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NON-OBSTRUCTED SUBCANONICAL
SPACE CURVES

Rosa M. Mird-Roic*

To Pere

Abstract

Recall that a closed subscheme X C P is non-obstructed if the cor-
responding point z of the Hilbert schete ﬂ;‘(” is not-singular,
A geometric characterization of non-obstructedness is not known
even for smooth space curves, The goal of this work is to prove
that subcanonical k-Buchsbaum, k < 2, space curves are non-
obstructed. As a main tool, we use Serre’s correspondence be-
tween subcanonical curves and vector bundles.

Introduction

1n 1960 (|G]). A. Grothendieck proved that there is a k-projective
scheme Hilb ), which parametrizes from the functorial point of view all
closed subschemes of P™ with given Hilbert polynomial p(t) € Qft];
though so far very few of these schemes has been studied in defail
and therc are no general results about these schemes concerning con-
nected components, dimension, smoothness, raticnality, topological in-
variants,... From now on, we will say that a closed subscheme X C P"
is non-obstructed if the corresponding point z of the Hilbert scheme
El'ijg;fm is non-singular; otherwise, we will say that X is obstructed. A
geometrical characterization of non-obstructedness is not known even for
smooth space curves and scveral examples of obstructed smooth space
curves has been given, for instance, in [M], [S], [EF], (K1), {K2], [K3],
[E1], and [BKM].

In this paper, we will prove the non-obstructedness of subeanonical
2-Buchisbaum space curves (CE. Theorem 2.5). As a corollary we will
get that 2-Buchsbaum quasi-complete space curves {Cf. Definition 2.8)
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not contained in a surface of degree < 9 are also non-obstructed (Cf,
Proposition 2.7).

Recall that a curve C C P? is subcanonical if the canonical sheaf we
of ¢ is isomorphic to Oc{a) for some integer a; and a curve ¢ C P3
is k-Buchsbaum if and only if & = min{¢t | m'M(C) = 0} where
= (Xg, X1, Xe, X3) and M{C) is the Hartshorne-Rao module of €
Note that a curve ¢ < P? is arithmetically Cohen-Macaulay (Resp.
arithmetically Buchsbaum} if and ounly il is 0-Buchsbaum (Resp. 1-
Buchsbaum). So, the notion of &-Buchsbaum can be viewed as a natural
extension of the notions arithmetically Cohen-Macaulay and arithmeti-
cally Buchsbaum. Moreover, every curve C ¢ P? is k-Buchshaum for
some inleger k.

A classical theorem of Gherardelli says that a smooth irreducible sub-
canonical curve C € P? is arithmetically Cohen-Macaulay if and only
if it is complete intersection (For a weaker characterization of complete
intersection space curves see [CV]). In [EF], Ellia-Fiorentini prove that
an integral subcanonical curve C C P? is arithmetically Buchsbaum if
and only if ¢ is the zero scheme of a section of N(t}, t > 1, where
N is the null correlation hundle. Therefore, subcanonical &£-Buchsbauin
space curves, 0 < k£ < 1, are non-obsiructed. The aim of this paper is to
extend this knowledge to subcanonical, 2-Buchsbaum space curves with
the hope of finding a clue which could facilitate the study of arbitracy
subcanonical space curves.

In section 1, we establish some preliminary results. In section 2, we
prove the main results of this paper. We see that any subcanonical, 2-
Buchsbaum space curve is in the even liaison class of vhree disjoint lines.
From this we can show that any subcanonical, 2-Buchsbaum space curve
is non-obstructed, it has maximal rank and we give a resolution of its
ideal sheal. In section 3, we conclude by studying some examples and
adding some remarks.

Notations

Throughout this paper we work over an algebraically closed field k of
characteristic zero. We set S = k[Xo,..., X3] , m = (Xo,...,Xy) C §
and P* = Proj(S) . By a curve we mean a closed, locally Cohen-
Macaulay, one-dimensional subscheme X < P3. For a coherent sheaf
Fon X, F(n) as usual will be I’ ® Ox(n) and we let A'F(n) =
dimy H*{ X, F(n)).

Given a curve C C P¥, we denote d = degree of €, p, = arithmetic
genus of C, s = min{t | () # 0}, e = max{t | H'Og(t) # 0}
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and ¢ = max{t | H'l¢(t) # 0} (¢ = —c0, if C is arithmetically Cohen-
Macaulay). For a curve C' in P3, the Hartshorne-Rao module M{C) =
@, H'Ic(n) is a graded S-module of linite length. Recall that a curve
C in P3 is said to be a-subcanonical if the canonical sheaf we of € is
isomorphic to O¢{a) and a curve C in P? is said to have maximal rank
if the restriction map HY(P3 Opa{(n)) — H°(C,Oc{n)) is of maximal
rank, for every integer .

For a coherent sheaf E on P? we denote H!(FE) the graded S-module
&, HY(P3, E(n)). A rank 2 vector bundle & on P3 is said to be stable if
HOE,orm = 0 where £, unn denotes the twist of £ which has first Chern
class equal 0 or —1. Our main reference for this subject is [H].

1. Generalities

In the present section we recall the definitions and basic propertics
needed later.

Definition 1.1. ([E], [MM]) Let C C P? be a curve. We say that C
is k-Buchsbaum if and only if & = min{t | m* 4 {C) = 0}.

See [MM)] for general results on k-Buchsbaum curves.

Remarks 1.1.1. {a) € is 0-Buchsbaum (Resp. 1-Buchsbaum) if
and only if C' is arithmetically Cohen-Muacaulay (Resp. arithmetically
Buchsbaum}.

(b) For any curve C' C P? there is an integer &k such that C is k-
Buchsbawm.

(¢) Let C,.D C P2 be two curves in the same liaison class. Then, C is
k-Buchsbaum if and only if D is k-Buchsbaum.

Definition 1.2. ([E], [MM]) A rank 2 vector bundle £ on P2 is said
to be k-Buchsbaum if and only if &£ = min{¢ | m*HE = 0}.

Remark 1.2.1. If F is a rank 2, k-Buchsbaum vector bundle on P2,
then the zero sct of a section of FE{n) is a k-Buchsbaum, subcanonical
curve. Conversely, any subcanonical, k-Buchsbaum curve corresponds
to a rank 2, k-Buchshaum vector bundle on P*.

From [E|, we get the following characterization for rank 2, k-
Buchsbaum, & < 2, vector bundles on P3.

Proposition 1.3. Let E be a normalized, rank &, k- Buchsbaum vector
bundle on P3. Then:

k =0if and only if E is direct sum of line bundles,
k=11 and only if £ is the a correlation bundle,
k=2 1if and only if E 15 slable, ¢, E =0 and o F = 2.
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Proposition 1.4, Let E be g rank 2 stable vector bundle on P? with

e1E =0, o =2. Then:

(1) KPE() =0 fort > —4, K2E(t) =0 fort £ —3, —4 and h2E(t) = 2
fort = =3,—-4, A1E@E) = 0 for t # —1,0 and R'E(t) = 2 for
t=0,-1, BPE(t) = 0 for t <0 and KOE(t) = xE(t) for t > 0,
and E(2) is generated by its global sections,

(2) There is o section s € HPE(1l) whose zero set is three disjoint
lines,

(3) ¥ has a locally frec vesolution of the following kind:

0 —— 20{—4) — 60(-3) — 20(—-1) H40(-2) — E — 0.

Furthermore, the moduli space M(0,2) of rank 2 siable vector bundies
on P? with c; =0, ¢y = 2 is an irreducible, smooth variety of dimension
13. '

Proof: 1 will only proof (3); for the other results see [H]. By (2}, there
is a section 8 € HYF(]) which gives us an exact sequence:

(1) 0— O — E(1) — Iy(2) — 0

where Y is the disjoint union of three lines.

By [I, Proposition 7.2.2], Ty has a resolution of the following kind:

(2) 0 — 20(—5) — 60(—4) — O(-2) @ 40(—3) — })» — 0.

Set K := Ker(40(~3) & O(—2) — Iy). Then, the exact sequence (2)
breaks up and gives us the exact sequences:

(3) 0 — 20(-5) — 60(-4) — K — 0
() 0 — K — O(=2) @ 40(=3) — Iy — 0.
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The exact sequences (1) and (4) give us the following diagram:

0 0
| |
K(1) — K1)

0 — O(—1)— 20{=1) @40 —2) —— O~ 1) B4O(~ 2) ——

I
— Iy (1) —90

l

ty — @ —

0——O(-1)——

S e

Finally, the exact sequence {3) together with the exact sequence:
0 — K(1}) — 20(-1) & 40(-2) — E — 0
gives us Lhe resolution of £ :
0 — 20{—4) — G6O{—3) — 20(—1) O AO(=2) — £ — 0. =

2. Subcanonical, 2-Buchsbaum space curves

In this section, we give a complete description of subcanonical, 2-
Buchshaum space curves.

Theorem 2.1. Let © C P* be an inlegral, a-subcononucal curve.
Then, C' is 2-Buchsbaum if and only if C s the zero scheme of a section
of a rank 2 stable vecior bundle £ on P2 with e1 £ =0 and co /£ = 2.

Proof Let £ be a rank 2 stable vector bundle on P? with ;£ =0
and co E = 2. By Proposition 1.3, F is 2-Buchsbaum. In particular, any
curve associated to £ is 2-Buchsbawmn.

Conversely, let € € P? be an integral, 2-Buchshaum, a-subcanonical
curve. Set b= a/2 if a is cven, and b = {a + 1)/2 if a is odd. A general
section 0 # s € H%we ~ H0¢(a) gives us an cxact sequence

0— O - Fb+2} — {ela+4) —0
where F is a rank 2 vector bundle on P3. Since a 2-Buchsbaum curve
gives risc to a 2-Buchsbanm sheaf, applying Proposition 1.3, we get that
Fisstable, s FE=0and e, £ =2 1



766 R. M. Miro-Roia

Proposition 2.2. Let E be o rank £ stable vector bundle on P?¥ with
c1 =0, ca =2 and let C C P? be the zero scheme of a section of E(t),
t>1. Then:

(1) we = Oc(2t — 4), e{C) =2t —4, s(C) =t + 1, deg(C) =2 + 2,
Do =1 — 242 42t — 3,

(2) M{C)je1 >~ M(C)y =Kk?, M(C), =0 forn#tt—1,

(3) C has macimal rank and belongs to the even liaison class of three
disjoint lines,

(1) The ideal sheaf Io of C has a locally free resolution of the fotlowing
knd:

0 — 20(—5) — 60(—4) — 40(-3) & O{-2) — Ic — 0

ift =1, and

0—20{—4 -t) — 60(-3—t)pO(-2¢t) —
— 402 -} D2O0(~1~ &) — [ — 0

ft > 1.
Proof: (1}-(3) follows from Proposition 1.4 and the exact sequence
0— O — Et) — Ic(2t) — 0.
(4} 1f t = 1, then C is the digjoint union of three lines and the result
follows from [I, Proposition 7.2.2|.
Assume ¢ > 1 and consider the locally free resolution of & given in
Proposition 1.4:

(1) 0 — 20(—4) — 60(=3) — 40(=2) @& 20(=1) — E — 0.

Set K := Ker(40(-2) @ 20(—1) — E). Then, the exact sequence (1)
breaks up and gives us the exacl sequences: '

{(2) 0 — 20(—4) — 60(-3) — K —0
(3) 0— K —40(-2y320(-1) — E — (.

The exact sequence (3) together with the exact sequence:

00— O(-2t) — E(—t) — Ic — 0
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gives us the following diagram:

] 0
l }
0 + K > KaO{-2i) — O(=2) —— 0
1| l !
0 r K » 20(—1 — DAC(-2 -1} —— fB(—t) — 0
! l
o — Iz
l l
0 0

Finally, using the exact sequence (2) and the exact sequence:
00— KaO0(-2t) —20(-1-1)®d40(-2~-1t) — Ic — 0
we pet the locally free resolution of I
0 — 20{—4 — 1) — 60(—3 - ) ® O(-2t) —
— 42 -} B20(-1 -1} — ic — 0 1

Lemma 2.3. Let E be @ rank 2 stable vector bundle on P3 with ¢ E =
0, FE =2 Then, WEQE=hE®FE=0.

Proof- By proposition 1.4, E has a locally free resolution of the fol-
lowing kind:

(1) 00— 20(~4) — 60(-3) — 40(-2) @ 20(-1) — £ — 0.
Set, K = Ker{40(-2) ® 20{—1) — F). Then, the exact sequence (1)
breaks up and gives us the exact sequences:
{2) 0 — 20(—4) — 60(-3) — K — 0
(3) g — K —40(-2y®20(-1) — E -— §.
Finally, tensoring (2} and (3) by £ and taking cohomology we get
WEQE=hEQE=0. 1

Let F(t) be the family of curves zero schemes of sections of I(¢),
t > 1, where F is a rank 2 stable vector bundle on P? with ¢ E = 0 and
CgE =2
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Proposition 2.4. {1} For allt > 1, F(t) is an irreducible family of
dimension 12 ift=1 and 262 + 10+ (3 + 5¢)/3 if t > 1.

{2) For t +# 3,4, the closure of F(t) in Hilb P® is an irreducible com-
ponent generically smooth.

{8} F(3) (Resp. F(4)) is contained in a unique component of Hilb P3,
generically smooth of dimension 44 {Resp. 72).

Proof: (1} The irreducibility of F(t) follows from the irreducibility of
M(0,2). On the other hand, dim F(¢} = dim M{0,2) + RPE{t) — A%O¢
for a general E in M(0,2) and a general C in F(¢). So, the dimension
of F(t) is 12 if t=1 and 2¢% + 10t + (3 + 5¢)/3 if £ > 1.

(2} Assume t # 3,4. Let ¢ be a curve in F(f) and let Ng be its
normal bundle. Since the Zariski tangent space of Hilb P® at the point
corresponding to C is isomorphic to HONe and h®Ne = 4deg(C} +
h!Nc, it is enough to compute h!Ng and to check that dim F(¢) =
RONg. But, C is the zero scheme of a section of E{¢), hence Ng ~
E(t) ® O¢ and we have h'Ng = hH{E{#) ® O¢) = hR*(E(t) ® Ic). On
the other hand, tensoring by F{f) the exact sequence:

00— O(-2t) — E(—i) — I — 0,
taking cohomology and using lemma 2.3, we get:

0 i t=1,2

Putting altogether we have: for ¢ = 1,2, dim F(t) = R®Ne = 4deg(C)
and A'Ng = 0 and for ¢ > 4, dim F(t) = h?Ng; which gives what we
want.

(3) Assume t = 3,4. Let C be a curve of F(3) {(Resp. F{4}) and
let Ng its normal bundle. As before, we compute h! No and we get:
hA'Ng = 0 and dim F(t) < 4deg(C) = h°Ng = 44 {Resp. 72). So, F(3)
(Resp. F{4)) is contained in a unique irreducible component of Hilb P3,
generically smooth of dimension 44 (Resp. 72). B

Theorem 2.5. Let € C P? be an irreducible, subcanonical curve.
If C is k-Buchsboum and k < 2, then C is non-obstructed {i.e. the
corresponding point of the Hilbert scheme is smooth).
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Proof The case k = 2 follows from Proposition 2.4, the case k = 1
from {EF, Proposition 3.5 and the casc & = 0 from [El].

Definition 2.6. A curve C' C P? is said to be quasi-complete intersec-
tion (bricfly q.c.i.) if there exists a surjection &}, Ops(~a;) — I — 0
for some integers ay < az < az.

Remark 2.6.1. This definition is cquivalent to saying that there are
homogeneous elements fi, f2, f3 € [{X) of degrees a, az, a3, respec-
tively, such that I(X}/(f1, fz, fa) is a graded S-module of finite length.

Remark 2.6.2. Let X be a curve in P?. If X is the zero scheme of a
section of a rank 2 vector bundie on P3 and Z is jinked to X then Z is
g.ci. Conversely, if Z is g.c.i. of threc surfaces of degrees a1 < ag < a3
and X is linked to Z by means of two surfaces of degrees a; and ay,
respectively, then X is the zero scheme of a section of a rank 2 vector
bundle on P,

Proposition 2.7. Let Y C P? be an iniegral 2-Buchsbaum curve
g.c.i. of three surfaces of degrees 9 < a1 < az < a3. Then, ¥ s non-
obstructed.

Remark. See [Mi], for the case of integral, 1-Buchsbaum, quasi-
complete interseclion space curves.

Proof: By definition there exists a surjection @j—, Ops(~a;) — Iy —
0. Set F:= Ker(®),Opa{—a;) — Iy) and E := F({a; + a2 + a3)/2).
By Proposition 1.3, F is a 2-Buchsbaum stable rank 2 vector bundle on
P? with Chern classes ¢; = 0, ¢; = 2. Now, we link ¥ to an irreducible
curve X by means of two surfaces of degrees a; and az, respectively. By
[PS, Proposition 2.5], the ideal sheaf 7y of X has a locally free resolution
of the following type:

00— O(ﬂ;‘ — (o —(L1) —_ E((as — iy —a])/Z) — fy — 0,

and by propositions 2.2 and 2.4 X is a non-obstructed, maximal rank
space curve. Moreover, the hypothesis on ;s and Proposition 1.4 imply
that H'7x(as —4) = H'Ix{a; —4) = 0. Thus, Y is non-cbstructed (K2,
Corollary 3.10). m
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3. Comments and Questions

If we try to generalize the results of section 2 to higher values of &,
we immediately encounter difficulties of various kinds, to be pointed out
presently.

First of all, note that all subcancnical, 0-Buchsbaum curves are in the
liaison class of a line; all subeanonical, 1-Buchsbaum curves arc in the
liaison class of the disjoint union of two lines; and all subcanonical, 2-
Buchshaum curves are in the liaison class of the disjoint union of three
lines. Thus, it is natural to ask if all subcanonical, k-Buchshaum curves
(k > 2} arc in the liaison class of ¥ = (k) lines or, at least, if all
subcanonical, A-Buchsbaum curves (& > 2) are in the same liaison class.
The answer, in general, is no. For instance:

Example 3.1. Take ¥ the disjoint union of 4 lines, Y5 the disjoint
union of 5 lines, ¥3 a general, irreducible, smooth, elliptic curve of degree
7 and ¥y a gencral, irveducible, sinooth, elliptic curve of degree 8. ¥,
Y2, Y3 and Yy are subcanonical and it is not difficult to see that they
are 3-Buchsbaum. However, computing their Harlshorne-Rao madules
we easily get that they belong to four different liaison classes.

In section 2, we prove that subcanonical, £-Buchsbaum curves, & < 2,
are non-obstructed. We wonder if the hypothesis & < 2 can be avoid. 1o
be mare precise, we suggest the following problems:

3.2.1. To characterize non-obstructed subcanonical space curves, and
3.2.2. To characterize non-obstructed quasi-complete intersection space
CUTVES.
In particular,
3.3.1. Are subcanenical space curves of maximal rank non-obstructed?
3.3.2. Are quais-complete intersection space curves of maximal rank
non-obstructed?
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