Publicacions Matcmatigues, Vol 36 (1982), 473-480.

MAXIMAL QUOTIENT RINGS AND
ESSENTIAL RIGHT IDEALS IN GROUP
RINGS OF LOCALLY FINITE GROUPS

FerrRaAN CEDO* AND BRIAN HARTLEY

Dedicated to the memory of Pere Menal

Abstract

Let k be a commutative field. Let G be a locally finite group
without elements of order p in case chark = p > 0. In this paper
it is proved that the type I part of the maximal right quotient
ring of the group algebgra kG is zero.

1. Introduction

Let k be a commutative feld, G a group, and suppose that the group
ring kG is reguolar in the scnse of von Neumann. By (7, p.69|, this means
precisely that G is locally finite with no elements of order equal to the
characteristic of k. Then the maximal right quotient ring Q" (kG) of kG
is a regular right self-injective ring [3, Corollaries 1.2 and 1.24], and as
such, is uniquely a direct product of rings of types Iy, foo, I, 11, and
III. We refer to [3] for general background on regular rings. The main
theorem of this paper is the following.

Theorem. With the above notation, the type I part of Q7 {kG) is
zero .

The first author has obtained this result under varicus supplementary
hypotheses (2|, and in particular when G is A-hypercentral. These re-
sults will be used in the proof of the general case. He has also shown that
the type I; part of @7 (kG is non-zero if and only if |G : A(G)| < co and
A(G)' is finite, where as usual, A{G) is the subgroup of G consisting of
the elements with finitely many conjugates [1].

*Partially supported by the grant PB89-0296 of the CICYT.
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In 1983, Menal proposed the study of the maximal quotient ring of reg-
ular group algebras to the first author. One of the problems proposed
was the characterization of the type I part of Q7(kG) for kG regular.
Goursand and Valette [4] had a partial result, namely they had charae-
terized this part when & has positive characteristic or contains all roots
of unity, Finally, with [1, Theorem 2.3] and the Theorem of this paper,
the problem has been solved.

The remainder of the paper began as an attempt to answer the fol-
lowing question, raised for example in [6].

Question. Let G be a locally finite group, k o field and H an infinite
subgroup of G. Is it true thet if J is an essential right ideal of kH, then
the right ideal JkG of kG generated by J is essential in kG ?

We arc only able to answer this question in a very special case, namely
the case when J is the augmentation ideal of K H. Howover the method we
use involves attaching a certain numerical invariant to cach right (or left)
ideal of kG, and possibly this may be of some interest in its own right.
1t is closely related to the invariant d discussed in (5], but is not quite
the same. Our hope was that this invariant would distinguish between
essential right, ideals and the rest, but we give an ecxample indicating the
contrary. A result giving a positive answer to the question when kG is
regular and H has finite index is proved in (2, Lemma 1.4] . The proof
there is rather indirect and it would be interesting to have a direct proof
in that case.

Definition 1.1. Let G be a locaily finite group, & be a ficld, and J
be a right ideal of kG. For each finite subgroup F of G, let o(J, F) =
dim(JNkF)/|F|. Let o) = supalJ, F), where F ranges over all finite
subgroups of G,

Of course, the same definition can bc made for left ideals of £G. Clearly
a{J) < 1. The main properties of a(J) are the following.

Lemma 1.2. Let G,k be as above and let H be a subgroup of G.
(1) If J is a right ideal of kH, then a(J) < a{JkG).
(i) Ifa(J} =1, then J is an essential right ideal of kG.
(i) If w{kG) denotes the augmentation ideal of kG and G is infinite,
then ofw(kG)) = 1.
{iv) If J and L are right ideals of kG and J is isomorphic to o sub-
module of L, then ofJ) < a(L).

These facts clearly imply the following.
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Corollary 1.3. With the above notation, if H is an infinite subgroup
of G, then w(kH)kG is an essential right ideal of kG.

This was obtained somewhat less generally in [6, p.250] (see below).
It is unfortunate that the converse of part (ii} of Lemma 1.2 is false. In
fact, we have the following.

Example 1.4. Let & be any countably infinite periodic abelian group.
Then for any € > 0, there is an essential ideal J of CG such that a(J) < ¢

2. Properties of a(J}

In this section, we shall prove Lemma, 1.2, after mentioning some other
basic facts. Throughout, G denotes a locally finite group, and k a field.

Lemma 2.1. Let J be o right ideal of kG, and let [y, Fy be finite
subgroups of G with Fy < Fy. Then o(J, I) < o(J, F).

Proof: Clearly, (J NkFy)kFy < JJ0 kFy. Therefore,
dim{J Nk F)/|Fi] £ dim J O kR,

Dividing by |F»| gives the result. B

The following is a useful consequence.

Lemma 2.2. Suppose that G is countable, and let G < G < ... be
a tower of finite subgroups of G such that US| G, = G. Let J be o right
ideal of kG and o; = dim{J NEG,)/|Gy|. Then o{J) = lim;_ o ;.

Proof: Let § = lim;_,o ;. Clearly, § < a(J). On the other hand, if
F is any finite subgroup of G, then F < G, for some ¢ > 1, and then
Lemma 2.1 shows that o{J, F} < ¢; < . Hence oJ) < 3, and the two
are equal. W

Proof of Lemma 1.2: (1) Let F be a finite subgroup of FI. Then clearly
JNkF < JkG N EF. Hence dim J N kF/|F| < dim JkG N kF/|F| <
a(JEG). Since Fis an arbitrary finite subgroup of 1, this gives a{J) <
a(JRGY.

(ii) Let J be a right ideal of &G with o(J) = 1, and suppose if possible
that L is a non-zero right ideal of kG with J N L = 0. Fix a finite
subgroup & of G such that LMkE # 0, and let F be any finite subgroup
of G containing E. Then (LNEKEYKF N (J NEkF) =0, and so dim(L N
AEYFYIE| + dim{J N kF) < |F|. Bence ofJ, F) < 1 — (L, E} < L
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Now if Fi is any finite subgroup of G and we take F = {E, F}}, then
we deduce from Lemma 2.1 that a{J, F1) < 1 — oL, E} < 1, whence
a(J) < 1, a contradiction.

(iii) This is trivial.

{iv) Let Fy be any finite subgroup of G, and let ¢ : J — L be a right
G-monomorphism. Then ¢ maps J N EF, into L N AF;, for some finite
subgroup Fy of G. Let F = (Fy, I3}. Then ¢ embeds (JNkFEF into LN

kF. Therefore, dim{JNEF)|F|/|Fi| < &im{LNkF). Therefore o(J, F7) <
of L, FY < a{L), and since I} is arbitrary, the result follows. B

We note that if G is a finite elementary abelian 2-group of order 27
and k is as ficld of characteristic 2, then £2 = 0 for all £ € w{kG). Hence
kG¢ annihilates £, and so dim£kG < 2771 It follows from this that if
H is an infinite elementary abelian 2-group, then a{J)} < 1/2 for each
principal ideal J < w(kG). This may be compared with [6, p.250].

3. The Example

Write G = U2, G, where the G form a strictly increasing tower of
finite subgroups of G. We construct the ideal J to satisfy the following
condition:

{x}. For each i and primitive idempotent e € CG,, there exists o € CG
such that 0 £ ex € J.

Since each non-zero ideal of CG contains such an element e, we see that
{*) implics that J is essential in CG.

Now we construct J as the union of a tower J; < o <., where J;
is an ideal of CG;. We begin with any minimal ideal of C(; as J;. Thus,

(1) dim J; = 1.

We also let e),ea,... be a sequence formed by taking first the {finitely
many) primitive idempotents in CG;, then those in CGy, and s0 on.

Suppose we have J;, a proper ideal of CG;. Then there is a primitive
idempotent e of CG; not in J;, and if we write J; = J;CG,41, we have
the direct sum eCG,;; @ J; of ideals of CG;41. Choose the first j such
that we have a direct sum ¢;CG 1 © 7. Thus
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For each | < j, there exisis o € CGyyy such that 0 # ey € ;.

It will alsc be clear from the next step that j > i— 1. Let f be a primitive
idempotent in €;CG 4y, and put

Jiv1 = J: @ Cf,
an ideal of CG;41. Clearly, J, < Jiy1, and
(2} dim Ji 1 = 1+ (dim J;}|Gia|/|Gil
Also, we claim that
(3) Jo1 NCG; = J;,

from which it follows in particular that J; 4, is 2 proper deal of CGyy. To
verify the above claim, it suffices to note that if J,4y N CG; = L; > J;,
then dim JH—I 2 (dimL,-)!Gt-+1|/|Gt-{ Z dim ‘]H-l + |Gg+1i/|G1| - 1, =
contradiction, since the sequence (G,) is strictly increasing. Putting
J =P, J,, we have (), and so J is essential in CG.

Let a; = dim J N CG,/|G;|. Then from (2) and {3), we have o4, =
a; + l/lcg+1|, 50 from (1),

1
1
“= 2765
i=1

Now |Gyl = 2|Gi, so

1 1 1 2

; < 14 =-+4+...+——
az_lcll( +5 +21_1)

Choosing G, suitably, we obtain what we want.

4. Proof of the Theorem

The theorem follows from [2, Theorem 1.3] and Lemma 4.1 below.

Lemma 4.1. Suppese that kG is reqular and the type I part of Q7 {kG)
18 non-zero. Then G is A-hyperceniral.

Before beginning the proof we recall some notation and terminology.
Let A(G) = {g € G : |G : Cglg)] < co}. We define the transfinite upper
A -series of G by the rules

Ap(G) =1,
Bp11(G)/B,(G) = A(G/A,(G)),
Aﬁ(G) = UQ.(,@AQ{G),
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for ordinals p and limit ordinals #. The last term in this series is denoted
by A{G) and called the A-hypercentre of G. We say that G is A-
hypercentral, if G = AL (G).

We also write #(() for the set of primes p such that & has an element
of order p.

We use implicitly the following fact, which is well known. Since we
have not found an explicit reference in the literature, we give a proof for
completeness. Recall that an idempotent ¢ in a regular ring R is called
abelian, if every idempotent in eRe is central.

Lemma 4.2. Let R be a regular ring with maximal right quotient ring
. Then R contains a non-zerc abelian idempotent if end only if @ does.

Proof: Let e be an abelian idempotent in . Then e@ N R #£ 0, so
eJN R contains a non-zero idempotent f. Now the map ¢: fQf — feQfe
defined by @(z) = ze = exe is a ring isomorphism with invers ¢~ (y) =
yf. Since feQfe C eQe, it follows that fQf is abelian. Therefore so is
fEf.

Conversely, let e be an abelian idempotent in B. We claim that eRe is
essential as a right eRe-submodule of eQe, whence [3, Theorem 3.2 and
Corollary 7.4] show that eQe is abelian. Now eR = eRe®eR(1 —e), and
since the second summand can contain no non-zero idempotent, it can
contain no pon-zero right ideal of R. Let x be a non-zero element of e@e.
Then zR M R is a non-zero right ideal of R contained in eR, and hence
it is not contained in eR(1 — €). Therefore there exists an element ¥ € R
such that 0 # zre € eRe, and clearly we can replace r by ere here, as
required. |

Proof of Lemma 4.1: Since the type I part of Q7{k() is non-zero,
kG contains a non-zero abelian idempotent e. Let H be the subgroup
generated by the support of e, and G, = (A (G), H). Then e is an
abelian idempotent of kG, and so the type I part of @ = Q" (kG;)
is non-zero, Since G is A-hypercentral, [2, Theorem 1.3] tells us that
the type I, part of Q is zero, and therefore its type Iy part must be
non-zero. By [1, Theorem 2.3}, |Gy : A{Gh)| < oo and A(G,) is finite.
Further, if M is the smallest normal subgroup of G; such that G, /M is
abelian-by-finite, then the type I part of Q is (M/{M|)Q, by the first
part of the proof of Theorem 2.3 in [1]. Now M is also the smallest
normal subgroup of Ay (G) such that A (GY/M is abelian-by-finite,
and as such, it is normal in G. Since e € (M/|M\)kG = k[G/M)], we
sec that we may assume that A {G) is abelian-by-finite. By |7, Lemma
12.2.2], Ay (G} has a characteristic abelian subgroup A of finite index.
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Now A is the direct product A = [] A, of its primary components. Let
n = n(H), and Ap = [[ g, Ap. Then Ay C G. Consider G = G/Ax.
By (3, Lemma 7.6], the image of ¢ in kG is an abelian idempotent,
and clearly it is non-zero. Therefore the type 7 part of Q7 (kG) is non-
zero. Further, Aoo(8) = Aw{G)/Ax. Therefore, we may assumc that
Ay = 1, and so (A, (G)) = ¢ is finite.

Let p be a prime such that o(ekG) > lp, and p € w Uo. We shall see
that p & w(G). Suppose on the contrary that G contains an element g of
order p. Let § =1+ g+ ...+ ¢° L. Since the powers of g li¢ in distinct
coscts of G, we see that ge # 0. Since kG is regular, there exists 3 € kG
such that

(4) ge = gelge.

By squaring it, we see that efge is an idempotent in ekGe. By [2, Lemma
2.1], we see that efige € kG. Using the fact that we have a direct sum
Zfz_ol ¢‘kGy, we deduce from (4) that e = efge. It follows from this that
the map [ : ekG — GefkG defined by f(v} = gv is an isomorphism,
(F~1(8) = e36), and so by Lemma 1.2 (iv}, a(ekG) £ a(§kG). But an
casy calculation shows that a(ghkG) = %. This contradicts the choice
of p. Hence 7(G) is finite. By [1, Proposition 1.2], we find that G is
hypercentral, and the proof is complete. W
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