} is linearly independent since w € W. Now let & be
the subalgebra (without 1} of £ consisting of all s € £ with s(v) = 0.
Then the independence of { v,w } easily implies that the evaluation map
£:5 — W given by s — s(w) is & K-linear epimorphism and therefore
the kernel of £ has infinite codimension in §. Furthermore, if s € Cg(t),
then s(w) = st{v} = Ls{v) = 0 and thus Cg{t) C Ker(£). Putting this all
together, we see Lhat Cs{t) has infinite codimension in S, so Cg(t) has
infinite codimension in £ = End{V, W) and this, in turn, implies that
A=0.

For the second part, we note that J(L) # 0 follows immediately from
the previous lemma except when K has characteristic 2 or 3. However,
we can offer a simple direct proof which applies to all characteristics.
To start with, since V = W and dimg W > 2, it follows that there
exist two linearly independent transformations z,y € End{V; W) with
(W) = y(W) = 0. The latter conditions then imply that zEnd(V; W) =
yEnd(V; W) = 0 and hence, for all ¢ € End(V; W), we have [z,t] = —tx
and [y,t] = —ty. Thus (adz)(ady}t = tyz = 0 and we conclude that
2y € F(L). On the other hand, { z,¥ } is linearly independent, so xy # 0
in U{L)} and therefore J(L) # 0 as required. @

Thus we sec that A = 0 does not imply that J(L) vanishes and
therefore the natural analog of Theorems 2.1 and 2.2 cannot hold in this
context.

For any Lie algebra L, let w(L) denote the augmentation ideal of U/{L),
namely the ideal of /(L) generated by L. Of course, w{L} is also the
kernel of the algebra epimorphism U(L) — K determined by L — 0 and
hence U(L} = K + w(L).

Lemma 2.5. Let L be « Lie algebra over the field K.

i. There exists ¢ Lie algebra M # 0 confaining L with A(M) = 0.
. If A(L) =0, then there enists a Lie algebra N containing L with
A(NY=0 and F(N)NU{L)=10.
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Proof: (i) We can assume that L is an infinite-dimensional Lie algebra
and therefore that dimy U(L) = co. Now It V = U{L) and set W =
w(L). Then, via the left regular representation of U(L), we see that w(7)
emheds in Bndg (V; W), Thus L C gl{V; W) = M and the preceding
lemma yields the result.

(ii) We are given A(L) = 0 and we can clearly assure that L # 0
so that dimy L = co. If N = w(L) then, via the usual Lie bracket
[, y] = zy —ya, it follows that N is a (resiricted) Lie algebra containing
L. The goal is to show that A(N} = 0 and that JF{(N}NU{L} =0.

To start with, if # € A(N), then cerlainly # is an element of I{L)
satisfying dimy L/Cp(z) < co. IBP1, Lemma 7.1] therefore implies that
2 € U(A) =K and hence = € K nw(L) =0 as required.

Next, consider the adjoint action » of (N} on N and notice that L
actson N vin e =[f,a] =la—afforall £ € L and o &€ N =w(L).
Since the action of (L) on V is the unique algebra extension of this,
it follows that the » action of U{L) is identical to the adjoint action + of
U{L) on w{L). Therefore, we have

JN)NU(L) = {f e UL) | f-w(L) =0}

and, for convenience, we denote the latter ideal by Z'(L). Now it is clear
that {f € U{L}| B K =0} = w(L) and therefore U{L) = K + w(L)
implies that w(L) N Z(L) = Z(L). Turthermore, A(L) =0s0 Z{L}) =0
by Theorems 2.1 and 2.2, Thus Z'(L) C Lannw(L) = 0, since L is infinite
dimensional, and the result follows. B

1t is now a simple matter to prove

Theorem 2.68. [f L is a Lie algebro in chareclerisiic 0 ov o restricted
Lie algebra in characteristic p > 0, then theve exisis @ (restricted) Lie
algebra L 2 L such that A{L)Y =0 and J(L) = 0.

Proof: According to Lemma 2.5(1), we can embed I in a Lic algebra
Ly with A{L|) = 0. Furthermore, starting with L, we can then use
Lemma 2.5(i1) to inducsively construct a chain L; € L, € «-- of Lie
algebras satisfying A(L,) = 0 and J(Lpg) NU{Ly) = 0 for all n >
1. Finally, we set L= Ufo L, so that L is a {restricted) Lie algebra
containing L. The goal is to show that A(L) = 0 and that J(L) = 0.
Both of these are quite simple.

First, suppose that 2 € A{L). Then x € L, for some n > 1 and
therefore 2 € A(L)N L, € A(L,) = 0 as required. Next, supposc that
o € J(L). Since U(L) is elearly equal to U U(l4,), it follows that
a € U(L,) for some n > 1. Furthermore, note that the ad action of
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L, on U(Lns1) is the restriction of its ad action on U(f,), Hence the
adjoint action of U{L,) on U{ L) is the restriction of its adjoint action
on U(L}. Thus, since o € F{L), we have o € J(Lna1)NU({L,) =0 and
the theorem 1s proved. W

A conerete example of a Lie algebra L with (L) = 0 is the Virasaro
algebra in characteristic 0 ([D]).
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