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Abstract

THE ADJOINT REPRESENTATION OF
GROUP ALGEBRAS AND
ENVELOPING ALGEBRAS

D . S . PASSMAN *

Dedicated to the memory of Pere Menal

In this paper we study the Hopf adjoint action of group algebras
and enveloping algebras . We are particularly concerned with de-
termining when these representations are faithful . Delta methods
allow us to reclute the problerri to certain better behaved subalge-
bras . Nevertheless ; the problem remairis open in the finite group
and finite-dirnensional Lie algebra cases .

1 . Group Algebras

Suppose l-L is a Hopf algebra with comultiplication ?-t --> 7-L ® ?-l given
by h ~--> E(r,) h 1 (917,2 and with antipode S: 7í -> 7-L . Then the left adjoint
action of 'H en lí is defined by h - x = r(,>) hi xS(h2) for all h, x E ?í-
In this way, 7-L becomes a left 7í-module and therefore the kernel of this
action

1(x)={hcH1h-x=0}

is a two-sided ideal of 7-l . It is of interest to determine when H acts
faithfully, that is when 1(H) = 0. In this paper, we will be concerned
with the Hopf algebras l-L = K[G] and 7-L = U(L) .

If 7-t = K[C] is the group algebra of G oven the field K; then the
comultiplication and antipode are given by g ~--> g ® g and S(g) = g-1,
respectively, for all g E G. In particular, the left adjoint action is just
J - x = gxg-r , orclinary conjugation by the group elernent g . It follows
that if z is a central elernent of G; then z - 1. E 1(G) . Here, for conve-
nience, we have abbreviated 1(K[G]) by 1(G). Thus 7l(G) 54 1 implies
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that Z(G) 9~ 0 . As we will see, the converse of this statement is definitely
not true . Nevertheless, be begin by proving that Z(G) is controlled by
the f.c . center of G ; namely

0=0(G)={xEG1 iG :CG(x)j<oo} .

Theorem 1 .1 . If Z(G) is the kernel of the adjoint representation of
K[G], then

z(G) = (z(G) n K[o])K[G] = K[G] (z(G) n K[o]) .

In particular, if A(G) = 1, then Z(G) = 0 .

Proof. As usual, let 9 : K[G] ---> K[0] denote the K-linear projection
map defined on G by B(g) = g if g E A and 0(g) = 0 otherwise . If
a =

	

gEG, ag g E I(G), then for all /0 E K [G] we have

0= a - 0=Eagg,3g-1 .
gEG

Thus [P, Lemma 4.2 .5] applied to this linear identity yields

0 = E B(agg)Og
-1 =

gEG

	

gEG
Og-1 = e(a) . )3

and hence 8(a) E Z(G) . [P, Lemma 1.1.5] now implies that 0(G) con-
trols Z(G), that is

Z(G) = (Z(G) n K[0])K[G] = K[G](Z(G) n K[0]) .

Finally, if A = 1, then certainly Z(G) n K[0] = Z(G) n K = 0 and
Z(G) = 0 .

To proceed further we require a better understanding of Z(G) n K[A] .
As we see below, there is an easy description of this ideal, and of Z(G)
for that matter, based on the fact that the adjoint representation is a
permutation representation . Suppose G permutes a set 9 and consider
the K-vector space V = KQ having 52 as a basis . Then V is naturally a
left K[G]-module, the permutation module associated with (G, S2) . Fur-
thermore, if x E 2, then the annihilator of x in K[G] is clearly equal to
K[G]W(Gx ) where Gx is the stabilizer of x in G and where w(G) denotes
the augmentation ideal of K[Gx] . In particular, since the adjoint repre-
sentation of K[G] corresponds to the conjugation permutation module
with 52 = G and with Gx = CG(x), the preceding considerations applied
to G and to 0 yield
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Lemma 1 .2 . YVith the abone notation

z(G) = (-1 K[G]w(CG(x))
xEG

Z(G) n K[0] = n K[0]w(Co(x)) .
EEG

It is a simple consequence of this result that if F is a field extension
of K, then Z(F[G]) = F ® Z(K[G]). Thus the vanishing of Z(G) de-
pends only upon G and the characteristic of the field . Solee interesting
examples are as follows .

Lemma 1 .3 . i . Suppose G has a nonidentity no7mal torsion-free
abelian subgroup A with I G/Al < oo and Cc (A) =A. Then I(G) = 0 if
and only if some element of G/A acts without fieed points on A .

ii . Let p and cl be primes with p 1 q-1 andform the group G = Q A P.
Here P is an elementary abelian p-group of orderp2 , Q is an elementary
abelian q-group of order qn+r and each subgroitp of P of order p is the
kernel of the action of P on a cyclic facto7- of Q . Then 7(G) = 1, but
I(G) :~ 0 .

Proof.. (i) Since A is selfcentralizing, CIA acts faithfully on A. Flrr-
thermore, Since CIA is finite and A is torsion free, it follows that A =
,~,(G) and that K[A] is a commutative domain . Now the preceding
lernma irnplies that

I(G) n K[0] =

	

n

	

K[A]w(CA(g)) .
gEGIA

In particular, if some CA(g) = 1; then I(G) n K[0] = 0 and I(G) = 0
by Theorem 1 .1 . On the other hand, if al] CA(g) =A 1, then each of the
finitely many ideals K[A]w(CA(g)) is nonzero . Thus, Since K[A] is a
dornain, it follows that I(G) n K[0] 7~ 0 and hence that I(G) 0 0 .

(ii) Write Q = Qo x Qr x . . . x Qn where each Qi is cyclic of order
q. Since p 1 q - 1 and P has precisely p + 1 subgroups of order p, say
Po, Pr , . . . , P.� we can certainly define the action of P on Q so that
the cyclic group P/Pz acts faithfully on Qi . It then follows easily that
for each g E G = Q m P, there exists a subscript i with CC(g) _? Q2 .
Thus the preceding lernma irnplies that z(G) 2 11Z'o w(Qj) 5E 0 . Since
7(G) = 1, the result follows .

There are of course numerous variants of the construction in (ii) .
Lernma 1.2 also yields a second characterization of Z(G) .
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Lemma 1 .4 . For each x E G, let 7rx : K[G] -> K[CG(x)] denote the
natural projection map. Then I(G) is the largest two-sided ideal I of
K[G] with zrx (I) C w(CG(x)) for all x E G. In particular, I(G) is also
the kerizel of the right adjoint representation of K[G] .

Proof. For any x E G we have I(G) C_ K[G]w(CG(x)) and hence
7rx (Z(G)) C w(CG(x)) . Conversely, suppose that I is a two-sided ideal
of K[G] with irx (I) C_ w(CG(x)) for all x E G. Since I is a left ideal,
it follows from [P, Lemma 1.1 .3] that I C_ K[G]w(Cc(x)) for all such x
and therefore that I C_ I(G) by Lemma 1 .2 . Finally, this description of
I(G) is right-left symmetric, and thus we conclude that I(G) is also the
kernel of the right adjoint representation .

Now Theorem 1 .1 reduces the study ofI(G) to K[0] and we know that
0(G) contains all the finite normal subgroups of G . Thus an appropriate
first step in studying K[,] is to consider the case where G is finite .
We assume throughout the remainder of this section that G is a finite

group . If H is a subgroup of G, define

and

hE H

h E K[H] C K[G].

Notice that gHg-i = gHg-1 and that if Hl C H2, then Hl divides H2 .
Furthermore, let A(G) denote the two-sided ideal of K[G] generated by
the elements Cc(x) for all x E G.

Lemma 1 .5 . If G is a finite group, then

armKiG] I(G) = A(G)

armK[G] A(G) = Z'(G) .

In particular, I(G) = 0 if and only if 1 E A(G) .

Proof.. Set A'(G) = J:a,EG Cc(x)K[G] so that A'(G) is a right ideal of
K[G] contained in A(G) . Since CG(xg) = CC(x)g, it follows that A'(G)
is a G-stable right ideal and therefore a two-sided ideal of K[G] . Thus
clearly A'(G)_ A(G) . Now if H is a subgroup of G, then we know that
l.ann H = K[G]w(H) . Thus, the aboye description of A(G) implies that

1.annA(G) = n K[G]w(CG(x)) =Z(G)
xEG
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by Lelnma 1 .2 . Furthermore, since K[G] is a Frobenius algebra, we
conclude that

r.annl(G) = r.ann(1 .annA(G» = A(G).

Finally, since A(G) is sylnmetrically defined, we can use the right-left
symmetry of I(G) given by the previous lernma to reverse the roles of
the right and left annihilators in the above formulas . Thus

and similarly

I(G) = LarmA(G) = r.armA(G)

A(G) = r.armI(G) = LarmI(G)

as required . Alternately, we can use the fact that K[G] is a symmetric
algebra and that in such algebras right and left annihilators of two-sided
ideals are equal .

For conveniente, we say that a subset X of G "spans 1" if the element
1 is contained in the two-sided ideal of K[G] generated by the elements

CC(x) for all x E X. Obviously, if some such subset spans 1, then
1 E A(G) and I(G) = 0 . Our next examples are Frobenius groups .

Lemma 1 .6 . i . Let K be a field of characteristic p > 2 and let G be
the diliedral grovp of order 2p . Then I(G) 7~ 0 even though 7L(G) = 1 .

ii. Let K be a field of characteristic 0 and let G = NC be a Frobenius
group with kernel N and complernent C. If 1 :7~ x E N and 1 0 y E C,
then { x, y } sparcs 1 and hence I(G) = 0 .

Proof. (i) Let .P be the subgroup of G of order p and let Cl , C2, . . . , Cr
be the subgroups of G of order 2 . Then these subgroups and G itself
are the centralizers of elements of G. Now let A: K[G] -> K be the
K-hornomorphism defined by A(g) = 1 if g E P and A(g) _ -1 if g E
G \ P . Since K has characteristic p, it follows that P, Ci and G are
all contained in the kernel of A. Thus A(G) q¿ K[G] and I(G) yÉ 0 .
Indeed, 0 7~ G - 275 E I(G) since this element is central and annihilates
all generators of A(G) .

(ii) Basic properties of G imply that_ _

	

CC(x) C N and CC(y) C C.
Therefore N, G, and gCg-1 are all contained in the ideal I of K[G]
generated by OG(x) and OC(y) . Finally, if ¡NI = n, then we know that
G is the "disjoint" union ofN and of the n conjugates C,, C2, �. . , C,, of
C. Thus
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and, since K has characteristic 0, we conclude that 1. = 1 E I.

Since the dihedral group of order 2p with p > 2 is a Frobenius group,
the preceding lemma shows that the vanishing of 7(G) does indeed de-
pend on the characteristic of the field . For the remainder of this section
we will asume that K has characteristic 0 . For the most part, we will
be concerned with the symmetric groups Sym, . To start with, we have

Lernma 1.7 . Let K be a field of characteristic 0, let G = Sym,, and
let p be an odd prime.

i . Suppose n >_ p, let P be the cyclic subgroup of G generated by
a p-cycle and let Q be the czlclic .subgroup of G generated by a
(p - 1)-cycle . Then

K[G]PK[G] + K[G]QK[G] = K[G] .

ii . If n = p, then the set consisting of any p-cycle and any (p - 1)-
cycle spans 1 .

iii . If n = 4; then the set consisting of any nonidentity 2-element and
any non-identity 0-element spans 1.

Proof. (i)(ii) Assume that n >_ p . Let F = GF(p) and consider the
usual group H of linear functions on F described by ( F--+ a( + b for all
a; b E F with a 7É 0 . ThenH= NC is a Frobenius group with kernel N of
order p and complernent C of order p-1 . SinceH faithfully permutes the
elements of F, we can viewH as being embedded in Sym1, C Sym,, = G.
In this embedding, N is generated by a p-cycle x and C is generated by a
(p-1)-cycle y . Hence, since Gii(x) = N and GH(Y) = C, Lernma 1 .6(ii)
implies that

1 E K[H]ÑK[H] + K[H]CK[II] C K[G]ÑK[G] + K[G]CK[G] .

But P is conjugate to N in G and Q is conjugate to C in G, so

1 E K[G]PK[G] + K[G]QK[G]

and (i) is proved . Finally, if n = p, then P is the centralizar in G of a
p-cycle and Q is the centralizar in G of a (p - 1)-cycle . Thus (ii) follows .

(iii) In G = Sym4, let A = Alto and let N denote the Klein four
subgroup . Furthermore let Dl ; D2 and D3 be the Sylow 2-subgroups of
G and let Cl, C2, C3 and C4 be the Sylow 3-subgroups . Notica that
Di n DI = N and Ci n c,= 1 for all appropriate i -7~ j . Thus since all
elements of G are either 2-elements or 3-elements, we have

Di C;=G+2Ñ+41
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Similarly, by considering the alternating group A, we obtain

=A+41.

Thus, adding twice the second equation to the first and canceling the N
terms yields

~I-i+3~U, =G+2A+1.21 .
i

Finally, if x is a nonidentity 2-elernent of G and if y is a nonidentity
3-element, then CG(x) C_ Di and CC, (y) = Cj for some i, j . Thus the
ideal I of K[G] generated by_ Cc (x) and Cc(y) contains Di and all
its conjugatesas well as C; and all its conjugates . Furthermore, since
Cj C A C G, we sea that I contains A and G . Thus 121 E I and, since
K has characteristic 0, we conclude that 1 = 1 E I .

It is obvious that I(Sym1) = 0 and that I(Sym2) = w(Sym2) :,Z 0 .
Our goal is te show that I(Sym�j = 0 for all n > 3 and tire proof will
proceed by inductivn en n. The following lemma shows how the inductiva
llypothesis is usad . Part (i) is an unpleasant teclmical formulation which
is needed te handle a few small cases .

Lemma 1 .8 . Let G = Syrn, let C be the cyclic subgroup of G gen-
erated by a k-cycle c and let H = Symn_k .

i . Suppose that X is the set of elements of H which do not Nave a
k-cycle in their cycle decomposition and assume that X spans 1
in K[H] . If Y is the set of elements of G which have precisely
one k-cycle in their decomposition, then

C E 1: K[G]CG(y)K[G] C A(C) .
yE1 1

ii . If k > n/2 and A(H) = K[H], then C E A(G) .

Proof.. (i) Consider the usual embedding of Symk x Symn _k in G =
Sym,, and suppose that c E Symk and that H = Sym � _k . If x E X C H,
then CG(cx) = C x CII(x) since c is a k-cycle and since, by hypothesis,
x has no k-cycle in its decomposition . Thus, since cx E Y, we sea
that CCII(x) = CG(cx) is contained in I_ ~,vEYK[G]CG(y)K[G] .

Furthermore, since C commutes with K[H], it follows that I contains

Y~ K[H]CCII (x)K[H] =C1: K[H]CH(x)K[H] .
XEX

	

XEX
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But 1 E r-.Ex K[H]CH(x)K[H], by assumption, and therefore C E I C
A(G) as required .

(ii) If A(H) = K[H], then obviously X = H spans 1 in K[H] . Further-
more, since k > n/2, we have k > n - k and therefore X consists of the
elements of H which do not have a k-cycle in their cycle decomposition .
The result now follows from (i) .

Next we consider two special cases with small values of n.

Lemma 1 .9 . Let G = Sym� .
i . If n = 6 and if X is the set of all elements of G which are not

6-cycles, then X spans 1 .
ii . If n = 9, then A(G) = K[G] .

Proof.: We start with a general observation .

	

Let a: G �+ { fl } be
the natural group homomorphism determined by the parity map o, and
extend this to a K-algebra homomorphism u: K[G] -> K . Notice that
if t is a transposition in G, then 1 + t E Ker(a) . Indeed, we claim that
K[G](1 + t)K[G] = Ker(o,) . To this end, let I denote the left-hand
ideal and set W = {g E G 1 g - o,(g) E I}- Then W is easily seen
to be a normal subgroup of G and ; since t E W, we have W = G and
hence clearly I = Ker(o,) . Define T to be the subgroup of G of order 2
generated by t.

(i) Let n = 6 and continue with the above notation . Furthermore, let
Y be the set of elements ofG which contain precisely one 2-cycle in their
decomposition . If H = Sym4 ; then we know from Len-una 1.7(iii) that
the set X. C_ H consisting of a 4-cycle and a 3-cycle spans 1 . Thus since
t is a 2-cycle, Lemma 1 .8(i) implies that

1+t=TE
JEY

K[G]Cc(y)K[G]

and, by the observation of the first paragraph, the preceding ideal con~
tains Ker(o,) and has codimension at most 1 . But if y = (12)(3 4 5 6) E Y,
then CG(y) C Alts and hence CC(y) 1 Ker(o,) . With this, we conclude
that Y spans 1 and, since Y contains no 6-cycle, this part is proved .

(ii) Similarly, let n = 9 and set H = Sym7 . Then, by Lemma 1.7(ii),
the set X C_ H consisting of a 7-cycle and a 6-cycle spans 1 . Again,
Lemma 1.8(i) implies that 1 + t = T E A(G) and therefore A(G) 2_
Ker(Q) . But if y E G is a 9-cycle, then CC(y) C Alt9 and therefore
CG(y) 0 Ker(a) . As before, it follows that A(G) = K[G] .

We now use Bertrand's Postulate to handle the remaining symmetric
groups .



Theorem 1 .10 . If K has character°istic 0, then Z(Symj = 0 for all
n>3 .

Proof. Write G = Syrn,, and proceed by induction on n >_ 3 . In view
of Lernma 1.5, our goal is to show that A(G) = K[G] . If n is a prime,
then this is certainly the case by Lernma 1 .7(ii) and, in particular, this
starts the induction wheu 7i = 3. VVe can now assume that n is not a
prime and that n > 4 .

Suppose that there exists a prime number p with n/2 < p < n and
with p 7~ n - 1, n - 2, (rc + 1)/2 or (n + 2)/2 . In this case, since n ='Z p

by assumption, we sea that if k. = p or p - 1, then n > n - k >_ 3 and
furthermore k > n/2 . By induction we know that 1. E A(Sym,_ti)and
therefore Lermna 1. .8(ii) iniplies that A(G) contains

_
and

_
where P

is generated by a p-cycle and Q is generated by a (p - 1)-cycle . Since
p > n/2 is odd, we conclude from Lernma 1.7(i) that A(G) = K[G] and
trence that Z(G) = 0 .

I:t remains to show that such a prime p exists except for a few small
values of n . For any positive real nurriber (, let r«) denote the number of
primes less than or edual to ~ . Then the set of primes p with n/2 < p < n
has size 7r(n) - rr(n/2) . Now a.ccorcíirrg to [RS, Theorem 2, Corollary 3]
we have

and hence
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r(2() - -(S) > 3(/51og ~

	

for all ~ > 20.5

7r(n) - 7r(n/2) > 3(20.5)/51og(20 .5) > 4

	

for all n > 41 .

With this, it is simple to check that

7r(n) - rr(n/2) > 3

	

for all n > 17 .

In particular, if n >_ 17 then there are at least three primes p with
n/2 < p < n . On the other hand, we note that n, - 1 asid n - 2 cannot
both be prime and that (n+1)/2 and (n+2)/2 cannot both be integers .
Thus the restriction p :,P'~ n-1, n-2, (-n+1)/2 or ('n+2)/2 eliminates at
most two primes from this segment and we conclude that an appropriate
p does indeed exist for n >_ 17 . Therefore the induction stop carries
through in this range .
R.ecall that n > 4 and that n is not a prime. Rrrthermore, note

that we do not really need f(n) - 7r(n/2) to be > 3 . Rather, we just
need the existente of an appropriate prime and clearly p = 11 works for
n = 16,15,14 and p = 7 works for n = 10 . This leaves only the special
cases n = 4, 6, 8, 9, 12 to be considerad and we already have affirmative
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answers for n = 4 from Lenuna 1 .7(iii) and for n = 6,9 from Lemma 1.9 .
Thus there are only two integers left .

Ifn = 12, let p = 7 . Then it follows from Lemma 1 .8(ii) that P E A(G)
where P is the subgroup of G generated by a 7-cycle . Furthermore, by
Lemma 1.9(i), the set of elements of Symb which are not 6-cycles spans
1 . Thus Lemma 1.8(i) with k = p - 1 = 6 and n - k = 6 implies that
Q E A(G) where Q is generated by a 6-cycle . Lemma 1 .7(i) therefore
yields the result in this case . Similarly, if n = 8 then we let p = 5 and
use the fact, given in Lemma 1 .7(iii), that a 2-cycle and a 3-cycle span 1
in K_ [Sy_m4] . This again guarantees that A(G) contains an appropriate
P and Q and the theorem is proved . a

If K is an algebraically closed field of characteristic 0, then the rep-
resentation theory of K[G] is equivalent, in some sense, to the character
theory of the finite group G. Thus it is reasonable to translate the prob-
lem studied here into character-theoretic language. Since this translation
is well known, we will just mention a few basic facts . We follow the no-
tation of [I] .

Lemma 1.11 . Assume that K is algebraically closed and let 0: G->
K denote the character of the adjoint representation of K[G] . Then

i . O(g) = ¡CG(g)j for all g E G and

G
0 = E(1C,,(-))

where the sum is over representatives x of the conjvgacy classes
of G.

ii .

where ~(g) = O(g-I ) for all g E G.

Proof: (i) Since 0 is the character of the conjugation permutation
representation, it is clear that O(g) = ICG(g)I, the number of elements
x E G which are fixed by g. The second formula is also clear Since
is the sum of the characters which correspond to the action of G on
individual conjugacy classes .

(ii) The expression 0 = L.'OElrr(G) 00 can be deduced from the char-
acter orthogonality relations [I, Theorem 2.18] and the fact that O(g) =
ICG(9)1 . A more natural proof starts by writing K[G]=ZiPElrr(G) M
a direct sum of full matrix rings over K, with M(O) corresponding to



GROUP ALGEBRAS AND ENVELOPING ALGEBRAS

	

87 1

the character 0 . Then each M(O) is a submodule of K[G] under the
adjoint action and, as is well known, the character of this submodule is

. "

It is obvious that the adjoint representation of K[G] is faithful if and
only if every irreducible character X E Irr(G) is a constituent of 0 . Thus
the above and Frobenius reciprocity yield

Lemma 1.12. IfK is algebraically closed, ten I(G) = 0 if and only
if,, for each X E Irr(G), we have

i . X is a constituent of (le~i,,;i)G for Borne x E G, or
ii . le,:(,;) is a constituent of X restricted to CC(x) for some x, E G,

or
iii . X is a constituent of zpo for soirr,e ,0 E Irr(G) .

There is obviously a good deal yet to be done on this topic .

2 . Enveloping Algebras

Now let L be a Lie algebra over the field K and let U(L) denote
its universal enveloping algebra. Then 7-t = U(L) is a Hopf algebra
with comultiplication and antipode determinad by e H P ® 1 + 1 ® e
and S(e) = -P., respectively, for all e E L. Of course, 1 H 1 ® 1 and
S(1) = 1 . It follows that the Hopf left adjoint action of U(L) on itself
is determinad by e - x = ex - xe for all e E L and x E U(L) . In other
words, e - x = [e, x] = (ad e)x . Again we are concerned with the kernel of
the adjoint representation, namely

I(L) = I(U(L)) = { a E U(L) ( a - U(L) = 0 } .

It is clear that I(L) n L = 7L(L) and therefore, as with groups, 7L(L) :7~ 0
implies that I(L) =,b 0.

One might expect the study of the adjoint actions of U(L) and of
K[G] to be somewhat similar because of the common Hopf algebra root .
However, this is apparently not the case and indeed Lie results seem
to be considerably more elusivo . Nevertheless, since delta methods are
now available for U(L), there does exist an appropriate Lie analog of
Theorem 1 .1 . For this, let 0 = {e E L 1 dirnK [e, L] < co } and let AL
denote the subspace of L generated by all finita-dimensional Lie ideals
of L. Then AL C ~i are characteristic Lie ideals of L and we have
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Theorem 2.1 . If L is a Lie algebra over a field K of characteristic
0, then

I(L) = (T(L) n U(OL))U(L) = U(L) (Z(L) n U(AL))

In particular, if AL = 0 then Z(L) = 0 .

Proof- We follow the notation of [BP2] . Let a E Z(L), choose a com-
plementary basis X for AL in L and use it to write cx =El~ pa, based
on AL . Thus each aN, E U(AL) and each p is a distinct straightened
monomial in X . Our goal is to show that %, E Z(L) for all p .

It is convenient to use the Hopf comultiplication notation . For ex-
ample, since p is a monomial in X, we can write the comultiplication
ofp as E( ,,) p1 ®p2 where the sum contains all ordered pairs { p1, p2 }
which are complementary partial products of p . Since p is a straightened
monomial in X, so also are p1 and p2 . Furthermore, since %, E U(OL),
the comultiplication of % is contained in U(AL) ®U(AL) . Therefore we
can assume that the sum E(«j (aN )1 ® (au)2 involves only terms from
U(OL). We use both these assumptions when we write the comultipli-
cation of par, as

E (paw)1 ® (p011)2 =

	

p1(01,)1 ® p2(a,)2-
((%)

Now a E Z(L), so for all r E U(L) we have

and hence

0 = a - r = (Pa,) - r =

	

1: (Pa,.)1 r S((pa,.)2)

Y" mi (nj1 r S(p2(a~)2)

0 =

	

P1(%)1 r S((%)2)S(p2)

	

for all r E U(L) .

Notice that the latter formula is a linear identity in U(L) . Further-
more, each (a,)1 is contained in U(AL) and each p1 is a straightened
monomial in X. Thus, for any monomial u, [BP2, Theorem 4.5(i)] im-
plies that

0=

	

~l E(a,)1rS((aM)2)S(p2)
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wllere

	

indicates the partial sum of those terms with MI = a . In
particular, if we take o, = 1, then pq = 1 implies that /-I2 = ¡~ and the
preceding displayed equation becomes

0= E(a,,)Ir5((%)2)S(h)
IL (ai.)

Again, the latter formula is a linear identity in U(L) and this time
we observe that S((arJ2) E U(InkL) and that S(p) = fp is plus or
minus a straightened monomial in X . Thus, for any monomial T, [BP2,
Theorem 4.5(ii)] yields

0 = ~(a,), r S((a,)2) = aT - r

	

for all r E U(L) .

In other words, aT E I(L) n U(AL) and, since this holds for all such T,
we have

a = E Ta, E U(L) (Z(L) n U(AL)) .
T

for all r E U(L) .

Thus, since I(L) n U(AL) is an L-stable ideal Of U(AL), we conclude
that

I(L) = U(L) (Z(L) n U(In'L)) = (Z(L) n U('n1L))U(L)

and the result follows . Furthermore, if AL = 0, then clearly we have
I(L) n U(OL) = I(L) n K = 0 and therefore I(L) = 0 as required .

The corresponding result in characteristic p > 0 is decided1y falso . For
example, let L=A x B wllere A = (al, a2 . . . . ) is an infinito-dimensional
abelian ideal, B = Kb is a one-dimensional complemerit and [a ¡ , b] = al+I
for all i . Then it follows easily that AL = 0 and that ar E 71 (U (L» for all
a E A . Thus 0 = ad ar = (ad a)'', so ar' E I(L) and therefore Z(L) 0 0 .
As is well known, such examples occur because, in characteristic p > 0,

ordinary enveloping algebras do not adequately reflect their Hopf algebra
structure . Indeed, in this context, one knows that it is more appropriate
to consider restricted Lie algebras . Furthermore, if L is any Lie algebra,
then there exists a restricted Lie algebra L with U(L) = u(L) . Thus, in
positive characteristics, the restricted case is really the general case .

If L is a restricted Lie algebra over a field K of . characteristic p > 0,
then we let u(L) denote its restricted enveloping algebra . The formulas
for the comultiplication, antipode and left adjoint action are of course
the lame as in the ordinary case and we write

I(L) = Z(u(L)) = { a E u(L) 1 a - u(L) = 0 }
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for the kernel of the adjoint representation . Again AL denotes the subal-
gebra of L generated by al] finite-dimensional (not necessarily restricted)
Lie ideals and we let A be as before .
Now delta methods exist for u(L), but unfortunately their statements

in the literatura are not quite what we require . Nevertheless, the neces-
sary results are true, follow fairly easy from what is known and will be
published at soma later time . For now we just make two quick observa-
tions . First, it is an easy exercise to show that AL = 0 in the restricted
case and, in particular, we sea that AL is a characteristic restricted ideal
of -L . Second, the argument of [BP2, Proposition 4.2] applies equally
well to restricted enveloping algebas and yields the necessary sharpening
of [BP1, Theorem 5 .1] . With this, the exact restricted arralog of [BP2;
Theorern 4.5] holds and therefore a direct application of the preceding
proof yields

Theorem 2.2 . If L is a restricted Lie algebra over a field K of char-
acteristic p > 0, then

z(L) = (z(L) n u(AL))u(L) = u(L) (z(L) n u(AL ))

In particular, if AL = 0 then Z(L) = 0 .

The similarity of the preceding two theorems suggests that we should
modify our notation somewhat . Thus, for the remainder of this section,
we will observe the following conventions .

(1) If K has characteristic 0, then L is an ordinary Lie algebra and
U(L) is, as usual, its ordinary enveloping algebra.

(2) If K has characteristic p > 0, then L will be a restricted Lie
algebra and we changa notation to let U(L) denote its restricted
enveloping algebra .

As will be apparent, this chango allows us to avoid unnecessary repeti-
tions .

Next, we also modify our direction somewhat . We know that L is
a submodule of U(L) under the adjoint action and, for many reasons,
this is a more interesting module structure to study . Thus we will be
concerned with faithfulness in this context and we let

,7(L) = { a E U(L) 1 a - L = 0 }

denote the ideal of U(L) which is the kernel of the action of U(L) on L .
Obviously ,7(L) D Z(L) and ,7(L) :A 0 when L is abelian .

If L is a finite-dimensional Lie algebra, then it is well known that
,7(L) :A 0 . Indeed, in characteristic 0, every 0 :,A 2 E L is transcendental
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as an element of U(L), but of course ad Q is an algebraic linear transfor-
mation en the finito-dimensional space L . On the other hand, in charac-
teristic p > 0, the dimension of U(L) is just too largo . To be precise, if
dimK L = n >_ 2, then we have dimK U(L) = pl > n2 = dimK EndK(L) .
FIrthermore, equality can only occur when p = n = 2 and this case is
then easily checked by hand . As we will see in the next two lemmas,
,7(L) =,,É 0 seems te be the rulo even in infinito-dimensional situations .
Nevertheless, in the final result of this section we will apply delta meth-
ods to show that there is an abundant supply of Lie algebras L with
,7(L) = 0 .

Lemma 2 .3 . Let A be an associative algebra over the field K and let
L be a K-subspace of A closed under the Lie bracket [x, y] = xy - yx .
Furthermore, if K has characteristic p > 0, assume that L is closed
under taking pth powers . Then ,7(L) :y~ 0 if either

i . K has characteristic 0 and L contains a nonzero algebraic element
of A, or

ii . K has characteristic p > 5 and L contains a nonzero idempotent
of A or a nonzero element of A of square 0 .

Proof.. Notice that L acts on A via P - a = (ad Q)a =

	

[e, a] for all
P E L, a, E A and hence the adjoint action of U(L) on L extends to an
action on A. Dirthermore, we have ad £ = Ge - Re where Ge : A -> A
denotes left multiplication by 2 and where Re : A -~ A denotes right
multiplication . Of course Ge and Re comrnute as operators .
Now if 0 q¿ ~~ E L is an algebraic element of A, then clearly Ge and Re

are algebraic operators on A and, since they comrnute, so is ad e = ,Ce -
Re . Thus the result follows in characteristic 0 since 2 is transcendental
as an element of U(L) .

Finally, if P is an idempotent element of A, then Ge and Re are com-
muting idempotent operators and it follows easily that (ad P)3 = ad B .
Similarly, if P is an element of A of square 0, then ,e2 = R2 = 0 and hence
(ad 2)3 = 0 . In either case, ad B is algebraic of degree <_ 3 . On the other
hand, if K has characteristic p > 0 and if 2 ~ 0, then 1, P, P2, . . . , QP-1
are K-linearly independent when viewed as elements of U(L) . Thus, if
p > 5, we conclude that U(L) is not faithfu1 on L .

In other words, the usual constructions for infinito-dimensional Lie
algebras lead to situations which are not faithful . One such construction
of particular interest is as follows . If W is a subspace of the vector space
V, we let

EndK (V ;W) = {t E EndK(V) 1 t(V) C w} .
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Then End(V; W) is a subalgebra (without 1) of Énd(V) and, in par-
ticular, it gives rise to a (restricted) Lie algebra which we denote by
gl(V ; W) .

Lemma 2.4 . Let L = gl(V ; W) with W an infinite-dimensional
proper subspace of V. Then 0 = 0, but ,7(L) 7É 0 .

Proof.. We can easily see that 0 = 0 by looking at matrices, but a
simple direct proof is as follows . Let t be a nonzero element of £ =
End(V ; W) . Since t q¿ 0 and V q¿ W, it follows that t does not vanish
on V \ W. Thus we can choose v E V \ W with t(v) = w 0 0 and we
note that { v, w } is linearly independent since w E W. Now let S be
the subalgebra (without 1) of £ consisting of all s E £ with .s(v) = 0 .
Then the independence of { v, w } easily implies that the evaluation map
1:S -> W given by .s H-> .s(w) is a K-linear epimorphism and therefore
the kernel of ~ has infinite codimension in S . Furthermore ; if s E Es(t),
then s(w) = st(v) = ts(v) = 0 and thus CS(t) C Ker(~) . Putting this all
together, we see that Cs(t) has infinite codimension in S, so Q(t) has
infinite codimension in £ = End(V, W) and this, in turn, implies that
0=0.

For the second part, we note that ,7(L) 0 0 follows irrimediately from
the previous lemma except when K Iras characteristic 2 or 3 . However,
we can offer a simple direct proof which applies to all characteristics .
Te start with, since V 7~ W and dinIK W >_ 2, it follows that there
exist two linearly independent transformations x, y E End(V; W) with
x(W) = y(W) = 0 . The latter conditions then imply that xEnd(V ; W) =
yEnd(V ; W) = 0 and hence; for all t E End(V; W), me have [x, t] = -tx
and [y, t] = -ty . Thus (ad x) (ad y)t, = tyx = 0 and we conclude that
xy E ,7(L) . On the other hand, { x, y } is linearly independent ; so xy =,A 0
in U(L) and therefore ,7(L) :,A 0 as required .

Thus we see that 0 = 0 does not imply that ,7(L) vanishes and
therefore the natural analog of Theorerns 2 .1 and 2.2 cannot hold in this
context .

For any Lie algebra L, let w (L) denote the augmentation ideal of U (L),
namely the ideal of U(L) generated by L . Of course, w(L) is also the
kernel of the algebra epimorphism U(L) --> K determined by L -> 0 and
hence U(L) = K + w (L) .

Lemma 2.5 . 'Let L be a Lie algebra over the field K.
i . There exists a Lie algebra M :,b 0 containing L with 0(M) = 0.

ii . If 0(L) = 0, then there exists a Lie algebra N containing L with
0(N) = 0 and ,7(N) n U(L) = 0 .



GROU1' ALGEBRAS AND ENVELOPING ALGEBI2,AS

	

877

Proof (i) We can asume that L is an infinite-dimensional Lie algebra
and therefore that dinIK U(L) = oo . Now let V = U(L) and set W =
w(L) . Then, via the left regular representation of U(L), we see that w(L)
embeds in EndK(V ; W) . Tlrus L C_ gl(V ; W) = 111 and the preceding
lernma yields tire result .

(ii) We are given ~L(L) = 0 and we can clearly asume that L :7~ 0
so that dimK L = oo . If N = w(L) then, via the usual Lie bracket
[x, y] = xy - yx, it follows that N is a (restricted) Lie algebra containing
L . The goal is to show that 0(N) = 0 and that ,7(N) n U(L) = 0 .
To start with, if x E 0(N), then certainly x is an elernent of U(L)

satisfying dinIK L/CL(x) < oo . [BP1, Lernrria 7.1] therefore implies that
x E U(0) = K and hence x E K n w(L) = 0 as required .
Next ; consider the adjoint action o of U(N) on N and notice that L

aets on N via, e " a = [~, a] = Pa - aB for all B E L and a E N = w(L) .
Since the action of U(L) on N is the unique algebra extension of this,
it follows that the o action of U(L) is identical to the adjoint action - of
U(L) on w(L) . Therefore, we have

,7(N) n U(L) = {p E U(L) 1 0 - w(L) = 0 }

and, for conveniente, we denote the latter ideal by Z'(L) . Now it is clear
that {,3 E U(L) 1 3 - K = 0 } = w(L) and therefore U(L) = K + w(L)
implies that w(L) n Z'(L) = Z(L) . Furthermore, 0(L) = 0 so Z(L) = 0
by Theoorms 2.1 and 2 .2 . Thus T(L) C 1.ann w (L) = 0, since L is infinite
dimensional, and the result follows .

It is now a simple matter to prove

Theorem 2.6 . Tf L is a Lie algeb-ra in characteristic 0 or a restricted
Lie algebra in characteristic p > 0, lhen there exists a (restricted) Lie
algebra L D L such that 0(L) = 0 and ,7(L) = 0 .

Proof- According to Lemma, 2.5(i), we can embed L in a Lie algebra
L r with A(L1) = 0 . Furthermore, starting with Lr, we can then use
Lemma 2.5(ii) to inductively construct a chain Lr C L2 C - - - of Lie
algebras satisfying A(Lj = 0 and ,7(L �,+r) n U(L,z ) = 0 for all n >
1 . Finally, we set L = U' L.� so that L is a (restricted) Lie algebra
containing L . Tire goal is to show that 0(L) = 0 and that ,7(L) = 0 .
Both of these are quite simple .

First, suppose that x E 0(L) . Then x E L�, for sorne n _> 1 and
therefore x E A(L) n L,, C 0(Lj = 0 as required . Next, suppose that
a E ,7(L). Since U(L) is clearly equal to U1° U(Ln), it follows that
a E U(Lj for sorne n > 1 . Furthermore ; note that the ad action of
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L,, on U(L,,+1) is the restriction of its ad action en U(L) . Vence the
adjoint action of U(L,) on U(L�+i) is the restriction of its adjoint action
on U(L) . Thus ; since a E ,7(L), we nave cti E ,7(L,+1) n U(Lj = 0 and
the theorem is proved .

A concrete example of a Lie algebra L with ,7(L) = 0 is the Virasoro
algebra in characteristic 0 ([D]) .
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