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CATEGORICAL METHODS
IN GRADED RING THEORY
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Abstract

Let G be a group, A a G-graded ring and X a right G-set. We
study functors between categories of modules graded by G-sets,
continuing the work of [M]. As an application we obtain gener-
alizations of Cohen-Montgomery Duality Theorems by categori-
cal methods. Then we study when some functors introduced in
[M)] (which generalize some functors ocurring in [D1], [D2] and
[NRV]) ate separable. Finally we obtain an application to the
study of the weak dimension of a group graded ring.

Introduction and Notation

The study of group-graded rings has been the ground for the research
of many authors last years. Different methods have been elaborated to
investigate propertics of these rings. One of the most successful tools
is that given by Cohen-Montgomery Duality Theorems [CM]. Further-
more, some categorical methods have been introduced by other authors
which have been very useful. For instance the study of separable func-
tors, introduced in [NVV], has cansed nice theorems in the field.

(Quite often the methods invented have been introduced in the partic-
ular case when the grading group is finite. This is the case of the two
methods mentioned above. Then some cfforts have produced different
approaches to the gencral case. Sce [Q), [Bl], (B2], [AN] and [NRV]
for some extensions of Cohen-Montgomery Duality Theorem and [Ra]
for separable functors.

In {NRV] the authors introduce a category gr — (R, X, G) associated
to a G-graded ring R (G being a group) and a right G-set X. The most
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important example appears when X is the set G/H of right H-coscts.
This category appears to be useful in the study of the ring R.

Let G and G’ be two groups, R a G-graded ring, R’ a G'-graded ring,
X aright G-set and X' a right G’-set. In [M] covariant adjoint functors
between the categories gr — (R, X, G) and gr — (R, X', G"} are studied,
generalizing some results of [Ri2].

Let p: R — R’ be a ring homomorphism, £ : X — X’ 2 map and
7 : G — G’ a group homomorphism and assume that for every g € G and
T € X, p(Ry) € Ry and E(z)v(g) = £{xg). Associated to T = (p,£,%)
there is a pair of adjoint functors T = gr —{R, X,G) — gr — (R, X', G)
and T, : gr — (R, X',G") — gr — (R, X,G) for which many functors
occurring in Graded Clifford Theory {cf. [D1], [D2], [GN], [NV2]) as
well as induced and coinduced functors (cf. [MN]} are particular cases.

After some definitions and notations we recall in Section 1 results
of [M] on covariant adjoint functors and point out some similar fact
on contravariant adjoint functors which extend some results of [MR).
We finish Section 1 with some applications to the functors 7* and T,
associated to a context T = (p,£,) as in the previous paragraph.

The results of Section 1 set up the framework to give a description
of all the equivalences and Morita dualities (in the sense of Colby-Fuller
[CF)) between categories of the type gr— (R, X, G) using similar methods
as in [Ri2] and [MR]. This is donc without proofs in Section 2.

In Section 3 we apply the tools of Section 1 to extend Cohen-
Montgomery Duality Theorems to our setting by using categorical meth-
ods. Namely, we show how the category gr — (R, X, &) can be scen as
the full subcategory of a category of right modules generated by an
ideal. Then we prove new versions of Cohen-Montgomery Duality Theo-
rems for actions and coactions. All the previous versions of these Duality
Theorems can be obtained as particular cases. Furthermore, some equiv-
alences of categories are given which will be useful in applications.

Section 4 is devoted to study when T* and T, are separable. We
give some arithmetical tests for the matter. When R = R’ and p is the
identity map on R, T* and T, are isomorphic to the functors 1% and 58
introduced in [NRV] and, in this case, T¢ is always separable while the
test of separability for S¢ can be simplified.

We finish the paper with an application to the weak dimension of a
group graded ring.

The author would like to express his gratitude to Claudia Menini for
her very interesting suggestions.

All rings are supposed to be associative with unit and all modules are
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unital.

For a ring R, mod-R will denote the category of right R-modules and
R-mod the category of left R-modules.

The notation Mg (resp. g M) will be used to emphasize that M is a
right (resp. left) R-module.

In the sequel G will stand for a multiplicative group and R = GBGRg
gc

for a G-graded ring. The unit of & wilt be denoted by e while 1 will
denote the unit of IR

Let X be a right (resp. left) G-set. For any g € G and any z € X, xg
{resp. gx) denotes the action of g on z.

Following the notation introduced in [NRV], gr — (R, X, G) will de-
note the category of X-graded right R-module. That is, the objects of
gr — (R, X,G) are right R-modules M with a decomposition into ad-
ditive subgroups M = ?XMx such that for every g € G and every

&

€ X, MRy C My, Given M, N objects in gr — (R, X, G), the set of
morphisms from M to N in gr — (R, X.G) is

Homgr—(r,x.c)(M, N) =
= {f € Homg{M, N)|f(M.) C N, for every x € X}.

Similarly, if X is a left G-set then (G, X, R) — gr will dencte the
category of X-graded left R-modules. If M € (G, X, R)—grandz € X,
then the z — th component of M will be denote by M.

If ¢ is considered as a right G-set by regular action, then gr— (R, G, G}
ig just gr — R. If X is a singleton, then gr — (R, X, G) is mod-R.

Let H be a subgroup of (7 and consider & acting on G/H = {Hala €
G} by (Ha}g = Hag, then gr— (R, G/H, G} is denoted by gr— (R, G/H).

Givern M € gr — (R, X,G) {resp. M € (G, X, R)—gr), m € M and
x € X, my {resp. .,m) will dencte the = — th homogeneous component

of m. That is, m, is defined by m = > m, with m, € M; for every
TEX

z € X. If Fisasubsct of X, then Mp= & M, and mp = > m,.
e F IEF

The support of an X-graded right R-module is defined to be the sct
Supp(M) = {x € X|M, # 0}. Also the support of m € M is the set
Supp(m) = {z € X|m. # 0}

When we refer to the snpport or the homogeneous component of degree
g € G of R (or of an element of R) we will consider R as a G-graded
right (or left) R-module.

If X is a right G-set then X has a canonical structure of left G-set as
follows: For any g € G, x € X, gx = xg~'. We will refer to both right
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and left action without specific mention on the side when it is clear from
the context.

Given M € gr — R and z € X, the 2 — th suspension of M is defined
as the X-graded right R-module M(z) which is equal to A as right
R-module with the grading M{z), = @ My, IM e R~gr, Xisa

Xrg=—
left G-set and x € X, then the x — th sssgension of M is the X-graded
left R-module (z)M which is equal to M as a left R-module with the
X-grading ({z)M = @& M,
gz=y

1. Adjoint functors

Throughout this section G and G’ will be two groups, X a right G-set
and X’ a right G'-set. Moreover R will be & G-graded ring and R’ a
G'-graded ring.

In this first section we will give an explicit description of the covariant
functors between gr — (R, X, G) and gr ~ {R', X', G') and the contravari-
ant functors between (G, X, R) — gr and gr — (R’, X', G’). This descrip-
tion has been obtained in [Ri2|, for the covariant case, when X = G
and X’ = &' with regular action, and generalized for arbitrary G-sets in
[M]. For the contravariant case, when X = G and X' = ¢, see [MR].

In the last part of the section we consider some instances of adjeint
functors introduced in {M].

Definition. Given M € gr — (R, X,G) and N € (G, X R} — gr,
M t% g N will denote the additive subgroup of M @5 N generated by the
elements of the form m @ n wherez € X, me M, and n € N,

Lemma 1.1. {a) R(z) éﬂ N = N for every N € (G, X,R) — gr.
Moreover this isomorphism is natural in both wvariebles.
{b) Let {M;|i € I} be a family of objects in gr — {R, X,G) and N €

o M
(G, X,R) — gr, then (%MZ-) ®r N = _@I(Mf @r N}
i b1

Proof: (a) Let © : R{x) ®&r N — N be the canonical isomorphism. If
7 € Ry N R(z), and n € ;N then zg = y and hence z = gy. Therefore

®(r@n) =rn € zN. Thus ®(R(z) Er N) C +N. On the other hand, if
n€ N,thenn =®¢{1®n) and 1®n € R(z) éRN because 1 € R(z),.
(b) Straightforward. B

Definition. Let Z be a G-G'-set. A Z-graded R-R’-bimodule is an

R-R'-bimodule M with a Z-grading, M = & M, such that RgM, R, C
zeZ
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Mg,g forevery ge G, z€ Zand ¢ € G".
The set X x X’ has a canonical structure of G-G’-set given by:

glz, 2"}y =(gz,2'¢) (9eCGzeX 2 eX decq).

Let P = o Fiy2y bean X x X'-graded R-R'-bimodule.
(z.2'}EX x X!
For every ¢ € X,,P = & PF;.) is a submodule of Pr and

(zP)er = Pz’ € X') ge%):les an X'-grading in ,P such that
P € gr — (R, X',G). Moreover P is the coproduct of the family
{:Plz € X} ingr- (R, X' G).

Similarly for every 2’ € X', Py = GBXP(I_:») e(G,X,R)—grand P
is the coproduct of {Fp |z’ € X'} in (mé, X,R) — gr.

We are going to define three functors associated to the X x X'-graded
R-R'-bimodule P.

The functor — é\QR P:gr— (R X,G)—>gr— (R, X \G').

Tt associates to M € gr—(R, X, G) the right R'-module (—®pP)(M) =
M :%JR P, considered as a submodule of (M @z P) g, with the X'-grading
M @ P)o = M &g Pula’ € X').

The functor — ég P associates to f € Homgy,_¢p x,¢)(M, N} the map
[®rPim®prs f(m)®p.

The functor H{Pg-,—):gr — (R, X', G') - gr — (R, X,G}.

It associates to M € gr — (', X', G") the right R-module

H(Pg, M) =
= {f € Homgy, .(r x+,c)( P, M)| f(: P) = O for almost all z € X}

considered as a submodule of Hompg (P, M)z with the X-grading:

H(Pp M), =
Z{fEHomg,._(Ra,X:‘G:)(P,M)1f(yP):0 for all yGX—{x}} (5’3 e X)

The functor H(Pg,—) associates to f € Homg,_(p x' g (M’ N'),
the map H{Pr:, f) : H{Pg. M) — H{Pg, N) given by: H{Pgn', fX{) =
fowforall we H{Pg, M}
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The functor H{—, zP) : (G. X, R} —gr — gr — (R, X', G").
It associates to M € {G, X, R) — gr, the right R'-module

H(M1 RP) =
={f eHom¢ x r)_g{ M,P) f(m) C Pp for some finite subset FC X'}

considered as a submodule of Homp (M, P)g with the X’ -grading:
H(IM, RP)Ir = {f e HOIII(G,X,R)_QT{M, P)|f(m) - er} (32’ € X’)

The functor H{—, gP) associates to f € Homg x,py_g{M, N}, the
map H(f, rP): H(N,pP) — Hg(M, P}, given by: H(f, rP){¢) =@of
for all ¢ € H(N, g P}.

It is left to the reader to check that the above three funcﬁors are
well defined. Similarly there are two covariant functors P &g —
(G'"X',R') —gr - (G,X,R) —gr and H(gP,~): (G.X,R) — gr —
(G', X', R')—gr and a contravariant functor H{—, Pg:}:gr—(R', X', G’) —
{(G,X,R)— gr.

If C is & category, then C°P will denote the dual category.

Let F:C = Dand &: D — £ be two contravariant functors. Then
we can consider F : € — D and G : D°F — ( as covariant functors. We

say that (F,G) 18 a pair of adjoint contravariant functors on the right if
P C — D is left adjoint of G D — C,

Proposition 1.2, Lef P be an R-R'-graded bimodule.

{a} [M] The functor — Sp P is left adjoint of H(Pp:,—).
(b} (H(—, rP), H{—, Pr/)) 15 a pair of adjoint contravariant functors
on the right.

Proof: See [M] for (a). In [MR] there is a proof of (b) in the particular
case G = X and &' = X’ with regular actions. The same method works
in the gencral case. W

For cvery v € B let A, : B — R be the left multiplication-by-r map
and x, : B — R the right multiplication-by-r map. The following lemma,
is obvious:

Lemma 1.3. Letr € R, and x € X. Then

(a) A E HOIHQ.,.,(RPX‘G)(R(IL‘)‘R(gﬂ’.‘)).
(b) xr € Homyg x g)—gr ((92) R, (2)R).
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Definition 1.4. Let F : gr — (R, X,G) — gr — (R, X', G’) be a
covariant functor. The X x X'-graded R-A’-bimodule associated to F
is the right R'-module P = @ F{R{x)) with the following structure of

z€X

left R-module:

rp={F(ANp)  (r € By, p € F(R(z)))
and the X x X'-grading:

Pz 21y = F(R(x))x (zxe X,z € X').

Let now F: (G, X,R)—gr — gr—(R', X’,G’) be a contravariant func-
tor. The X x X'-graded R-R’'-bimodule associated to F is the right R'-
module P = & F{{z)R) with the following structure of left R-module

zeX

p=[F{x:)l{p}  (r€ Ry pe F((z)R)))
and the X x X'-grading
Paxy=F({(z)R)» (reX, 2’ €X'}

Lemma 1.5. Let M € (G, X, R}—gr. Then Homg x,r)-gr ((x)R, M)
>~ _M and this isomorphism is natural in each variable.

Proof: For any m € M let x,, * B — M be the right-multiplication-
by-r map. For every m € M, xm € Homg x gy g ({2)R, g M) if and
only if m € ;M. Moreover, for every f € Homie x g)—gr(R(2), P), f =
X #(1)- Therefore the map m +— X is an isomorphism between M and
Homg x,z)—gr (xR, M}. The naturallity is lcft to the reader. B

Now we are ready to describe all covariant and contravariant funclors
between categories of modnles graded by G-sels.

Proposition 1.6. {a) [M] F : gr — (R, X,G) — gr - (R, X', G")
is a left aedjoint functor if and only if there ewisis an X x X'-graded
R-R'-bimodule P such that F' 22 — {%R . Moreover, in this case P is
isomorphic to the X x X'-graded R-R'-bimodule associated to F.

(b) F:gr — (R, X', G} - gr — (R, X, @) is a right adjoint functor
if and only if there exists an X x X'-graded R-R'-bimodule P such that
F = H(Pp,-). -

(e) F'o (G, X,R)y—gr — gr — (R, X', G") is a left adjoint functor
if and only if there exists an X % X’'-graded R-R'-birnodule P such that
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F = H(—,rP). Moreover, in this case, P is isomorphic to the X x X'-
graded B-R'-bimodule associated to F.

Proof: {(a) and {b) have been proved in [M]. For a proof of (c), an
argument as in the proof of Proposition 2.1 of [MR] works, by using
Lemma 1.5. M

Now we focus our attention on some particular functors introduced in
[M]. Some examples of these functors can be found in [D1], [D2], [NRV]
and [IMIN].

Let p : B — R’ be a homomorphism of rings, £ : X — X’ a map
and ¥ : G — G’ a group homomorphism. Assume that the following
conditions hold:

PRy C Ry  Elzgy=¢(x)vlg)  (zeX g€q).

Set T'= (p,&,y) {see [M]). For any M € gr — (R, X, G), let T*(M) =
M ®g R and for every «’ € X', let T*{M ), be the additive subgroup of
T* (M) generated by the clements of the form m®r' withm e M, r €
Ry, and ¢(x)g’ = 2'.

For every f € Homg, _(p x.¢){M,N)set T*(f) = fQ R : T*(M) —
T*{N).

Proposition 1.7. Let T = {p,&, ) end T* as above. The following
assertions hold:
(a) T defines a left adjoini functor from gr — (R, X,G) to
gr— (R, X',G").
(b} The right adjoint functor of T* is isomorphic to the functor T, :
gr — (R X', G"Y - gr — (R, X, G) given as follows:

T.(M) = @XT*(Bff')x (M egr— (R, X',GY)
TE

where the map m’ — m'® is an isomorphism of additive groups
from M.\ to T.(M'), and the structure of right R-module o
T.(M) is grven by the foliowing rule: '

(m Y = (m/p(r})** (m e M',r € Ry).
If feHomg, _(p x0 6y (M',N') and m’ € M' then T.(f)}(m'") =

')
(¢} T. is a left adjoint functor.
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Proof: (a) Clearly T*(M)= 3  T*(M) and T*(M}a R CT*{M)zg,
e X!
for every z' € X' and g’ € G".
Let P = @ R{&(z)) € gr — (R, X!, G"). Forany x € X, let uy :
zEX
R'{£(z}) — P be the canonical monomorphism.
P becomes an X x X' graded R-R'-bimodule after the following rules:

T"{LI(T") = u_qm(rr"} (g € G: TE Gg: T; € Rﬂ xr € X)
Poey = R{Ez))r (z€ X, 7' € X')

Furthermore, for every M € gr — (R, X, (), the map

$ar T (M) — M S P
mer — Z e 8 u{r)
zeX
is an isomorphism of right R'-modules and for every 2'€ X', ¢ps (T M )2}
=M é}{ P,r. Therefore, T*(M) = @ (T*(M)x; and hence T* defines
a functor from gr — (R, X, G) to gr iE(?%’,X"G’)‘ Moreover T* is a left
adjoint, because T* = — Q%R P.
{b) For every M’ € gr — (R, X', G"},

H(Pnf , ﬂ‘ff) = 2)){ Homgr_(R:‘Xf‘G:)(xP, ﬁ’f’)
x

= Homg,r (g v en A RE(N), MY = @ M, ..
2 gr— (. x7 oy (R (€(2)), B Meey

Using this isomoerphism it is straightforward to see that H{FPgr.,~) =
T, and (b} follows from Proposition 1.2.

{(c) Let @ be the X’ x X-graded R'-R-bimodule associated to Ts.
For any M’ € gr — (R, X', ') we define

s
Dy M Rp Q@ — T.‘(M’)
m &g (m'g)* (m' € ML, € Qua))

Then &y is bijective and $ defines an isomorphism of functors be-

A
tween — ®p Q and T.. Therefore T, is a left adjoint and H{Qgr—) is
its right adjoint. ®
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Lemma 1.8. Let T = {p.£,7) as above and assume that R = R and
p s the identity map. Consider X' as a right G-set by x'g = 2'y(g)(2' €
X', g€ G). Then

(8') QT_{R:X’,G;}:gT_(R}X’,G). .

(b} T* =5* and T, = S, where S = (15,£,15).

Proof: (a) Clearly an M € gr — (R, X',G') is an object of gr —
(R, X’,G) because for every 2’ € X', My Ry C My Ry © My, =
Mx;g.

On the other hand, let M € gr - (R, X",G). let ¢ € G'and O #£r €
Ry If ¢ € Suppg(r), then rg = p(rg) € Rygy. Thus ry = (rg)ygy. If
v(g) # g, then

0="ry = b (4 )3(g) = > Th-

RESupp  (r)Ny -~ {y(g)) RESuppa{rINY—1{+{g)}

Therefore 7, = 0. Thus Suppg(r) € v~ '(¢’). Let now &’ € X’. Then
JMI*?" = ﬁa{t! Z: T‘g Q z erg = Z jw:r:’*y(g) = Mz’g’-
g€Suppr(r) g€Suppg(r) g€Suppa(r)
(b} Is obvious. B

Let R be a G-graded ring and £ : X — X’ a morphism of right G-
sets. If T = (1g,&,1¢), then the functors T and T, are the functors T
and $¢ defined in [NRV]. In [NRV] the anthors prove that if for every
z' € X', £~ (a") is finite, then 5% is left adjoint of T¢. But the converse
is also true as the following proposition shows.

Proposition 1.8. Let R be a G-groded ring and £ : X — X' @ mor-
phism of right G-sets. Let F be the right adjoint functor of S5. F is
a left edjoint functor of and only if for every 2’ € X', £7Y(z') is finite.
Moreover, in this case F is isomorphic to Tp.

Proof: Let @ be the X' x X-graded R-R-bimodule associated to 5.
By Proposition 1.6, §¢ 2 — é}g Qand F & H(Qr—).
Assume that £7'(z') is finite for cvery ' € X'. For cach
Megr— (R X G), let
Hag :H(QR: ﬂ){) - TE(M)
pvlf)= D (PN (f € HQrM)w).
E(x)=z'

The claim follows by proving that ¢ H{Qg, —) — T¢ is a functorial
isomorphism. This is left to the reader.
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Conversely, if H{(QGr,—) 1s a left adjoint functor, then it preserves di-
rect sums. Let ' € X’. Consider the functor (=) : gr — (R, X', G") —
mod — R, which associates to M’ € gr —(R', X', G') the right B_-module
M. and to f € Homy, (g x7 gy (M, N') the map for s m' — f(ml,).
This functor preserves direct sums and hence Homg, gz x.0) (e @) —) =
(—)z 0 H(Qg, —) preserves direct sums too. This implies that @ =
Se{R'(2"}) is finitely generated {cf. [S]}.

Let @ = 3, (1*}r, = O withr, € R. Forevery y € X, @, =

f{z)=z'

> (1%)( 3 (rz)g) = 0. Therefore, we can assume, without loss of
£{z)=x' zg=y
generalily, that there exists y € Y such that for every g € Supp{r,), zg =
y. Thus { ). ry)¥ = &y = 0 and hence Y 7, = 0. But r, has

E(z)=x’ s(z)=a’
degree = in (y)R. We conciude that r, = 0 for every z € X. Therefore

the sum 3 1%R is direct.
X

On the other hand, if 7 € By Nz 1), then z'g = L(z). Therefore

r% =179 ', We conclude that »@ = & 1%R. Since @ is finitely
Elx)=a’
generated, the sum is finite, i.e. £~ '(z') is finite. W

2. Equivalences and Morita dualities

Propositions 1.2 and 1.8 set up the framework to give a description
of all the equivalences and Morita dualitics (in the sense of Colby-Fuller
[CF]) between categories of modules graded by G-sets. This section is
dedicated to present that description. Since the methods are similar to
those given in [Ri2] and [MR] we shall skip the proofs.

Let & be the X x X -graded R-E-bimodule associated to the identity
functor in gr - (R, G, X).
Lot P be an X x X'-graded R-R'-bimodule and @ an X’ x X" -graded
M Al
B'-R”-bimodule. Then P &g  is a subbimodule of PRx @ and (PRp
A
@QYzxy = 2P ®r Qeniz € X, 2" € X") defines an X x X"-grading
4 I A
on pP @p Qr+. Furthermore the functors (— @g Q) o (— @ P) and
A M
— Rp (P &g @) are isomorphic.
Proposition 2.1. The following assertions are equivalent;

(a) The categories gr —{R, X,G) and gr — (R, X', G") are equivalent.
(b} There are an X x X'-graded R-R’-bimodule P and an X' x X-

groded R'-R-bimodule Q such that R P-&)Rf Q and R = Qé\ég P
as bigraded bimodules.
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Al Fas
Moreover, if P and (} are as in (b), then — @p P and — @ @ are
nverse egquivalences of categories.

Corollary 2.2. {a) The categories gr— (R, X.G) and gr— (R, X', G'}
are eguivalent if and only if the categories (G, X,R)} — gr and
(G, X', R") — gr are equivalent,

Fat
(b} Let P be an X x X'-graded R-R'-bimodule. — ®p P
gr — (R, X,G) — gr — (R, X',G") is an eguivalence if and only if

P&R, — (G, X'\R')—gr - {G, X, R} — g7 is an equivalence.

Definition. Let P be an X x X’-graded R-R’-bimodule and @ an
X x X"-graded R-R"-bimodule. We define

H{rP, pQ) = H(rP, Q)N H{P, pQ).
If we consider Hompg{P, ¢} as an R’-R"-bimodule by
{(r'fr')p) = flpr'yr”  (f € Homp(P,Q),pe P,r' e R, r" € R')

then Hp(P,@Q) is a subbimodule of rHomg(P,Q)r~, and it is an
X' x X"-graded R’-R"-bimodule with the following grading:

H(RP: RQ)(z",z”) = x’H(RPaQ) N H(Pr RQ)w” (3"! € X’: z" € X”)-

Similarly, if Pisan X' x X-graded R'-E-bimoedule and @ isan X“ x X-
graded R"-R-bimodule, then H(Pr, Qr) = H{Pr, @} N H(P,Qr) has a
natural structure of X” x X’-graded R”-R’'-bimodule.

Let P be an X x X'-graded R-R'-bimodule. Consider the following
map:

X" :R' — H(rP,rP)
X)) =@')y (" eRE)y, peP)
F

X" is a homomorphism of X’ x X’'-graded B’ x R'-bimodules.
Similarly there is an X x X-graded homomorphism of R-R-bimodules

)\P :.f?. I H(PRi, pr)
A(r)p) ==(rp) (v € R{z), pe P).

Theorem 2.3, Let P be an X x X'-graded R-R'-bimodule. The fol-
lowing conditions are equivalent:

A
{(a) The functor —®g P : gr — (R, X,G) — gr ~ (R, X', G') 15 an
equtvalence of categories.
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(b)Y The functor H(Pg, =) 1 gr — (R, X',G") 5 gr — (R, X,G) is an
equivalenice of categories.

(¢} Pr is a projective generalor in gr — (R, X',G'), \F : R —
H{Pg,Pg) is an isomorphism and for every z € X, . Pr is
finstely generoted.

(d) rP s a projective generalor in (G, X,R) — gr,x* + R’ —
H{gP, gPY is an isomorphism and, for every z' € X', pPy i
finitely generaied.

Let A be a ring and G a group. For any G-grading in A, the category
mod- A can be seen as a category of X-graded right A-modules where X
15 a singleton. Last theorem yields to the {ollowing two corollarics.

Corollary 2.4, Let R be a G-graded ring, X a right G-set and A a
ring. The following are equivalend.
(a) gr — (R, X, G} is equivalent to mod-A.
{b) (G, X,R)— gr 15 equivalent to A-mod.
(¢c) There erists a finiely generated projective generator P in
gr — (R, X, G) such that A is isomorphic to Endy,_ (g x.6)(P).

(d} There extsts g finite subset F of X such thot U = & R(a} is
reF

a generator of gr — (R, X,G) and End,, (g x,)(U) is Morita
equivalent to A.

Corollary 2.5. Let R be a G-graded ring and X a right G-set. The
following are eguivalent.

(a) There exisis a ring A such that gr — (R, X, G} is eguivalent to
mod-A.

(b) There cxists o ring A such thai (G, X, R) - gr is equivalent to
A-mod.

(¢) gr — (R, X, ) has a finitely generated {projective) generator.

(d} There exists a finite subset I of X such that ?F_R(x) is a gener-

TE

ator of gr — {R, X, G).

Example 2.6. Consider T = (p,£,v) as in Section 1. The functor
M
T* is isomorphic to — ®g P where P = EBXR’(ﬁ(:L‘)) (see the proof
re

of Proposition 1.7). Since for every z € X, . Pr- = R'(£{z)) is finitely
generated and projective, T is an equivalence if and only if Py generates
gr—(R', X', Yand AT : B — H{Pa/, Pr/) is an isomorphism. We claim
that T° 2 —Rp R 1 gr— (R, X, G) — gr — (R, X', G’} is an equivalence
if and only if the fellowing conditions hold

RF

{a) p is an isomorphism between iR and A

i

S
Im(£)g'rhnfe)£7
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{b) For every &' € X' there exists r] € R;;,?"z € R;;‘.‘.,r; €
R, € R’g,_l, sh € R’, 1re- 1 8h € R’,_l, such that z'g] €
n ¥

Im{£} for every 1 = 1,2,...,n and Z?‘lsl

i=1

Proof: If v € R’ and x € X, then r* will denote r' considered in
R'{g(z)).

Assume T* is an equivalence. Then A\ : R — H{Pp, Pp) is
an ismoerphism and Pg is a gonerator. Let v € Ker(p). For every
p € P, (AP (r){p) = o{rp) = (p(r)p) = 0. Thus ¥ € Ker(A¥) = 0.
Thercfore p is injective. If r € Ry and x € X, then p{r) € R and

E(x)v(y) = E(zg). Therefore p{R) ¢ o, Ry. On the other
Im(g)g'Nim(g)#7
hand, let 7' € R}, and %, y € X such that £(x)g’ = £(y). Consider the

following homomorphism of right R'-modules
L:P— P
L(s”) :{ et Hemv
0 fz#z (s € R, 2 € X).

Plainly L € H{Pr:, Pri)(y ), thus there exists r € R(z), such that
L = XP{®). But #'% = L{1¥) = AP{(r)(1¥) = o(p{r}*) = p{r)*. This
proves {a).

Let 2' € X’ Since P = EBXR’(g(:C)) is a generator of

gr — (R, X',G"), then {R'(£(z))|x € X} is a set of generators of

gr —{R, X', G". Therefore there exist x;,%2,...,2, € X and an X'-

graded epimorphism EB R'(g(zl)) — R/(z'). Thus there exist v] ¢

B2 )¢(z), 75 € R (= )5(12),---,?‘n € R{2')¢(z,) and sy € R'{&(z1))a,
n

sh € R{&(z2))gey. .., 5, € RI(E{x,))e such that Y ris] = 1. If we re-
i=1

place the s}’s and the r{’s by its homogeneous components we can assume

the they are homogeneous Moreover, if we take the homogencous com-

ponent of degree 1 we may assumec that ] and s} have inverse degrees

and if v} has degree gf, then z'g} = £(z,). This proves {b).

Conversely, assume that (a) and (b) hold. Since AT is an X x X-graded
homomorphism, to prove that it is injective it is enought to prove that
if 0 £ r € R(z)y = Py, then AP(r®) #£ 0. But zg = y for every
g € Supp(r). Therefore r1¥ = 3> ¢9% = r® Thus [AP(r*))(1¥) =

g€Supp(r}
#{r1¥) = . (r®) # 0. Becauvse A¥ is X x X-graded, to prove that it is
surjective it is enough to sce that H(Prs, Pr)(e,y) C In(A*) for every
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(z,y) € X x X. Let f € H{(Pg/, Pp')ay and r' = f(1¥) € R'{§(x) )¢y
For every g’ € Supp(r'), £(z)g’ = &{y). Therefore, by (a) there exists
rg € R(z)y such that p(rg) = rj,. Then it is easy to sce that f = A" (r)
wherer = 5. 7y
g’ €Supp(r’)
Let ' € X’. Let 7, s; and gi(¢# = 1,2,...,n) as in (b). Let L :

k3
iéR!(Irgi) — R{x') given by L{a},a},...,a}) = erflafl_ I is an

homomorphism of X’'-graded modules and 1 = L{r{,r5,...,7,). But
z'g) € Im{£). Therefore {R'{€(z))|z € X} is a set of generators of
gr — (R, X', G’). Therefore Pp is & generator of gr — (R, X', G’). This
finish the proof. W

Example 2.7. As a particular case of Example 2.6, let R be a G-
graded ring, X a right G-set, z € X and G, the stabilizer of z in G.
Consider ¥ = {x} as a right G;-sef. Set T = {g,£,v) where p: R, —
R, £:Y - X and v: H — G are inclusion maps.

In this case condition (a) in the above example always helds. On the
other hand gr — {(Ry. Y, H) = mod- Ry and the functor T, is isomorphic
to the functor (—); which associates M € gr — (R, X, G) to M, and acts
on morphisms by restricting on the domains. In this situation the result
proved in last example translates into:

The following conditions are equivalent:

{a) —®Rre, B:mod —Rg, — gr — (R, X, () is an cquivalence.

(b) {—): is an eqguivalence.

{¢) R(z)}is a generator in gr — (R, X, G).

(d) Foreveryy e Y, Ry-1, = By—1y- By—1, (where Ry = Ifing)-

Notice that condition (d} implies that G acts transitively on X.

When X = (& with regular right action, the above cquivalent condi-
tions do not depend on z. Namely, if R{g) is a generator in gr — R, then
for every z € G, R(x) is a generator too. Graded rings satisfying these
condition arc the strongly graded rings. When X is not & the situation
is not so symmctric, as the following example shows.

Example 2.8. Let A be a ring and B a proper overring such that the
inclusion map j : A — B splits as a morphism of A — A-bimedules, ie.
there is an A- A-bimodule homomorphism € : A — A such thateoj =14,

Let G be the permutation group on three elements. Let 2 € G be a
transposition and b € & a 3-cycle. Let K be the subgroup of & generated
by & and H the subgroup of G generated by a.



504 A. DEL Rio

Let M = A x B x B considered as an A-A-bimodule. If we define

(z,y, 2)b = {e(y), e(2),e(x))

then M becomes an A[K] » A[K]-bimodule. Consider R = A[K]n M
the trivial extension of A[K| by M. The elements of R are pairs (o, m)
with o € A[K]| and m € M with the ring structure given by

b(z,y,2) = <f(z""'(x)‘5(f,f” } {z,y,2) e M

(a,m}+(8,n) = (a+B,m+n)

(G:m)(ﬁ:n):(aﬁ}an-kmﬁ) }a’ﬁeA[K]ImsnEM-

Consider in R the following G-grading:

R.= Ax0 Ry = Abx 0 Ryz = AW x 0
Ro=0x{Ax0x0) Rup=0x{0xBx0) Ryu=0x{0x0x B).

Let X be the set of right H-cosets and consider G acting on X by
right transiation. Let z = H and y = Hb. Then

R:L‘_l:t = RH - RHb . Rh—lH = R:E_ly : Ry—lx
Ry-1y» Ryp-1, = Ry-1y - Ry = [Ab* x (G x B x 0)][4b x {0 x B x 0)]=
=Ax(Ox0xA)#Ax(0x0x B} = Ry-r1pg, = Ry—1y.
Therefore, by Example 2.7, R(z) is a generator in gr — (R, X, G) while
R{y) is not.

In [CF] the authors extend the concept of Morita duality to
Grothendieck categories. Let (F': £ — D, G : D — £) be a pair of
adjoint functors on the right. Let us denote by ¢ : 1z — GF and
71 lp — FG the units of the adjonction (they can be interpreted as
unit and counit of a pair of covariant functors). Let

R¢ = {C € Cloc is an isomorphism}
Rp = {D € D|op is an isomorphism}.

Then F and & induce a duality between Re and Rp.

We say that the pair (F. () is a Morita Duality if F and 7 are exact
and the subcategories R and Rp contain a set of generators of £ and T,
respectively, and both are closed under subobjects and quotient chjects.

In [AW] the authors define an alternative version of Morita duality
for Grothendieck categories which is not equivalent to the Colby-Fuller’s
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one in general but it is so in the case of categories of modules graded by
G-sets {see [GG]).

Note that if (F,3) is a Morita duality, then R¢ and Rp are closed
under finite coproducts, therefore Re and Rp contain any fnitely gen-
erated object of C and D, respectively.

Let P beis a X x X'-graded R-R'-bimodule. Let w: 1o _(rx ) —
I A

H(PR'r_) o (_ @nr P) and ¢ : (_ RRr P) o H(PR": _) - Igr—(R’_.X",G”)
the unit and the counit of the adjonction pair (H(Pg,—), (— Q%R Py)
and ¢ : 1(C,X,R)-gr — H(—,PR() o H(—,RP) and 7 : lgr—(R’,X’,G') —
H{—,rP) o H{—,Pg) the unit and counit of the adjonction pair
(H(_s RP): H(—:PR’))'

An object M € (G, X,R) — gr (resp. N € gr — (R, X',G")) is said to
be P-reflexive if oy (resp. 7n) Is an isomorphism.

Lemma 2.9. Let P an X x X'-graded R-R'-bimodule. The following
are egquivaleni:

(&) AP : R — H(Pg/,Pr') (resp. x* : R — H(gP,rP) is an) is an

isomorphism.

(b) For every x € X f{resp. &’ € X'), ug(x) (resp. cg,(z,)) s an
isomorphism.

(c) For everyz € X (resp. z’ € X'}, (€)R (resp. R'(2")) is P-
reflexive.

P is said to be faithfully balanced if both A¥ and x ¥ are isomorphisms,

Theorem 2.10. Let P be an X x X'-graded R-R'-bimodule. The
Jollowing conditions are equivalent:

(a} (H{—,rP), H(—,Pr:)) define a Morita duelity belween
(G, X,R) — gr and gr — (R', X', G"}.

(b) For every x € X and ¥' € X', every graded quotieni of
()R, R'(z'), o P and Py is P-reflexive.

{c} P 15 graded faithfully balanced, {Py |z’ € X'} is a set of injective
cogenerators in the category (G, X,R) — gr and {{Plx € X} is a
set of injective cogenerators in the category gr — (R, X', G').

3. Duality Theorems

The main goal of this section is to extend the Duality Theorems of
Cohen and Montgomery [CM] to our setting. There are other alternative
extensions which can be found in [Q], [B1], [B2] and [AN] (see also [A]).
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The originality of our methods is that they are purely categorical. We
give some equivalences of categories which will be useful in applications.

Let R be a G-graded ring and X a left (-set. X will be considered as
aright Gset by zg =g lz{z € X, g€ Q).
Let P = eXR(z). For every z € X let u; : R(z) — P be the
T

canonical monomorphism and 7 : P — R(z) the canonical projection.
P becomes an X x X-graded R-R-bimodule by

Tz {0)s = ug.(ras) {r € Ry, a, s € R)
and the X x X-grading
Pagy = w{R(z)y)  (z,y € X).

Moreover g P and Pg are failhiul modules.

Note that P is the X x X-graded R-R-bimodule associated to the
identity functor in gr — (R, X, G). (See Definition 1.4}).

Given z, y € X we write R,y-» = ) R, Alsoif r € R, then r
1=gy
will denote Y7 r,. Note that R -1 (resp. r5,-1) is both the component
T=gy

of degree z of ()R (resp. of r considered in (y)R) and the component
of degree y of R(z) (resp. of r in R(z}).

Remark. Let FCMx(R) be the ring of all finite column square X-
matrices with entries in R. Sinee g P is free and {u,(1)|z € X} is a basis
of g P, then the map

% : End(zP) — FCMx(R)
f — Mf

(bcing M; the square X-matrix having m,fu,(1) at the {z,y} — th
entry} is a ring isomorphism. Moreover, it is quite easy to see that
Q(Endg,.(rx,c)(P)) = {& € FCMx(R)| for every z,y € X, the
(x,y) — th entry belongs to R,,—1}. Thus ® gives a matricial description
of (Endg,_ (g, x,¢3(P). This matricial description has becn obtained by
T. Albu [A] for the particular case X = G.

Let § = Endg, (g x,¢)(P). If we consider § trivially graded by G' =
{e} and X' = ' as a left &’'-set, then P is naturally an X’ x X-graded
S-R-bimodulce.

Sinee P is an X x X-graded R-R-bimodule, then then map r — A,
which associates to an element v € R the left multiplication-by-r map
in P is a ring homomorphism A : B — §. Since gP is faithful, A is
injective. Note that for every r € R, myAru, = At R{z) — Riy).

Let I = H(gP, P). Clearly I = {a € S|, = 0 for almost all z € X},
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Lemma 3.1. [ is an S-R-bisubmodule of 5 and it is isomorphic to
sPr.

Proof: Let ¢ : P — § be the additive homomorphism given by

‘P(ui[?‘))uy = UI/\rrg_] (?" < R, T,y c X),

Note that for every z, ¥y € X, Uz A, = Arzy,luy-

zp—!

Let « € S,vr € R and 2,3, 2 € X. Then meplau.(r))u, =
Ty ( wauwﬂwaux(r))uz = mypluy Tyots (THt: = Mayaug(),,- 1

we
g € G, then v, € R(x),,, therefore myauy(rg) € R(Y)gg. Thus
(ryoug{r))y—1 = D Myoug(rg)=myau,(ry,-1). Then myplous(r))u, =

=z

Amgoug(r,, ) = TyQughe . = Tyop(ua(r))us. We conclude that for
every £ € X, r € Rand a € 5, plau(r)) = aplur)) and hence p is
S-linear.

Let now v, s € R, x,y € X. Then p{uz(r)sju, = @(us{rs)u, =

U hray, _y- BUL (78)gy—1t = 3 Tup-18ue-. Thus plug(r)s)u, =
" ' weX

> uz)‘rm_l)‘sw_l =2 ‘P(uz(r))uw’\sw_l =¢(ux(r)) 32 uw'\sw_l =

wiEX wEX we X

lue(r)) 20 As, _yty =9(ua{r))Asuy. Therefore p(ug(r)s)=p{uz(r})s,
we X

that is, w is an homomorphism of right R-modules.

Letp= Y. u.(r;) be an clement of Ker(y). Thenforallz, y€ X, 0=
xc X
Tep(PPuy = Ux Ay, _, - Thus vz = 3 (rg)ay—1 = 0. We conclude that
¥ yEX

@ is injective.

Let r € R and z € X. Then for every y € X, ¢{u(r))u, = 0 unless
z € Supp(r)y. Therefore o(FP) C I.

Finally, let o € 1. For every z € X let vy = > mpou,(1). Since

yEX
u, {1} € Rly}y, moouy(l) € R(z), and hence (rg),,-1 = moou,(l). Let
p= 3 uxlrz). Then, for every y € Y, p(p)uy(r') = 3 ua((ra)ey—17") =
zeX *CX

> ug(mron, (1)) = oauy(r’}. Thus @p) = a. We conclude that
xeX
we(P)=1 1

For every subset F of X let pr € S given by pr(m) = 3 ugmi(m).

zEF

Plainly prpr = ppnpe, for every two subset F and F¥ of X. Therefore,
pp i1s an idempotent for every subset I of X. Moreover pr+px_r =1
for every FF C X.
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For every 2 € X let pr = pyzy(= uemz). {pel|z € X} is a set of
orthogonal idempotents of 5. For every subset F' of X, Pr € I if and
only if F' is finite.

Lemma 3.2. {a} Let o € 5, a € I if and only if there exists a finite
subset I' of X such that o = app.

(b} I is idempotent.
(¢} sI = ® Sp, and Sp, = Bp, for everyz € X
Fi=p. 4

Proof: Let & € I. There exists & finite subset F os X such that
oty =0 for all 2 € X — F. Then o = app. This proves {a) and (b).
The sum ) Sp, is direct becavse {p;|z € X} is a set of orthogonal
zEX
idempotents. Moreover, for every 2 € X and a € 5, ap, = A,p, where

r = 3. myouy(l). Indeed, let 7o € P, then apy(m) = au,7.(m) =
X

5 wymy (@ (D)mebm) = 5 uy(rye-malm) = 32 ughe, s (ra(m)) =
=04 yeEX yeEX

¥
z A, wlul'ﬂr(m) = Af‘px(m) |
yeX veE

Given a left A-module M, then Gen{ 4 M} denotes the full subcategory
of A-mod formed by the right A-modules generated by 4 M. Next Lemma
is obvious.

Lemma 3.3. Let I be an idempotent left ideal of o ving A. Then
Gen{al) = {M € A-mod |IM = M}.

P& e
Theorem 3.4. The pair of adjoint functors (G, X, R) — gr )3}
H(sP,—)
S-mod, defines an equivalence of categories between (G. X, R} — gr and
Gen{sI).

s
Proof: Let T = P®g- and H = H{sP,—}. Let u be the unit of the
adjunction pair (T, ) and ¢ the counit. Let us remark that v and ¢ are
given by:

up s M — HT(M) (M e (G,X,R)— gr)
[eeas (m))(p) = mez ®:p {(meM,pecP)
T
ey :TH(N) —— N {N € mod- 5)
en(f®p) = f(p) (xe X.pe€ P, f€H(Ps,N)

For every M € (G, X, R) — gr, ua is nothing but the composition of

A .
the following cancnical iscmorphisms: M 22 @XP(CC}® r M (see Lemma
zE
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I A
1.1y = P @z M = Hom{sf, P @g M) = HT(M). Therefore ups is an
isomorphism.
Let now NV € S-mod. Let gy : TH(N}Y — IN be the composition

of the following canonical isomorphisms: @ @ P Q%R Hom{sI, N) =
o R(x) &x Hom(sI, N} =~ Hom({sI,N) = IN. Then the following
e

diagram is commutative;

TH(N) —— TH(N)

WT &

i

IN —— N

where j is the inclusion map.

Thus ¢y is an isomorphism if and only if N = IN. Now Lemma 3.3
applies. B

Remark. Theorem 3.4 implies [CM, Theorem 2.2] and [NRV, The-
orem 2.13].

Recall that a ring 4 (not necessarily with unit) is said to have local
units if for every finite subset F of A there cxists an idempotent e of A
such that F' € eAe. We will say that a left ideal [ of S has local units if
it has local units when it is considered as a ring without unit.

Lemma 3.5. Let A be a ring and I a left ideal of A which has local
units. Let B a subring of & which confains I. The restriction of scalor
functor induces an equivelence between Gen{al) and Gen(gI).

Proof: Lel F : A-mod — B-mod be the restriction of scalars functor.
F is obvicusly faithful. Let M, N € Gen{41) and f € Hompg{M, K N}. Let
m € M and a € A. Let e be an idempotent in 7 such that ermm = m. Then
Flam) = f(aem) = aef{em) = af({m). Therefore f € Hom (M, N} and
hence F is full.

Let now M € Gen{gl). For every m € M and a € A let am = (ae)m
where e is an idernpotent in I such that m = em. This definition does
not depend on the choice of e because if em = m = &'m there exists
e” idempotent in J such that e, ¢’ € e”4e”. Thus {ae)m = (ae”)em =
(ae”)m = (ae”)e'm = (ae')m. This gives a struciure of left A-module
on Mand F(M)=M. B
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Corollary 3.6, For every subring A of § which contains I, Péﬂ -
{G,X,R) — gr —» A-mod defines an equivalence of categories between
{G.X,R) —gr and Gen{I).

Remark. Last corollary generalizes {A, Theorem 2.5).

Let G, X, R, P and 5 as above. Let H be a group and assume that X
has an structure of G-H-set. Let END(Pr)gy = {a € End{Pp)|a(P,) C
Py for every z € X}. END{PgR) is a subring of End(Pg).

For every h € H let END(Pg}) = {a € End(Pr)|la{P;) C Pip—
for every z € X}. For every h, &' € H, END{gP)y - END{pP)n C
END{rP)nr. Therefore END{gP)y = > END{(gxP), is a subring of

heH

ENDX{g P

Moreover for every h € H the homomorphism A : P — P given by
ht; = uga-1(z € X) belongs to END(Pr), and kR’ = hA for every
h, k' € H. Therefore END{rP)y is an H-Clifford system.

Lemma 3.7. The sum >, END{gP)y is direct if and only of H acts
heH
freely on X. In this case END(rP) is o skew group ring over H with

underground ring 5.

Proof: Let b € H and 0 # o € END(pP), N 5 END{gP)p. Let
h'#h

z € X such that ou, # 0. Then au.{l} £ . Let ¥y € X such that
myaug(l) # 0. Since uy(l) € P,, then myauy(1l) € R(y)zp-:. Let
g € Supp(myou,(1)). Then zh™! = g~ ly. Let hy, hoy... hn € H — {R},
and on € END{(gP)s,, @z € END{gP),,..., 0, € END{(gP)s,, such

that & = 3 ey, Let i =1,2,....7n such that a;u (1) # 0. By repeating
i=1

the same argument, one has that zh;' = ¢ 'y = zh~!. Thus X is not
a free left H-set.

Conversely, assume that the sum ) END(gP), is direct. Let z € X

hEH

and h € H such that zh = 2. Then 0 # P, € END(gP). NEND(Pg);,
and hence h=¢. B '

Let X be an G-H-set, Consider the following relation of eguivalence

on X:
L~y yeczH

Then X/H = {zH|z € X} is the set of equivalent classes of X by the
relation of cquivalence ~. & acts on X/H by g{zH) = g« H. The map
£ :x+— xH is a homomorphism of right G-set.
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Let X be a set and I an ideal. By FAMx(I) we will denote the set of
all square X -matrices over I having almost all entries equal to zero.

Theorem 3.8. Let H and G be two groups, X an G-H-set and R
e G-graded ring. Let P = @ R{z) and U = @ R(C} Let A =
€@ CeX/H

END(PR)H, S = Endg,—_(R‘x{H,G}(U), J = {O: < AI&(R(z)) =0 for
almost all x € X} and I = {a € S|a{R(C}) = 0 for almost all C €
X/H}.

There exists an isomorphism & : A — FCMy(S) such that ®{J} =
FIWH(I).

Proof: Let £ : X — X/H be the map which asscciates to x € X the
class zH. Set @ = T¢(P).

Plainly Q@ = @XR(:I:H } = U, Therefore there is a canonical
e

isomorphism @ : Endig x/m,5)-¢-{Q) — FCMu(End(g, x/5,m)-¢-(U})
such that (I)(K) = FM(I} being K= {Ot e End(C_X/H‘R)_gf(Q)mma =
0 for almost all * € X}. The theorem follows by realizing that
End(G,X/H,R}—gT(Q) = W(RP)H and hence J =K. &

Remark. Last theorem implies [CM, Thecrem 3.5, [B2, Theorem
2.2) and [NRV, Corcllary 2.2].

Lemma 8.9. Let A be a ring end X a set. Let B = Mx(A) be the
finite row and column matriz ring over R indexed by X. Let x € X and
P, the X x X maotriz having 1 at the {x, x)—th eniry and zevos elsewhere.
The functor Hom( g Bp,, —) defines an equivalence of categories between
Gen{gBp;} end A-mod.

Proof: Let P = Bp,. pPF is finitely generated and projective and
End{p P) is isomorphic to A. It only remains to prove that g P gencrates
cach of its submodules and apply [F, Theorem 2.6 and Lemma 2.2].

Let M be a submodule of gP. For any y € X let My = {afy,z}la €
M} lfy, z € X and o € M, then (e, ya)(z,2) = afy, z}, €, being the
X x X-matrix having 1 at the (z, y)-entry and zeros elsewhere. Therefore,
M, = M,, that is, N = M, does not depend on y € X.

Let M’ = {a € Pla{y,z) € N for all y € X}. We claim that M = M".
The inclusion M C M’ is clear. Let & € M’. For every y € X there
exists B, € M such that a(y,z) = 8,(y,2). Thena= 3 p,ly € M.

aly,z)#0

For cvery a € N let a be the X x X matrix having o at the (z,z) — th
entry and zeros elsewhere. Let f, : P — M be the right multiplication
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by & map. Then, forevery a € M, o= 3 foay(€(y.z). Therefore
a(y,z)#£0
M is generated by pP. M

Corollary 3.10. With the same hypothesis and notation than Theo-
rem 2.8, the categories Gen{4J) and Gen(sI) are equivalent.

Proof: Let B = FCMp(S) and C = Myx(S9). Let P = Cp, being p,
the H x H-matrix having 1 € S at the (e, ¢}-position and zcros elsewhere.

By Lemma 3.9, F = Hom({c P, —) : Gen{cP) — S-mod is ar equiva-
lence of catcgories. Let @ = FMx(J)p,. Then F(() = I and hence F
induces an equivalence of categories between Gen(o@Q) and Gen(gT).

Let X = FMyg(I}. K is isomorphic to Q) as a left C-module.
Therefore Gen(g K} = Gen(oQ).

By Lemma 3.5 Gen{c K) is equivalent to Gen(gK).

Now, by using the isomorphism ¢ of Thecrem 3.8, we have that
Gen(p K} is equivalent to Gen{J).

We conclude that Gen(pJ} is equivalent to Gen(g7). m

We finish this section with a version of Cohen-Montgomery Duality
Theorem for actions.

Theorem 3.11. Let R+ G be a crossed product and H a subgroup
of G. Let P = g R(C). Then Endg,_(r.q/uy(F) is isomorphic to
CeG/H

FCMg (R + H).

Proof: For every g € G there is a unit § in R # (& of dcgree g.
Then, for every g € G and every C € G/H, left multiplication by §
is a graded isomorphism between R(C) and R(gC). Therefore P =
R(H)C/H) in (G/H, R) — gr and hence End,, _(z.¢/z(P) is isomorphic
to FCJWG/H(Endgr_(grg/g)(R(H))A Finally, Endg,._(R'G/H)(R(H)) =
R+ H, by Lommma 1.5. B

4, Separable functors

Separable functors have been introduced in [NVV] and studies in
[NVV] and [Ra]. Let us recall the definition.

Definition. Let F : ¢ — D be a functor between two arbitrary
categories C and D. F is said to be separable if for any two objects
C, C" € C, there is a map p = ¢ ¢ : Homp{FC, FC') — Home(C, C7)
such that:

SF1. For all f € Home(C,C), o(Ff) = F.
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SF2. For every commutative diagram in T of the type

FC — FC,
Hﬂl lﬂﬂ
FC; — Fey
the following diagram in C is also commutative

wlh)
; —— O

A s

(k)
o 2L o

In this section we first recall a fundamental theorem of Rafael [Ra] on
adjoint separable functors. Then we study conditions for the functors T
and T, defined in Section 1, to be separable. When R = R’ and p is the
identity map on R, then T* is always separable while the separability

“test for 7, can be simplified.

In {Ra| the authors give a complete characterization of separable ad-
joint functors in terms of the unit and counit of the adjunction. Explicitly
they obtain the following result:

Theorem 4.1 [Ra]. Let F: C — D and G : D — C be functors such
that F is left adjoint of G. Letu: l¢ — GF be the unit andc: FG — 1p
the counit of the adjunction.

{a) F is separable if and only if u splits (i.e. There exists a natural
transformation € : GF — l¢ such that e¢c oug = 1 for every
el

(b} G is separable if and only if ¢ cosplits (i.e. There exists a natural
transformation @ 1p — FG such that cp o up = lp for every
DeD)

For the sake of completeness we give a proof different from the one
given in [Ral.
Proof: By duality it is encugh to prove {a}.
Assume that F is separable. For every C, ¢’ € C let
W =woor Homp(FC, FC’) —¥ HOH’lc(C, C’)

be a map satisfying SF1 and SF2.
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For every C € C, set ¢ = plepe) € Homc (GF(CY, C).
First we prove that € : GF — 1¢ is a natural transformation. Indeed,
let f € Home(C,C"), then the diagram

FGF(f}

FGFC FGFC!
CFC‘[ J‘CFC(
F(f)

—_— FC

is commutative, because ¢ is a natural transformation. Therefore the
following diagram is also commutative:

GF(f)
GFC —— GF(CY

&l 166,

f
¢ —

Now we prove that ecuc = 1l for every € € €. Indeed, the well
known formula cpg o F{ug) = lp¢ implies the commutativity of the

following diagram

. Fluc)
FC —— FGFC

lch' ICPC

Fl1c)
FC —2, FC

and SF2 implies the commutativity of the following diagram:

c 2, grc

e Jee

c°. ¢
Conversely, let € : GF — 1¢ be a natural transformation satisfying
gou = 1. For any C, ¢’ € C let ¢ : Homp{FC, FC') — Home(C, C')
given by (f) = ecr 0 G(f) o uc.
If f € Home(C,C), then o{Ff) = e GF{flug = ecrucf = f.
On the other hand, if the following diagram in D is commutative

h
FC] Ai— FGz

le lF(g)

k
Fc, —= Fey
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then the diagram

wih)
1 — (y

fl lg

{k)
is also commutative because g o p(h} = goeg, 0o G(h) oug, = ecy 0
GF(gloG(h)oug, =ec,oG(F{g)oh)ouc, = &g oGlk}oGF(f)ouc, =

ecy o Glk)ouci o f=p(k)o f. W

Theorem 4.1 can be used to give a simple criterion on when a right
adjoint functor of the form & : gr — {R, X, G) — D is separable, for D an
additive category. Next proposition was inspired from Proposition 2.2 in
[Ra].

Proposition 4.2. Let C be a full subcategory of gr — (R, X, G) such
that R{x) € C foreveryx € X Let G : C — D be a right adjoint functor,
F o left adjoint of G and ¢ : F'G — 1g the counit of the adjonction. The
following conditions are eguivalent:

{a) & is separable.

{b) For any x € X there exists m; € FG{R(z)), satisfying the fol-

lowing two conditions:

(1} For any x € X, cpiry{ms) = 1.

(2) For any z € X,g € G and r € Ry, FG{A }(mzg) =
myr (where A, € Homg,_(r x o{R(zg), R(x)} is the left
muliiplication-by-r map).

Proof: Assume first that & is separable. By Theorem 4.1, there exists
a natural transformation y : 1¢ — F'G such that co . = 1. By Lemma
1.5 for every = € X there exists m, € FG(R(x)) such that pgizy = Am,.
Then cgizy(mz) = (€a(z) © tir(z)){1) = 1. On the other hand, if r € Ry,
then for every x € X the following diagram

Ering)

R(zg) —— FG(R(zg))

)\rl J'FG(Ar)

R(z) —— FG(R())

is commutative. Therefore FG(A){mag) = [FG(A) 0 uppag)(l) =
[R(zy © A J(1) = mar.
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Let now {m; € FG(z)).|x € X} be a system of elements satisfying
conditions (1) and (2). For every N € gr — (R, X,G) define py - N —
FG{N) by pn(n) = FG(A,)(m,) if n € N, and extend uny to N by
linearity.

ppr is R-linear because if n € N, and v € Ry, then py{nr) =
FG(}\nrxmxg):FG{An)FG(AT}(ng) :FG(}‘R}(sz) :FG(’\RJ{mI)r:
pnlnyr.

Now we prove that ¢ is a natural transformation. Let f€ Homy, (g x,c)
(N, N} and n € N;. Then

[FG(f) o un)(n} = FG(f o An}{maz} = FG(As() }e) =
= pp{f(n}) = (pn o fl(n).

Finally, if ¥ € C and n € N,, then {cny o pn}{n) = [ew ©
FG(A.R)](mI) = [)‘n. ocR(I)](mz) = /\n(l) = n.

Thus, applying Theorem 4.1 we conclude that & is separable. B

For the rest of this section we consider the following situation: Let
T = (p,&,7) where p: R — R' is a ring homomorphism, £ : X — X’
is & map, v : G — G’ is a group homomorphism, R is a G-graded ring,
B’ is a G'-graded ring, X is a right G-set, X’ 1s a right G'-set and the
following conditions hold:

p(Rg) =Rl  &lzg)=E&ah(g) {(9€G,zeX).

Let T and T, be the functors defined in Section 1. We are going to
study when T and T, are scparable.

Proposition 4.3. Let T = {p,£,v) as cbove. The following condi-
lions are equivalent:

(1) T is separable,
(2) For every x € X there is €5 € Homgy, _(p x.c)(T.(R'(¢(z)}, R(z)}
such that. '

{a) For everyx € X, £,(1%) = L.
(b) For everyz,y€ X, g€ G, r€ Ry and v’ € R'(£(2¢))eqy)s

ex((p(r)r)¥) = reqq{(r)¥).

Proof: First Iet us note that the unit u of the adjunciion pair (7%, T.)
is given by:

une ' M~ TTM)  (Megr—(RX,Q)

m s E;{{mx ®1)° (me M)
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On the other hand the cancnical isomorphism R — R &g R induces
an isomorphism ¢, : R (§(z}} — T (R(z)} for every z € X.

(1} = {2) Assume that T is scparable. By Theorem 4.1 there exists a
natural transformation € : T, 7™ — 1, _(g, x ) such that eproups = 1p
for every M € gr — (R, X, G).

For every 2 € X let e, = cpg(yy 0 Tu(¢z). We are going to see that
{e.|z € X} satisfies conditions (a) and (b).

£2(17) = ey (1 @ 1)%) = [e () © uRrm](1) = 1.

Let now g, h € G, r € Ry and v’ € R'(&{zg))ery). Let Ao R — R be
the left multiplication by r map and A,y : B — R left multiplication
by p(r). By Lemma 1.3, one has

Ar € Homg, (g, x.y (R(2g), R(x))

and
Ao(r) € Homy, _pr x0 oy (R'{E(29)), R'(€(2))).

Furthermore the following diagram is commutative

Toldng) ) ER{zg)
T.(R'((zg))) — T.T*(R(zg)) —— R(zg)

T | jﬂm“(.\f) |

T.{dz) ER(x)

T(R'(¢(z))) —— T.T*(R(z)) —— R(z)

Therefore, £:((p{r)r')¥) = [er@) © Tu{@)((Apr)(r'))¥) = [eR(z) ©
T (=T (o)) (7)Y = [Ar 0 €24]{(r")¥) = rezg((r)¥).

(2} = (1) Assume that for every x € X there exists e, €
Home x gy—gr (Tu(R'(€(2))), R(z)) satisfying conditions (a) and (b).
For every M € gr — (R, X,G) let &5 : T.T*(M) — M be the ho-
momorphism given by £y((m @ 1')¥) = me,(r'Y) whenever m € M,
and r' € R'(£(z))e(y) and extended by linearity. Note that 3 is well
defined. Indeed, let m € M,,r € R, and r' € R'(§(zg))¢yy. Then
ens(mr @ v') = mreg {r'Y) = me, ((p(r}r' ¥} = e (m @ r')¥).

It is an easy exercise to check that £y € Homg, (g x.¢) (T T (M}, M ).
Moreover, for every m € M, [emoun]{m) = e ((MR1)*) = me(1%) =
m. [t only remains to prove that ¢ is a natural transformation from 7,7
to lo-_(r x.c) and apply Theorem 4.1.

Let f € Homg _(pxe(M,N),m € M, and v € R'{&(x))eqy-
Then [ex o TT*(N))((m @ #')¥) = en((f(m) ® 7')¥) = f(m)es (") =
Fmea(r?)) = flem((m@r))) = [foem])((m @ r)Y). B
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Proposition 4.4. Let T = (p,£,~) as above. The following condi-
tions are eguivalent:

(a) 7. is separable.
(2) There exists a system

> = Wiy Yoy B ) € By, X Rige 3o x XJa' € X',

.
[E)

1=1,2,...,my}

satisfying the following conditions.
(1} Foreveryx' € X' and1=1,2,...,my, I’gzz,".) = E(2ewr 1))-
iy
_(2) For everyzx' € X', .;a’(ﬂv’,i) (o = L

(8) For everyr’ € R/, and every 2’ € X', the following equality
holds in T,{R{z')) ®r R’

TR T g
280 @ (b )’ = D (g )09 @ (grae ).
i=1 =1

Proof: First let us remark that the counit ¢: T*T, — 1 of the adjunc-
tion pair (T, T.) is given by:

en TN)®g R — N (Negr— (R, X, GV
en(n®@r')y=nr’" {r' € R, n€ Nguy)

{a) = (b) Assume that T, is separable. By Proposition 4.2, for every
z' € X' there exists Ky € {T.(R'(2")} g R’} such that

(1) CRI(I:)(Kmf} =1,
(2) Forany 2’ € X', ¢’ € G' and 7’ € R, T" (A )(Kyprg ) = Korr.

Nz
Each K, can be expressed as Zl(a’(m,ri))xtx’.ﬂ®ﬁfr,i) where o, ,, and
i=
B{y: ) are homogeneous for every possible z’ and i. For every possible 2’
and 4, let g{,, , be the degree of &, ,, and ki, , the degrec of §,. .
Then x’gzx'i) = £(zz ;) and g(x(x’.i))hzy,j) =z
Let 5. = {(azx,‘i), bEE,‘i), o)z’ € X', 4= 1,2,...,m.} be the sys-
tem which results by eliminating in the system {(a,/ ), B 5 Tz ))|2'€
X'i = 1,2,...ny} any upla {a’(z,'i}, ﬁfz,,i), Z(z;) such that
9z iyl sy # € Plainly 3 satisfies (1).
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Since 1 = cpi) (Ko} = ch(x, z)ﬁ(m iy then the homogeneous com-

ponent of degree e of this element is equal to 1. But this homogeneous

LY

component is just Z Al 3D 1y Thus 3 satisfies (2).

Consider G* as a ught G-set by: g'g = ¢'v(g){g € G, ¢ € G'). Con-
sider in M = T.(R'(z")) the following G’-grading: A typical element r'*
in T.(R/(z'}), has degree ¢’ € G’ if v’ € R, Plainly M € gr—{(R, G, G).
Let S = (p,1g",7). Then S* (M) =M Qg R € gr — (R',G’,G’) where
G’ is considered as a right G'-set by regular action.

Tiys
Given r’ € Rl, and 2’ € X', then A = 11g:l(mfix,‘i))x(“’-"1 ® ﬁ(’z,‘i)r’
nx; f

Kpr =TT ) Koy = 32 (g )70 @ Blyrq 1y Consider A as

an element of 5, (M). Forevery i =1,2,...,ny

(T‘ a(I 1)):-c{r L) ®16(:€ ) c S*(M}g "Gt ‘}h{z o

and
4 Timd ot s 7 ¥ ]
(@grgr )"0 ® Blargr iy’ € 5 Mgy | i, o
Therefore,
Tt ! mzrgf

D (@ )7 B 7 = A = D (76 )50 ® By

i=1 i=1

This proves (3) for >_.
{b) = (a) Let

> = 0w Yoy D) € By | X Rig | yoa x Xle' € X,

(=6}
i=1,2,...,05}

be a system satisfying (1}, (2) and {3}.
ELC
For all z* € X', let K, = z (a;l?i)zz’.i & b;,,z., Then CR’(z’)(Kx’) =
i=1

m;;

Z% 4, =1 and for every r'e R, T*TL Qg = Z(Tam e ®

m ]
¢ _ I Tor ; [ )
Qs ;= Z (az;‘i) 20 ag, 1 = Ko’
i=1

By Proposition 4.2, we concluded that T, is separable. M
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In the proof of last Proposition, we have considered G’ as a right G-
set by ¢'g = ¢'v(g){g € G, G' € G’). Actually we can consider G’ as a
G-G-set by putting gg’ = v(g)g’.

For every ' € X', the right R-module T.{R'{z')) becomes an object
of gr — {R, ', G) by assigning degree ¢’ to 7' whenever 1’ € R, with
z'q = {(z).

We can consider X as a left G-set by gz = zg (g € G,z € X).
Similarly X’ can be considered as a left G'-set.

Moreover y(g)¢(z) = £{gz} for every ¢ € G and z € X. Therefore, we
can define two functors 7° = R'®@p—: (G, X, R)—gr — (G', X', R) —gr
and Tp : (G',X’',R’) — gr — {G,X,R) — gr which are the left hand
versions of 7 and 7T,. By symmetry, for every 2’ € X', To{(z')R') is an
object of (G, G’, R) — gr by assigning degree ¢’ to r'* whenever ' € R,
with g'z" = £(z).

Set § = (p,1g-,¥). Foreveryz' € X', S*(T.{R'(z"}}) = T.(R'(2"))®r
R cgr— (R G G')=gr— R and S°(Tp{(zYR)) € {G',C",R") —gr =
R—gr

Lemma 4.5. For every 2’ € X' and every g’ € &', S*(T.(R'{z')))¢
is 1somorphic to oSN To{(g'a" ) R')).

Proof: Let @ : S*(T.(R'(z'))}y — ¢S°({¢’z'}{R’)) the homomor-
phism given by ®(e” @ V') = ' @ ¥“(z € X, o' € R.,, ¥ € R.., with
z'o’ = £(z) and ¢'v’ = ¢’} and extended by linearity.

® is well defined. Indeed, let o' € R, ¥ € R}, r € R, and assumec
that o'y{g)7" = ¢’ and 2"¢’ = (). Then ®{(a¥r&b) = &((a'p(r))*9 &
M) =dp(r) @ (F)9 =a' & r(/)9 T =o' @ (p(r)¥')® = P(a’™ @ p(r)b).

And € is obviously an isomorphism. B

Proposition 4.6. Let T = (p,£,7v) os above. T, is separable if and
only if Ty is separable.

Proof: By left-right symmetry, Ty is separable if and only if there
exists a system

z = {(G'Emfj), bEI’,?:}’ z(l}"‘i)) E REhall‘-))ml = Rhéx’,ij X AX’|_’3'F e X-'}
i=1,2,...,my}

satisfying the following conditions.

(1) Forevery o' € X' and i = 1,2,...,my, h'(x,,l.)f = &2 pr 3y)-
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Tt
{2") For every =’ € X', _Zla’(x,'i)bzx,'i) = 1.
i=

(8"} For every r’ € R}, and every y’ € X', the following equality holds
in R ®g To((z")R")

mh.- i

E:‘%wyn)® Wwy:ﬁ)””““"E:T“ma)® fwr )™

Assume that T, is separable. Then there exists a system

> = {olar g blary T ) € By X Rig o x X|2' € X,
i=1,2,...,mp}
satisfying conditions {1}, (2) and (3} of Proposition 4.4. For every z’ €
X' and every i = 1,2,... ,my let by, 5 = (QE;":}))_I‘ Then
Z = {(QEI;‘?:], b;z’,i)‘ ‘T(I‘?,‘t’)) E th;m’.i))_l X Rh;x’.x’} X X|$" e Xf,
i=1,2,. .. M)
satisfies conditions (1'} and (2’'). On the other hand, let v € R}, and

¥ € X. Set ¢ = A’ and 2’ = Ky'. By assumption the following
equality holds in T.{R{z')) &g R’

L T gipr
Z{a(z z}z(m Ve b(z z))r = Z (T a(m’h’ 1)2{;—(“ R (b(z Th a))
i=1 i=1

and this element has degree h' when we view T.(R(z')} &r R’ as
ST, (R(z"}}). Therefore, by using the isomorphism of Lemma 4.5, the
following equality holds in R @ To{{y"}R')

Mipty! Ty
Z G'Ehay.-'i) ® (bzhay,ri)r’)x(h’y’li) = Z T’ﬂiy:'i) ® (bzyt 'i) )Iyi'.i. i
=1 im1

We conclude that Ty is separable. ¥

Let us consider now the particular case when R = R’ and p is the
identity map of B. By Lemma 1.8, in order to study 7™ and 7, we can
assume that G = ' and vy is the identity map of G. In that case T =T
and T, = S%.
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Corollary 4.7. Let R be a G-graded ring and ¢ : X — X' @ morphism
of right G-sets. The functor T¢ is separable.

Proof: For every z € X let ¢, : SY{R(£(x)) — R(z) given by e,(r?) =
7y {where the y — th component of r is computed in R{z)). Plainly £,
satisfies condition (a) of Proposition 4.3. On the other hand, if z, y €
X,9€ Gir € By and 7' € R({x))e(yy, then e, {(rr'}¥} = (r¢'), =

2 e = 2 r()gmn =1 30 7 = rege{r'¥). Now Proposition
zh=y rh=y zgh=y
4.3 applies. &

Corollary 4.8. Let T = {(p,£,v) as above. If R is o direct summand
of R’ as R-R-bimodules, then T" is separable.

Preof: Consider the foliowing commutative diagram of functors

o~
gr—-(RX,G) —— gr— (R, X',G)

- [

—& il
mod — R R, mod — R/

where Uy and Up are the functor which forget the grading. Let Y be
a singleton and consider G acting on Y. Let ¢ : X — Y be the only
possible map. Then mod-R = gr — (R,Y,G) and Up = T,. Therefore
Uy is separable.

By Proposition 1.3 of [NVV)], — ®pg R’ is separable. Thus Ug o T* =
(—®rR')oUR is separable and hence T is separable (see [NVV, Lemma
Ll.

Corollary 4.9. Let R be o G-graded ring and £ - X — X' a morphism
of right G-sets. The following conditions are equivolent:
(a) S is separable.
(b) For every @ € X there exists o® € R, such that:
(851} For every 2’ € X', the set {z € £~ 1(z")|a® # 0} is finite and

Z a® =1.

E(ay=="
{S52) For everyr € Ry and x € X, aXr = raX9.
Proof: (a) = (b) Assume that S is separable. Let

2 = (a9, by 2m) € Roryy x Big,, 1 % Xla' € X',

i=1,2,...,mg}
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be a system satisfying conditions (1), (2) and (3) of Proposition 4.4(b).
For any =z € X let

a* =Y {ag@abemali = 1.2, Mgy, Te)a) = T }-

If we fix an ' € X', then for every z € £ 1{z'), @® = 0, unless
T E {x(zx‘i)(g(._,:‘l-))‘lﬁ =1,2,...,my}. Therefore, o = 0 for almost all
x € E(2").

oo
Morcover, for a fixed 2’ € X', 3 o = 3 o aybsy = 1. Note
£(z)=3' =1
that this implies that £ has to be surjective.

On the other hand, if we identify TL{R(2")) ®r R with T.{(R(z'}) by

the canonical isomorphism, then for every v € R,

mz’g m:;
() D (70200 o9 barg iy = D _(@gar )7 V(e T
i=1 =1

The left hand term in the previous expression is

TIt .

r'g
L= (rag gy s =
i=1
mr;g ,
= 3 (10(argnblarg ) o) = 37 (ra®)”,
i=1 &(z)=a'g

Arguing in a similar way we obtain the following expression for the
right hand term in (x).

s
R = Z(T,r’,z')x""sx’,z"-" = Z {(a®)*r = Z {a®r)™9.
i=1 f()== ()=

Therefore (ra®9)*® = L., = R,y = (¢"r)*¥ and hence ra*9 = o%r for
every z € X.

{b) = (a) Let {a*|a € A} be a system satisfying conditions (551) and
(S82) of (b). For every ' € X' and any z € £ }{z'), let aqp o) = @
and bz = 1. Then the system {(a(z 2y, bz 0y, 2)|7° € X'\ 2 €
£ H{z'), a® # 0} satisfies conditions (1), (2) and (3) of Proposition
4.4(b). Indecd, conditions (1) and (2} are obvious. Let now O # r € K,.
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Then
Z (G(xr,x))z ® b(z’,z)r = Z (az)mr = Z (azr)rg =
z€£~Yz') rEE~Ha') z€£~(z'}
— Z (razg)zg — Z (’_r'ay)y -
s€E-x') yEE-1{2'g}
= Z {(ra(zrg2))” © blarg.a)-
€L~ Ha'g)

Proposition 4.4 applies to finish the proof. W

Definition. Let £ : X — X' be a morphism of right G-sets. A &-
separability system in a G-graded ring R is a system {a%|z € X} of
elements in R, satisfying conditions {S51) and (552} of Corollary 4.9.

Remarks. (1} Note that if X =G, X" is a singleton and £: G — X'
is the unique possible map, then R has a £-separability system if and
only if R has a separability system in the sense of [Ra).

(2) Let £: X — X' be g morphism of right G-sets and R a G-graded
ring.

(@) If S¢ is separable (or cquivalently, if R has a {-scparability sys-

tem), then £ is epic.

(b} If £ is epic and for every 2’ € X', £7}{z') is finite with order
invertible in R, then ¢* = |£71{£(z))| ™! is 2 £-separability system
whenever |£~1{z'}| is constant in each orbit of X'.

(c) Assume that £ is epic. For every orbit ¥ in X let £y : ¥ — £(Y)
be the restriction of £ to Y. R has a £-separability system if and
only if it has a £y-separability system for every orbit ¥ of X.
Namely, if for every orbit Y in X, {a¥|y € Y} is a £y -scparability
system for R, then {a®|z € X} is a £-separability system for R.

5. Weak dimension

Let & be a group, H a subgroup of G and R a G-graded ring.

Let G/ H be the set of left H-cosets and ¢y : G — G/H the canonical
projection. In order to simplify the notation let us denote by Ty and Sy
the functors T,,,, : R—gr — (R,G/H) —gr and 8¥# . (G/H,R) —gr —
B — gr respectively.

For a {graded) ring (gr.)w. dim(R} will denote the (graded} weak di-
mension of B. Similarly, for 2 F-module, f.d.{M) will denote the fat
dimension of A/. Recall that, for a graded module g A{, the graded fat
dimension coincides with the flat dimension (see e.g. [NV1]}.

Next theorem extends Theorem 7 in [Ril] and gives an approach to
answer (Juestion 2 in the samc paper.
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Theorem 5.1. Let R be o G-graded ring. Assume that for every
finitely generated subgroup H of G the functor Sy is separable. Then
graw. dim(R) = w. dim(R).

Remark. Notcthat if Sy is separable, then the H-graded ring Ry =

& Ry has a separability system (in the sense of [Ra}). Indeed, Sy is
ghcH

separable if and only if R has a ¢y-separability system. But if {z9g €
G} is a @ y-separability system, then {z®|h € H} is a separability system
for R(H}-
The converse is not true in general as the following example shows.
Example. Let K be a field of characteristic 2. Let G = %, x Zg and
H the subgroup of G generated by (1,1). Consider the ring R of the

a b ¢
matrices of the form | 0 @ 0 | with entries in K. R has a G-grading
0 0 a
given by:
a & 0
R(og)— (0 a D]lec K, R(l 1)—0
0 0 a

0 K 0 0 0 K

Rogy=10 0 0) ) Rony=10 0 0

g 0 g 0 ¢

1 6 0
Then {a®® = [ 0 1 0|, al™) =0} is a separability system for
8 0 1

Bsy- But R has not a wg-scparability system. Indeed, if {a9]g € G} is

01 0 g 1 0
a wy-separability system, then a9 [ 0 0 0| =({0 0 0|09

¢ 00 0 00

0 0 1 0 0 1
anda®@® 10 0 0} =10 0 0]a®9 Therefore /1" = ¢00 =
6 0 0O g 0 0

a'® and 1 = o®V 4 10 = 26000 = ¢,

Lemma 5.2, Let gP be a projective left R-module and M ¢
Gen(rP). Then pM is projective if and only if it is projective in the
category Gen(pP).

Proof: Let f . K — L be a homomorphism in the category Gen(gP).
If f is surjective, then f is an epimorphism in the category Gen(gpP).
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Conversely, if f is an epimorphism in the category Gen{gP) and C is
the cokernel of f, then the canonical projection p : L — C is also a
homomorphism in Gen{(gP) such that po f = 0. Thus C = 0, this
implies that f is surjective.

Since RM € Gen{g P}, then there exists an epimorphism f : P — M
which is an epimorphism both in Gen(gP) and R-mod. Thus pM is
simultaneously projective in B-mod and Gen{(r?). B

Let C be & Grothendieck category. Recall that an object F in € is
said to be flat if for every finitely presented object A in C and every
epimorphism f : N — F, the correspondent homomorphism of abelian
groups Home{M, f} : Homc¢ (M, N} —» Homp(M, F) is an epimorphism
(see e.g. [Po]).

When 7 is an idempotent left ideal of a ring R, then Gen(gl)} is a
Grothendieck category (see e.g. [W]) because it is closed under submod-
ules. Of course, a left ideal with local units is an idempotent ideal.

Proposition 5.3. Let I be a left ideal of R with local units. Then,
an object F in Gen{glI) is flat in this category if and only if it is flat os
a left R-module.

Proof: Since Gen(rI) is closed under subobjects, the finitely gener-
ated (resp. finitely presented) objects of Gen{gI) are just the finitely
generated (resp. finitely presented) left R-modules generated by gl.
Moreover, as we have remarked in the proof of the previous lemma the
epimorphisms in Gen{gI) are the epimorphisms in BR-mod between ob-
jects in Gen{g[l). Therefore the necessary condition is obvious.

Let now F be a flat object in Gen{gl). First we will sce that for
every idempotent e € I, eF is flat as a left eRe-module. Consider Re as
an R — eRe-bimodule and the functors H = Hom{zRe, ~) : R-mod —
eRe-mod and T = eR ®.p. — : eRe-mod — R-Mod. Let g 1.5 mod —
HT and ¢ : TH — 1R.moq be the unit and the counit of the adjoint pair
(T, H).

Let M be a finitely presented left eRe-module and f : M — eF a
homomorphism of left eRe-modules, then T(M) is a finitely presented
left R-module in Gen{gl). Let p: I**}  F be an epimorphism. By
flatness of F in Gen{gJl) there exists g : T{#M) — IX) such that peg =
ep o T{f). Since Re ®.p, M is finitely generated, there exists ¥ C X
finite such that Im(g) C I¥) and hence there exist g : T(M) — IV}
and p’ : IY) — Fsuch that p' o f' = epo T(f). Applying the functor
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H, one has a commutative diagram

HM

H{g")
M M mrony L HUIOY & (eR)Y)

fl HT(I)l lH(p’)

MFe Hierp)
Fe —— HTH(F} —— H{F}
but ux is an isomorphism for every X € eRe-mod. On the other hand
Hi{er) o pary = ly(m- Thus f factors throught gRe(Re}(Y} which is
projective and finitely generated and hence f factors throughout a finite
product of copies of eRe. This proof that .g.eF is flat.

Now we prove that pF is flat. Let J be a right ideal of R and assume

that 3.7mimy = 0 for my, myg,...,m, € F and 7y, 72,...,7n € J. Let
=1
e be an idempotent i In I such that em1 =my forevery ¢t = 1,2,...,n.

Then 2?1 ®m; = Zn@eml = Z’rle@eml Therefore er@eml
=1 =1
belongs to the kernel of the (‘anomca} Je @cpe eF — eRe, which is

injective. Therefore it is 0 in Je ®.n. F and hence it is 0 in J @r F.u

Lemma 5.4. Leté : X — X' be a morphism of left G-sets and assume
that G acts freely on X. For every o' € X', S¢{(z'}R) is isomorphic to

& (z)R. Therefore S¢ preserves projectivity.
£fz)=z’

Proof: For every x € £~ Y2} set fp : (z)R — S%{{z")R) given by:
folr) = #¥ if r € ,(2)R. Note that if r € Ry and gz = y then gz’ =
£(y) and hence 7 € ¢y(z')R. If v € Ry and s € Rp, then fu{rs) =
(r8)?* = r(s)*® = rf.(s). Thus f; is a homomorphism of left R-
modules and it is obviously graded. Therefore there is an homomorphism
i E)B (z)R — Se((z')R) such that f restricted to (z)R is equal to

E{z)=='

fe for every z € £74(z'}.

Now we show that f is bijective. Let 3 7% € Ker{f) where r* € (z)R.

xeX
Since f is a graded homomorphism, then . ,{r*) € Ker(f) for any
z€X
y € X. If g € Suppl,(»*)) N Supp(y(rz’)), then gz = y = gz’, therefore
g =1 Thus 0 = f{ 3 ,(v%)) = ( X 4{r*)}¥ and hence ,{r*) = 0 for
reX zeX

every z, ¥y € X. This proof that f is injective. On the other hand, if
¥ € Se((z')R)y, then 7 € g,(z’)R. Therefore, gz’ = £(y) for every
g € Supp(r). For every g € G, let £, = ¢~ 'y. Then r, € ,(z4)R and

fzg (Tg) = ('f'g)y- thus f{ Z ?";9) = ¥,
g€eG
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Now if P € (G, X', R) — gr is projective, then it is a direct summand
of copies of modules of the form (z'}R for some z' € X’. Since §¢
preserves direct sums, S¢(P) is isomorphic to a direct summand of a
direct sum of modules of the form ()R for some z € X. Therefore
S4(P) is projective. W

Let R be a G-graded ring. Let P = 5 R{g). For every ¢ € G let
) ged

ug: R(g) — P

the canonical monomorphism. Consider P as an G x G-graded R-R-
bimodule as in Section 2. For every subgroup H of &, we will consider
G as an G-H-set. We will use the following notation:

An = END{ Pgrly
Ju = {o € Aplau; = 0 for almost all g € G}

Uy = @ R(C) considered as an G/H x G/ H-graded bimodule as
CeG/H

in Section 2.
Sy = Endg, _(n,c/m(U)
Ig = {a € Sujoauc = 0 for almost all C € G/H}.

Lemma 5.5. Jy is projective as a left Ay -module.

Proof: Actually Jy = & AP, B
geG

Proof of Theorem 5.1:
First it is well known that gr.w. dim{ R} < w. dim{R) (seec.g. [NV1]).

Assume that grow.dim(R) < n. Let H be a finitely generated sub-
group of G and M € {(G/H,R) — gr. Let

PP b
be a projective resolution in {(G/H, R) — gr. Then by Lemma 5.4
s Syp{(Py) L) p SuB) p Sul) pp g

is a projective resolution in R — gr. Therefore, Ker{Sy(fa_1)) is flat
(being f_1 = 0: M — 0}. But Ker(Sy(fn-1)) = Su(Ker{f,_1)) and
Sy is separable, therefore Ker(f, ;) is flat. Thus for every M €
(G/H,R) — gr, fd(M) < n.

Let B = END{aP)y. Then Ju = {& € Blusa = 0 for almost all
g € G|}. By Theorem 3.4 (G/H, R) — gr is cquivalent to Gen(s,, (Iy)).
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By Corollary 3.10, Gen{ g{Jg )} is equivalent to Gen{s, ({#)). Finally, by
Lemma 3.5 Gen{g(Jx)) is equivalent to Gen{a,, (Jx)). Thus fd{M} < n
for all M € Gen{a, (Ju)). :

For every subgroup H of G, I is isomorphic to {(I5)(¢/H) as a right
Ag-module. Thus Gen{ 4, {Ig)a,) = Gen{s,{Ix)}).

Let M € Gen{a.(J¢)) and

'—“‘Pp'zﬁ’Pli)Pgﬁ'Mﬁo

& projective resolution of M such that P, € Gen{a,{Jg)) for cvery n >
0. Note that such a projective resolution exists because Gen{a,(Jg}}
is closed under submodules and 4.{Je} is projective {see Lemma 5.5).
Since 4,{Ag) is projective and restriction of scalars sends modules in
Gen{a,(Jg)) to modules in Gen{4, {Js)), then 4, Ker(fn_1} is flat.
But Ag is the direct limit of the Ag's where H runs on the finitely
generated subgroups of G. Therefore 4, Ker{f,—1) is flat and hence
fd(ac M) < n for every M € Gen{a(Je)).

New by using the equivalence Gen{a,{(Jg)a) = Gen{g,. J) of Lemma.
- 3.5 one has that fd(g. M) < n for every M € Gen(g,(Jz)}. And using
the equivalence Gen{z.{J¢)) = Gen(g,lg} = R-mod of Ceroliary 3.10
for G = X = H one has that w.dim{R} < n. &
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