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HOW TO SOLVE AN OPERATOR EQUATION

Abstract

MAI2TIN MATHILU

This article summarizes a series of lectures clelivered at the Math-
erna.tics Departrnent of the University of Leipzig, Cerinany in
April 1991, which were te overview teclrniques for solving operator
ecluations en C*-algebras connected with methocis developed in a
Spanish-Gerrnan research project en "Structure ancí Applications
of C*-Algebras oí' Quotients" (SACA) . One of the researchers in
this project was Professor Pere Menal until his unexpected death
this April . To his mernory this paper shall be dedicated .

1. Introduction

Solving equations belongs to tlre fundamental tasks of inathematics .
Many problems in the sciences load te equations involving numbers, map-
pings ; ttnd other guantities . In faca, it frequendy occurs that eventually a
duestion can be phrased as an "equation", although, at first, it appeared
tú be of a rather different nature . To find a solution of an equation gener-
ally implies both the existence as well as the unidueness problem . There
is no universal procedure for solving ; but the devices invented seem , to
be as manifold as the possible questions, asid only allow a rather rough
classification such as nurnerical, approximative, algebraic methods etc .
Flowever, it is always an irnportant stop to determine the corrrmon fea-
tures in solving a certain class of exarrrples for the aire of developing a
machinery which enables to handle a specified collection of equations at
one tiene .

In the present paper; we will be concerned with equations within a
non-commutative infinite dimensional setting . To be more specific, they
will be of the form
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where, for each `parameter' a, T«,~1, � , ,ten is a linear operator on a C*-
algebra A (with certain additional properties) and we are looking for
elements xj E A solving the equation (1) (or better, this system of
equations) . We will firstly collect some examples of questions which can
be phrased in an equation such as (1), then describe a general tool to
tackle them, and finally indicate solutions which yield answers to the
questions listed . As a common feature, the questions in Section 2 lead
to equations in a C*-algebra; that is, we are looking for certain elements
in a C*-algebra solving the equation, while the conditions typically are
formulated in terms of operators defined on the C*-algebra. Needless
to say that there are many more instantes which can be settled by the
proposed methods .

2 . Examples

We have selected our examples from the following four classes of op-
erators on C*-algebas: derivations, completely positive operators, cen-
tralizing mappings, and generators of dynamical semigroups .

2.1 . Derivations .
Let A be a C*-algebra and S a derivation on A, Le . a linear mapping

from A into itself satisfying Leibniz' rule S(xy) = x6(y) + b(x)y for
all x, y E A. Each derivation S is automatically bounded whence it is
meaningful and worthwhile to know under which circumstances 8 is a
compact operator, with respect to the norm or a weaker topology. Here,
we ask when S is weakly compact, that is, when does S map the unit
ball of A into a subset whose closure is compact with respect to the
weak topology on A. (This is more closely related to the point of view
taken in this paper than the norm compact case, which, however, can be
treated similarly .)

Specialize to the case A = B(H), the algebra of all bounded linear
operators on some Hilbert space H. Since B(H) is the second dual of
K(H), the closed ideal of all compact operators on H, and S is continuous
with respect to the Q(B(H),K(H)*)-topology, S coincides with (S j )**,
the second adjoint of the restriction 81 of S to K(H) . It is well known that
6 1 is weakly compact if and only if (81)** maps K(H)** into K(H) [15,
VI.4 .2] . Moreover, by Gantmacher's theorem [15, VI.4 .8], 61 is weakly
compact if and only if (ó1)** is weakly compact . Putting all this together
yields that 8 = (S1)** is weakly compact if and only if SB(H) C K(H) .

In the general case we have to replace K(H) by the ideal K(A) of
all compact elements in A ; and, using appropriate representations, we
obtain the following, cf . [23, Theorem 2 .7] .
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Proposition 1 . A derivation S on a C*-algebra A is 2ueakly compact
if and only if b**A** C K(A) .

Again, K(A) is b-invariant and thus b induces a derivation b en the
generalized Calkin algebra A/K(A) .

Corollary 2 . If b is weakly compact, then b = 0 .

Suppose b were inner, Le . b = b., where 6,(x) = xa - ax, and the
element a belonged to K(A) . Then, b is weakly compact by [41, The-
orem 3 .1] . On the other hand, b** is always inner by Sakai's theorem .
Therefore, the original question of weak compactness of b leads to the
following operator equation .

(1 .1)

	

Can & = 0 be solved in K(A)?

Going one stop further we can ask a similar question for the product
6162 of two derivations 51, 62 on A (which ; in general, is no longer a
derivation) : when is 5162 (weakly) compact? This question should be re-
lated to t11e Dunford-Pettis property of a commutative C*-algebra which
implies that T1T2 is a compact operator whenever T1, T2 are weakly com-
pact on A. By similar arguments as above, it can be formulated in tercos
of operator equations as follows .

(1 .2)

	

Can & i b,12 = 0 be solved in K(A)?

Questions of this kind are studied in [25] and [27] .

2 .2 . Completely positive operators .
Recall that a linear mapping T on a C*-algebra A is said to be com-

pletely bounded if the nornls JIT,,11 of the canonical extensions T,, of T to
the matrix algebras Al,,(A) over A are all bounded by some real number,
and T is completely positivo if all T,, are positivo operators on M� (A) .
The prototypes of completely bounded operators are t11e elemeratary op-
erators given concretely as mappings of the form

5 :x~-+ xbj with x E A, a1, . . . , a,l , b1, . . . ; b,L E 1Vl(A),

where A11(A) denotes t11e multiplier algebra, of A . This is justified by
the representation theorem for completely bounded operators and the
fact that certain completely bounded operators can be approximated
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by elementary operators, cf. [12] . A natural question in this context
is : what does a completely positive elementary operator S look like?
Although this is involving inegualities, we immediately are led to an
operator equation .
Denote by Ma ,b the (tino-sided) multiplication x >-> axb . If S =

1 1Vla ~,b~ is positive, it is hermitian-preserving from which

111l b-'atAIa�b~
j-1

follows- As a result we are to consider the following operator equation .

(1 .3)

	

Which elements .xj , yj E M(A) solve Z:" 1 Af j , yj = 0?

This question has emerged to be not only an example, but of funda-
mental significante for our approach, cf . [28] .

2.3 . Centralizing mappings .
Let R be a ring . An additive mapping F : R -> R is centralizing if, for

every .x E R, we have [x, F(x)] = xF(x) - F(x)x E Z(R), the center of
R . In many cases ; the existente of certain centralizing mappings yie1ds
commutativity criteria for R . For example, if R is a prime ring ; then
R, is commutative if there is a non-zero centralizing derivation on R
[38, Theorem 2], see also [30], or if there is a non-identical centralizing
automorphism on R [31, Theorem] . In the context of operator algebas,
there are analogues of there results as follows .

Proposition 3 . There is no non-zero cent7-alizing derivation on a
C*-algebra .

This seems to be a folklore extension of Singer's classical result that
there are no non-zero derivations on commutative C*-algebas . In fact,
if b is a centralizing derivation on a C*-algebra A, it easily follows that
bA C_ Z(A) . Hence, the restriction 61 of S to Z(A) vanishes so that
62 = 0 . The identity

2 b(x)y5(x) = 62(Zyx) -xb2 (yx) - b2(xy)x + xb2(y)x

	

(x, y E A)

therefore yields Aló(x),a(x) = 0 for all x E A, whence b = 0.
The case of automorphisms requires some more work and was first

studied by Miers .
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Proposition 4. [32, Theorem 5] Let ce be a centralizir~g *-
automorphism on a von Neumann algebra A . There is a central projec-
tion e E A such that a(e) = e, aJA, = idA, and A(1-e) is commutative .

Whether this result remains true for arbitrary (not necessarily *-
preserving) automorphisms was answered only recently by Bresar, who
also obtained a general structure theorem for centralizing mappings en
von Neumann algebras as follows .

Proposition 5. [8, Theorem 2.1] Let F be a centralizing additive
mapping on a von Neumann algebra A . Then there exist an element
c E Z(A) and an additive mapping ( : A ---> Z(A) such that F = L, + ( .

Here and in the sequel, we will denote by L, the left multiplication
x f--> ax and by R.a the right multiplication x H xa .
We will now reformulate both the assumption as well as the conclusion

in terms of operator equations . This will enable us to obtain an extension
of Bresar's result to arbitrary C*-algebras in Section 4 .

Observe at first that every centralizing additive mapping F on a C*-
algebra A is in fact commuting, Le . [x, F(x)] = 0 for all x E A [9,
Proposition 3.1] . Replacing x by x + y therefore gives

[x, F(y)] + [y, F(x)] = 0

	

(x, y E A)

(2)

	

6F(y) - 6yF = 0

	

for all y E A .

Secondly, if F = L, + ~ where A is a C*-subalgebra of a C*-algebra B
with centralizar C,3 (A), c E CB(A) and ~ : A .-> CB(A), then [x, F(y)] _
[x, cy] + [x, «y)] = [x, cy] for all x, y E A. Hence

[x, F(y) - cy] = 0

	

(x,y E A)

5F(y)-cy = 0

	

for all y E A.

Conversely, if c E CB(A) satisfies (3), then ~ = F-L, defines an additive
mapping from A into CB(A) . As a result we arrive at the following
question .
(1 .4) Suppose that F satisfies (2) for all y E A . Is there an element

c E CB(A) for a `suitable' C*-algebra B containing A satisfying
(3) for all y E A?

Note that (3) precisely is a system of operator equations of the forro (1)
parametrized by all elements in A .
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2.4 . Generators of dynamical semigroups .
Let A be a unital C*-algebra . A bounded hermitian-preserving linear

operator L : A -> A with L(1) = 0 is called completely dissipative if, for
allnEN,

These operators are the generators of norm-continuous one-parameter
semigroups (Tt)tER+ of unital completely positive operators T,, en A ;
which describe the irreversible dynamics of open quantum systems, or,
equivalently, serve as transition operators of non-commutative Markov
processes . In many concrete situations, they are built from two proto-
types : the completely positive operators and the hermitian-preserving
generalized inner derivations Sk , k . = R.k + Lk. . The converse question,
when a given completely dissipative operator L can be decomposed into

L,(x*x) ? x*L,,(x) + L,,(x * ) x

	

(x E M,, (A» .

are two decompositions . Then, putting a = k1 - k2 , we have

(5 )

	

S.,a-+01-02=0.,

Thus, we may ask

(1 .5)

	

Under which conditions does (5) imply that

	

0?

A more general question would be which a in A" solve the equation

with 0 completely positive from A into some possibly larger C*-algebra
B and k E B was first studied by Corini, Kossakowski and Sudarshan
[18] and Lindblad [21] ; and related to cohomological properties of A in
[22] and [11] . If A C_ B(H), then a decomposition (4) of L always exists
with OA C A" and k E A" . In general ; this decomposition will not
be unique . The uniqueness problem can be reformulated in terms of an
operator equation as follows . Suppose that

L = 01 + 4,,k, = 02 + 8kz,kz

3 . Devices

All the above equations (1 .1) through (1.5) can be subsumed under
the general form (1) . To motivate our tools for solving them ; . let us
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furthermore consider a special case of (1 .3) . Let A = B(H) and b E A
be giverr .

(1 .3')

	

Which a E A solee AI,,b = 0?

In our particular situation, the answer is quickly reaclied . If L1Ia, b = 0,
then axb~ = 0 for all x E A asid 1 E H . If b = 0, obviously all a E A are
solutions . If b 7~ 0 ; pick ~ E II with b~ :7~ 0 and note that b~ is cyclic for
A, i .e . Ab~ = H, and thus a = 0 .

Clearly, this method only works in the presence of a Hilbert space on
which A acts'transitively enotrgh', e.g . if A is irreducible . The algebraic
method presented now works without underlying space .

It is convenient to rephrase (1 .3) using the following concept . For every
C*-algebra A we let ú(A) be the algebra of all elernentary operators on
A . We define a surjective algebra llorrrornorphism

(6)

	

0 : M(A) ® A11(A)"1> --, ú(A),

	

B(a (9 b) = 111,,b

where A11(A) ® AJ(A)" denotes the algebraic tensor product of M(A)
with its opposite algebra . The problern now is to determine thc kernel
of 0 . The following was preved in [24, Part 1 ; Corollary 4.4] .

(7)

	

0 is injective if and onlg if A is prime.

Since primitive C*-algebra5 are prime, it is tempting te use represen-
tation theory in order to approach thc general case frorn the special one .
However, as it emerged, there may be problems in putting the 'local'
information together to obtain a, 'global' picture . It, seems adva,rrta,geous
to view the prime C*-algebas as the building blocks, which results in
regarding a C*-algebra as a serniprirne algebra rather tiran a se-misim,ple
one . In fact, similar tecliniques arrd results as those described below are
available in the setting of serniprirne rings .
The ideal structure of a prime algebra is distinguislied by the fact

that every non-zero ideal is essential, Le . intersects cae] -) other non-
zero ideal non-trivially. This allows to "nieve a.round frorn one place
to another''' within the C*-algebra without loss of information . For an
arbitrary C*-algebra. A we therefore denote by 1, and 1, the collections
of all essential and all closed essential ideals of A, respectively . Note that
there are directed dowrrwards by inclusion, Le . 1 7 12 E 1, irnplies that
11 nI2 E1, .

For every serniprirne ring R,, the rnulttiplier ring AI(R) is defined by
its universal property that Id is an essential ideal in M(R) and there is
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a unique extension p of the inclusion p : R -4 M(R) which makes the
following diagram commutative ; whenever R is an ideal in another ring
S,

R

	

--'->

	

M(R)

in other words, M(R) is the (abstract) idealizer of R. Usually, AII(R) is
constructed via double centralizers of R. Moreover, p is injective if and
only if R is essential in S . Now, if I, J E 1, and J C_ I, then J will
be an essential ideal in M(I) whence, from the above, there is a unique
injective *-homomorphism p» : M(I) -> M(J) making the following
diagram commutative

J pes, M(J)

We may describe pjj as "restricting the double centralizers" . By means
of this, we obtain a directed system {M(I) ; prj, J C I} of C*-algebas
and inclusions, and its algebraic direct limit alglim M(I) along 1., will

be denoted by Qb(A) and called the bounded symmetric algebra of quo-
tients ofA. This is a pre-C*-algebra with completion Qb(A)-= lim M(I)
denoted henceforth by MI,,(A) and called the local multiplier algebra of
A.

For each I E 1e let P(I) denote the Pedersen ideal of I [37, 5 .6] . Using
the fact that P(I) is *-invariant, belongs to 1, and that P(I)P(J) =
P(I) f1 P(J) for all I, .I E 1, we define Q, (A) = alglim M(P(I)) along

1e and observe that this definition leads to the symmetric algebra of quo-
tients ofA as defined (slightly differently) in ring theory. lt follows that
Qb(A) embeds as a *-subalgebra into Q.,(A) and is in fact the bounded
part of Q,(A) [2, Theorem 1 .3] . A stronger relation between Qb(A) and
Q, (A) proved in [3, Theorem 2] is that Q, (A) is the central localization
of Qb(A) .
Remarks . The construction of M1o,(A) was first performed by Ped-

ersen [361 and Elliott [16] under the name of essential multipliers . They
used it to study operator equations of the form

5 = ba,

	

aE Mlo,:(A),
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a = AJ.,ti .,

	

u, E Aho,(A) unitary,

that is, to obtain innerness of derivations 8 and *-autornorphisras a in
A4h o,(A) . In particular, Pedersen proved that (8) always has a solution
if A is separable [36, Proposition 2] .
At about the sarne tirne, Kharchenko introduced the syrmnetric ring

of quotients for semiprime rings and used it in particular in Galois the-
ory [19] ; [20] . This theme was further pursued by Passrnan [34], [35],
Montgoinery [33], and others . It is to be seen in a long tradition go-
ing back to tlre 30's in investigating general rings of quotients, cf. [40] .
The basic idea - to enlarge a given 'domain' by additional 'nunnbers'
(='fractions', 'quotients') in order to be able to solve more equations -
also serves as the motiva.tion for our approa,ch to operator equations .

In the late 80's, M,o,(A) was rediscovered independently by Ara [2],
[3] arld the author [26], [29] which then launched a joint research project
on the structure and applications of local multipliers [4], [5], [6] ; a corn-
preherisive account of this is to be given in [7] .
We will now compile come of the basic properties of Aho,(A) .

Proposition 6 . Let, A be a C*-algebra uwith local rnultiplier algebra
Ai1,,:(A) .

(i) A is commutative if and only if A1h,,(A) i .s comrnutative .
(ii) A is prime if and only if M1,(A) has trivial, center.

(iii) For each I E Z, and each unitization B of A we have

Arz.,;([) = A4"r,, .(A) = NI,~.(B) .

(iv) Let, tl be the primitive spectrum of A.

	

If A is discrete, then
H,,,,(A) = A4-(A) .

(v) If A is an AW*-alggebra,, then Aho,(A) = A .

rom (7) and (ii) in the above proposition we see that the kernel
of 0 is closely related to the center Z = Z(A1h,,(A)) of 1VIlo,(A) . It is
therefore important to analyse its structure . The following was proved in
[5, Theorem 1 and Corollary 1] and can be viewed as a local version of the
well-known Dauns-Hofinann theorem identifying the center Z(111(A)) of
NI (A) with the algebra, C(3Á) of all continuous complex-valued functions
on the Stone-Cech compactification f3fl of fl .

Proposition 7 . For every C*-algebra A, the center Z of A1h, (A) is
an AW*-algebra and can be i,dentified with C(liE n1 0Í), where the inverse
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limit (in the category of compact spaces) is taken over all dense open
subsets Í of Á .

The key to this result is by observing that Z = Cb, where Cb =
alglim Z(M(I)), I E Z,, is the center of Qb(A) and called the bounded
extended centroid of A. This one takes the role of the extended centroid
C = alglim Z(M(P(I))), I E Ze , being of fundamental importante in

ring theory. In analogy to the central closure AC we define the bounded
central closure °A by °A = ACb = AZ. The nicest C*-algebras in this
framework are those which are boundedly centrally closed, that is 'A = A .
They can be characterized as follows .

Proposition 8 . A is boundedly centrally closed if and only if 11 is
extremally disconnected .

The fact that every von Neumann algebra is boundedly centrally closed
(which follows in particular from Proposition 7 (v)) allows to incorporate
the results on von Neumann algebras in our approach, and the fact that
M¿o,(A) is boundedly centrally closed [5, Theorem 2] yields an important
stability property .

It can be shown that every C*-subalgebra B of M,o,(A) containing
both A and Cb has center Z(B) equal to Z [7], and hence may be
regarded as a Z-bimodule in a natural way . Applying this to 'M(A),
the bounded central closure of M(A), we obtain from (6) an induced
homomorphism

Bz : w(A) ®z cM(A)on - £2(°A),

	

Bz(a ®z b) = Ma,b,

where the tensor product is taken in the category of bimodules . Using
the fact that A is boundedly centrally closed if and only if M(A) is,
we can now formulate the fundamental result yielding solutions to the
operator equations listed in Section 2 .

Theorem 9. [7] For every C*-algebra A, we have that

ker0 = {u E Al(A) ® ltl(A)" b uz = 0},

where uz is the canonical irnage ofu in °M(A) ®z cM(A)ar . Therefore,
if A is boundedly centrally closed, then Bz is injective .

This result can be considerably strengthened using appropriate met-
ric structures . Let f.~(A) be endowed with the cb-norm, Le . 11SUb =
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sup IIS7LII for all S E ú(A) . Let cAI(A) ®z cM(A) op be endowed with
7L

the central Haagerup tensor norm II-IIZh defined by

IlUllzh = inf {

	

ajad

	

1/2

	

bj bj

	

1/2 1 u =
j=1 j=1

	

j=1

where the infimum is taken over all representations of u in
cM(A) ®z c~A4(A)op . Then we have

Theorem 10. [7] For every C*-algebra A,

Oz : (°M(A) ®z °M(A)ap, II - IlZh) --, (E£(`A), II - Ileb)

Corollary 11 . Oz is an isomettry for every von Neumann algebra.

This last result was recently obtained in [10, Theorem 2.4], see also
[39], for von Neumann algebras acting on separable Hilbert spaces using
a number of rlon-trivial results on von Neumann subfactors as well as
direct integral theory .

In this final section we will outline answers to the questions raised in
Section 2 exploiting the tools described in the previous section . As an
immediate consequence of Theoreln 9 we obtain the following answer to
(1 .3) .

Theorem 12 . Let a = (al . . . . , a,L), b = (b,,...b,t ) E M(A)7L be

such that {b,, . . . , b, L } is Z-independent. If E"_1
Mai,bj = 0, then

a=0.

Now the strategy to describe completely positivo elementary operators
is as follows, cf. [7] . If S = E"'1 Maj,bj is completely positive, we may
without loss of generality assume that both {a1 ; . . . , a,,} and {b1, . . . , b,L}

are Z-independent . Then

-1

*i .e ., 'A11(A) Oh IM(A)°P inherits the operator space structure of °M(A) Oh ~AI(A) .

4. Solutions

Nlaj,b, =

®z bj} *
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together with Theorem 12 implies the existente of a self-adjoint matrix
A = (Aki) E -A/In(Z) such that

(10)

	

S=

	

Aki A/IbZ bj
/c,j=1

Since Z is an AW*-algebra by Proposition 7, A can be diagonalized by
[14, Corollary 3.3], Le . there is a ilnitary matrix U E M,t (Z) such that
U*AU is diagonal with diagonal entries ~~, . . . , A,, . Hence, by putting
b = b U* E 'A11(A)' we can write S as

S Aj AMI-, ,

From the complete positivity of S we then conclude that Aj > 0 for all
1 < j < n and hence, letting cj = A~

/
Zbj : obtain the following answer to

the question raised in 2 .2 .

Theorem 13. [7] An elementary operator S o-n a C*-algebra A is
completely positive if and only if there are cl, . . . , en E 'M(A) such that

~nS - Lrj=1 nlci c i .

For prime C*-algebras, this was obtained in [24, Part I, Theorem 4.101 .
For simplicity, we stick to the prime case in answering the questions of

Sections 2.1 and 2.4 . If A is a prime C*-algebra, then, by Theorem 12,
Ra + Lb = 0 for some a, b E 111 (A) if and only if a = -b E Z(M(A)) =
C1. Suppose that S is a weakly compact derivation on A . If S = 0 ;
it clearly can be implerrlented by a compact element . If S 7~ 0, then
6A C_ K(A) (Proposition 1) implies that K(A) :y~ {0} and thus A can
be faithfully represented as an irreducible algebra, on some Hilbert space
H such that K(A) becomes K(H) . By the argumenta used in 2 .1, ,ve
see that S = &, for some a E B(H) and 6Q. = ba = 0 on the Calkin
algebra C(H) = 13(H)/K(H) . Since C(H) is prime, Z(C(H)) = Cl
wherefore d = Al, equivalently, a + Al E K(A) . Consequently, we have
the following .

Proposition 14 . Let b be a derivation on a prime C*-algebra A .
Then S is weakly compact if and only if S = Sa for some a E K(A).

In fact, this result takes over verbatiln to the case of a general C*-
algebra, which was first proved by Akemann and Wright [1, Theorem
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3.3] using representation theory. As a result, a derivation S is weakly
compact if and only if the answer is "yes" in (1.1) .

In a similar vein, 5162 is weakly compact if and only if 5 1 or 62 is
weakly compact, provided A is prime . Hence, 6162 is weakly compact
if and only if at least one of the .xi in. (1 .2) can be taken from K(A).
The formulation of the answer in the general case is somewhat more
complicated, and we refer the reader for this (as well as for the norm
compact case) to [25] . Note that

6x1 5~12 = Mxix2,1 - Al -I,X2 - Ma2,Xi - MI,x2xi

and therefore (1 .2) is closely related to (1 .3) and a description of (weakly)
compact elementary operators which was obtained in [24, Part II] .

Specializing the above observation to the case b = a* we obtain that
6a,, " = 0 if and only if a = -a* E i Rl whenever A is prime .

	

Using a
slight elaboration of this we obtain the answer to (1 .5) .

Theorem 15. Let A be a unital C*-algebra and P a proper closed

prime ideal of A. Let L : A -> A be linear. Under the hypothesis
,c%A C_ P, each two decompositions of L of the form L = ~b + 6k,k, with
~b : A

	

A completely positive and k E A only differ by an addition by
5,'-, c E .P .

Corollary 16. Let A be a unital infinite dimensional prime C*-
algebra and L : A -> A. Then there is at most one decomposition
L = 0 + 6k k- with k E A a,nd : A -> A completely positive and
compact.

These results are proved in [17] . Corollary 16 was first observed by
Davies [13, Theorem 2] in the case A = B(H) .

We finally turn our attention to the structure of centralizing map-
pings of C*-algebras and the questions raised in Section 2 .3 . Unlike in
the other examples, there seems to be no direct connection with equa-
tions involving elementary operators such as (1 .3) . The following lernma
indeed is the key observation which enables us to solve equation (3) .

Lemma 17. lf F is an arbitrary mapping on a ring R such that

6F(,) - 5,.F maps R into some ideal J of R, then, for all x, y, u, v E R,
we have

(12) -A4h1(y)(-),ó .(1) - lVlóu(y),6F( �)("»-R C J.

This result was obtained in [8, Lemma 2.2] for commuting additive
mappings and J = {0} . Although we are dealing here with C*-algebras
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only, we give the proof in full generality as an illustration of the tech-
niques and with a hope for future applications .
Proof. For all y, z E R we have

and hence

byz F= (Ryz - Lyz)F = (R,Ry - LyLz)F
= (Rzby + LyBz)F = R. (buF) + Ly(6,F)

6F(yz) - 6yZF = 6F(yz) - Rz(6yF) - Ly(6,F) .

By assumption, it follows that

( 13 )

	

(6F(yz) - Rz(byF) - L,(5zF))R C J.

Observe that

(6F(yz) - Rz 6F(y) - LybF(z)) (Xu) - L,y6F(z) (u) - Rz,,6F(y) (y)
+ R,,6F(y) (x) + Lyx 6F(z) (u)

= Lx6r(yz) (u) + Ru6F(yz) (X) - RzLx6F(y) (u) - R--Ru6F(y) (x)
- LyL.6F(z)(u) - Ly R-�6F(z)(x) - L,Ly6F(z)(u) - RuRz6F(y)(x)

+RR,,6F(y) (x) + LyLx5F(z) (u)

= Lx(6F(yz)-Rz6F(y)-Lzy6F(z))(u)+R~(6F(�z)-Rz6F(y)-LybF(z))(x)
= Lx (Rz6yF + Ly6,z.F - Rz6F(y) - Ly6F(z)) (u) +ji

(with jl ; j2 E J by (13))

+ Ru (Rz6yF + Ly6,F - Rz6F(y) - Ly 6F(z)) (x) + j2

= L�(Rz(6,F - 6F(y)) + Ly(6,F - 6F(,))) (u) +j,
+R,,(Rz(byF-61'(y))+Ly(6,F-6F(z)))(x)+ .%2 E J

since (6yF - 6F(y))R. C J by assumption .
By (13) again, the first summand on the left hand sido is in J too,

from which we conclude that

equivalently,

Ley-yx 6F(z) (u) + Rz�,-v.z 5F(J) (X) E J;

(14)

	

6y(x) áF(z) (u) + 61%) (x) bu (z) E J



for all

	

x, y, z, u E R.
From
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6F(z) (u) + 6r(u) (z) E J

and (14) it follows that

(15)

	

6y(x) bF(u)(z) - 5F(y) (x) 6u(z) E J

Replacing z by zv in (15) yields

forallu,zER

6y (x) 6F(u) (zv) - 61,,(Y ) (X) 6u (zv) =
- 6y(x)z6F(u)(v)+6y(x)6F(,,.)(z)v-6F(y)(x)bu(z)v-6F(y)(x)z6u(v) E J

which, together with (15), gives,

(16)

	

6y(x) z6F(u ) (v) - 6F(y) (x) z 6u (v) E J

for all x, y, z, u E R.

for all x, y, z, u, v E R. But (1.6) is nothing but the assertion .

As a consequence, every mapping satisfying (2) has the property that

( 17 )

	

115,(b)(x),ó .(v)
- 1V16y (T),~F (u~(~>> = 0

	

for all x, y, u, v E A .

An elaboration of the solution to (1 .3), the details of which are given in
[6], then yields a family {ey 1 x, y E A} of elements in C and a family
{ez 1 x, y E A} of projections in Cb such that

(18)

	

ey 6r(,) (X) - cyy 6.y (x) = 0

	

for all x, y E A.

It is then the self-injectivity of C which allows to find c E C with cey _
cy, which finally has the property that

6"(y)(x) - eby (x) = 0 for all x, y E A,

that is, which solves (3) . An additional argument is then needed to show
that e can be found in C(� that is, we obtain a solution to (1 .4) in 'A .
We sunnnarize this in the following statement .

Theorem 18. [6, Theorem 3.2] Let. F : A --> A be a centralizing
additive mapping on a C*-algebra A . Then there are e E Z and ara
additive mapping ~ : A -> Z such that F = L,, + (.

Note that, by Proposition 6 (v), this is an extension of Bresar's result
(Proposition 5) . Under a natural condition, both c and ~ can be chosen
uniquely .
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5 . Conclusion

We hope that the-results described abóve may give some evidente that
the local multiplier álgebra can serve as a `universé', in which operator
equations on C*-algebras, at least those of the forro (1),``can~be solved'
by a unified method .
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