INTERPOLATION OF FAMILIES $\left\{L_{\mu(\gamma)}^{p(\gamma)}, \gamma \in \Gamma\right\}$

M. J. Carro and J. Cerdà

Abstract
We identify the intermediate space of a complex interpolation family - in the sense of Coifnan, Cwikel, Rochberg, Sagher and Weissof L^{p} spaces with change of measure, for the complex interpolation method associated to an analytic functional.

0 . Introduction

Let $\{A(\gamma) ; \gamma \in \Gamma\}$ be a complex intcrpolation family (c.i.f.) on $\Gamma=\{|z|=1\}$ in the sense of $[3]$. Let U be the containing space and $\mathcal{F}=\mathcal{F}(A(\cdot), \Gamma)$ the space of analytic U-valued functions associated to the family.

Let T be an analytic functional on the unit disc D and define the interpolated space $A[T]$ as

$$
A[T]=\{x \in U ; \exists f \in \mathcal{F}, T(f)=x\}
$$

with the usual norm $\|x\|_{A[T]}=\inf \left\{\|f\|_{\mathcal{F}} ; T(f)=x\right\}$. We shall say that T is of finite support if T admits a representation of the type

$$
\begin{equation*}
T=\sum_{j=0}^{n} \sum_{t=0}^{m(j)} a_{j l} \delta^{(l)}\left(z_{j}\right) \tag{1}
\end{equation*}
$$

The set $\left\{z_{0}, \cdots, z_{n}\right\}$ is said to be the support of T.
The two following results are easily proved.

[^0]Partially supported by DGICYT grant PB91-0259.

Proposition 1. Let $\{A(\gamma) ; \gamma \in \Gamma\}$ and $\{B(\gamma) ; \gamma \in \Gamma\}$ be two c.i.f. with contaninig spaces U, V and log-intersection space \mathcal{A} and \mathcal{B} respectively. Let $L: \mathcal{A} \longrightarrow \cap_{\gamma \in \Gamma} B(\gamma)$ be a linear operator such that, for each $a \in \mathcal{A}$ and for almost every $\gamma \in \Gamma$,

$$
\|L a\|_{B(\gamma)} \leq M(\gamma)\|a\|_{A(\gamma)}
$$

where $\log M(\cdot) \in L^{1}(\Gamma)$.
Under theses conditions, if $L: U \longrightarrow V$ is continuous,

$$
L: A[G T] \longrightarrow B[T]
$$

with norm ≤ 1, where

$$
G(z)=\exp \left(-\frac{1}{2 \pi} \int_{0}^{2 \pi} \log M(\gamma) d H_{z}(\gamma)\right),
$$

H_{z} being the Herglotz kernel.

Proposition 2.

(a) If $n>m, A\left[\delta^{(m)}\left(z_{0}\right)\right]$ is continuously embedded in $A\left[\delta^{(n)}\left(z_{0}\right)\right]$.
(b) If T is of the type (1), $A[T] \equiv \sum_{j=0}^{n} A\left[\delta^{(m(j))}\left(z_{j}\right)\right]$.

Let X be a measure space and $\mu(\gamma, x) \geq 0$ a measurable function on $\Gamma \times X$ such that, for almost every $x \in X$,

$$
\int_{\Gamma} \frac{1}{p(\gamma)} \log \mu(\gamma, x) d P_{z}(\gamma)<+\infty
$$

with $p(\gamma) \geq 1$ a measurable function on Γ and P_{z} the Poisson kernel.
We shall denote by $\mu(\gamma)$ the measure $\mu(\gamma, x) d x$ with $d x$ the σ-finite measure of X, and by $L_{\mu(\gamma)}^{p}=L^{p}(\mu(\gamma))$ the corresponding L^{p} space.
Assume that the family $\left\{L_{\mu(\gamma)}^{p(\gamma)}, \gamma \in \Gamma\right\}$ is a c.i.f. with containing space \mathcal{U}. Consider the function

$$
\mu(z, x)=\exp \left(p(z) \frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{1}{p(\gamma)} \log \mu(\gamma, x) d H_{z}(\gamma)\right) .
$$

It is known (see [6]) that if $T=\delta\left(z_{0}\right),\left[L_{\mu(\cdot)}^{p(\cdot)}\right][T] \equiv L_{\mu\left(z_{0}\right)}^{p\left(z_{0}\right)}$, where

$$
\frac{1}{p(z)}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{1}{p(\gamma)} d P_{z}(\gamma)
$$

The aim of this paper is to identify the interpolated spaces $\left[L_{\mu(,)}^{p(\cdot)}\right][T]$ when T is of finite support.

1. Main results

From Proposition 2, we shall only need to identify a space $\left[L_{\mu(\cdot)}^{p(\cdot)}\right]\left[\delta^{(n)}\left(z_{0}\right)\right]$ with $z_{0} \in D$ and $n \in N$. We shall do an induction with respect to n using the following result.

Lemma 3. Let $F: D \longrightarrow \mathcal{U}$ be an analytic function with nontangential limit a.e. $\gamma \in \Gamma$ and such that, for almost every $x \in X$, the function $F(z, x) \in N^{+}(D)$. Assume that, for almost every $\gamma \in \Gamma$, $F(\gamma, \cdot) \in L_{\mu(\gamma)}^{p(\gamma)}$ and

$$
\text { css } \sup _{\gamma \in \Gamma}\|F(\gamma, \cdot)\|_{L_{\mu(\gamma)}^{p(\gamma)}}=M<+\infty .
$$

Then, if $F\left(z_{0}, \cdot\right)=0, F^{\prime}\left(z_{0}, \cdot\right)$ is in $\left[L_{\mu(\cdot)}^{p(\cdot)}\right]\left[\delta\left(z_{0}\right)\right]=L_{\mu\left(z_{0}\right)}^{p\left(z_{0}\right)}$.

Proof:

We shall prove it with the help of the Fundamental inequality (F.I.) of Hernández (sce [6]).

Under the hypothesis given, we can consider the function

$$
G(z, x)= \begin{cases}F(z, x) / z-z_{0} & z \neq z_{0} \\ F^{\prime}\left(z_{0}, x\right) & z=z_{0} .\end{cases}
$$

From the F.I. and the fact that the function $G(z, x) \mu(z, x)^{\alpha(z)}$, with $\alpha(z)=1 / p(z)$, is in $N^{+}(D)$, we have

$$
\begin{aligned}
& \int_{X}|G(z, x)|^{p(z)}|\mu(z, x)| d \mu=\int_{X}\left|G(z, x) \mu(z, x)^{\alpha(z)}\right|^{p(z)} d \mu \leq \\
& \leq \int_{X} \exp \left(p(z) \frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|G(\gamma, x) \mu(\gamma, x)^{1 / p(\gamma)}\right| d P_{z}(\gamma)\right) d \mu \leq \\
& \leq \exp \left(\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{p(z)}{p(\gamma)} \log \left(\int_{X}\left|G(\gamma, x) \mu(\gamma, x)^{1 / p(\gamma)}\right|^{p(\gamma)} d \mu\right) d P_{z}(\gamma)\right)= \\
& =\exp \left(p(z) \frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{1}{p(\gamma)} \log \left(\int_{X}\left(\frac{|F(\gamma, x)|}{\left|e^{i \gamma}-z_{0}\right|}\right)^{p(\gamma)} \mu(\gamma, x) d \mu\right) d P_{z}(\gamma)\right) \leq \\
& \leq \exp \left(p(z) \frac{1}{2 \pi} \int_{0}^{2 \pi} \log \| \frac{F(\gamma, \cdot)}{e^{2 \gamma}-z_{0}} H_{L_{\mu(\gamma)}^{D(\gamma)}} d P_{z}(\gamma)\right)= \\
& =\exp \left(p(z) \log \frac{M}{d\left(z_{0}, \Gamma\right)}\right)=\left(\frac{M}{d\left(z_{0}, \Gamma\right)}\right)^{p(z)} .
\end{aligned}
$$

Thus, the proof is finished from Fatou's Lemma. Moreover,

$$
\left\|F^{\prime}\left(z_{0}, \cdot\right)\right\|_{L_{\mu\left(z_{0}\right)}^{p\left(z_{0}\right)}} \leq \frac{M}{d\left(z_{0}, \Gamma\right)}
$$

For each $f \in L_{\mu\left(z_{0}\right)}^{p\left(z_{0}\right)}$, we shall express by H_{f} the function

$$
H_{f}(z, x)=\mu(z, x)^{-\alpha(z)} \mu\left(z_{0}, x\right)^{w(z)}\|f\|_{L_{\mu\left(z_{0}\right)}^{p\left(z_{0}\right)}} \frac{f(x)}{|f(x)|}\left(\frac{|f(x)|}{\|f\|_{L_{\mu\left(z_{0}\right)}^{p\left(z_{0}\right)}}}\right)^{w(z) p\left(z_{0}\right)},
$$

where $\omega(z)=\alpha(z)+\tilde{\alpha}(z)$, with $\tilde{\alpha}(z)$ the conjugate function of α such that $\tilde{\alpha}\left(z_{0}\right)=0$. We shall assume, in the sequel, that $\omega^{\prime}\left(z_{0}\right) \neq 0$.

Proposition 4. $f \in\left[L_{\mu(\cdot)}^{p(\cdot)}\right]\left[\delta^{\prime}\left(z_{0}\right)\right]$ if and only if there exist f_{0} and f_{1} in $L_{\mu\left(z_{0}\right)}^{p\left(z_{0}\right)}$ such that

$$
\begin{equation*}
f(x)=f_{0}(x)+f_{1}(x)\left(\log \left|f_{1}(x)\right|+H_{\mu}\left(z_{0}, x\right)\right) \tag{3}
\end{equation*}
$$

where

$$
H_{\mu}\left(z_{0}, x\right)=\left(\mu(z, x)^{-\alpha(z)} \mu\left(z_{0}, x\right)^{w(z)}\right)^{\prime}\left(z_{0}\right) .
$$

Moreover,
(4) $\|f\|_{\left[L_{\mu(i)}^{p(i)}\right) \| 6^{\left.\delta^{\prime}\left(z_{0}\right)\right]}} \equiv \inf \left\{\left\|f_{0}+f_{1} \log \right\| f_{1}\left\|_{L_{\mu\left(z_{0}\right)}^{p\left(z_{0}\right)}}\right\|_{\left.L_{\mu\left(z_{0}\right)}^{p\left(z_{0}\right)}\right)}+\left\|f_{1}\right\|_{\left.L_{\mu\left(z_{0}\right)}^{p\left(z_{0}\right)}\right)} ;\right.$
f satisfies (3) \}.
Proof:
To simplify notation, we shall denote by $E(n)$ the space $\left[L_{\mu(\cdot)}^{p()}\right)\left[\delta^{(n)}\left(z_{0}\right)\right]$ for every $n \in \mathrm{~N}$. Thus, $E(0)=L_{\mu\left(z_{0}\right)}^{p\left(z_{0}\right)}$.
Let $f \in E(1)$ and $F \in \mathcal{F}\left(L_{\mu(\cdot)}^{p \cdot}, \Gamma\right)$ with $F^{\prime}\left(z_{0}, \cdot\right)=f$.
Consider $A=\left\{x \in X ; F\left(z_{0}, x\right)=0\right\}$. It is clear, from the previous lemma, that $f_{0}^{\prime \prime}(x)=f(x) \chi_{A}(x) \in E(0)$ and

$$
\left\|f_{0}^{*}\right\|_{E(0)} \leq \frac{\|F\|_{\mathcal{F}}}{d\left(z_{0}, \Gamma\right)} .
$$

If $x \in A^{c}, F\left(z_{0}, x\right) \neq 0$ and we can consider the function $H(z, x)=$ $H_{F\left(z_{0}, x\right)} \chi_{A^{c}}(x)$.

It is easy to see that H satisfies the hypothesis of the previous lemma but $H\left(z_{0}, \cdot\right)=0$. So, the function $G(z, x)=F(z, x) \chi_{A^{c}}(x)-H(z, x)$ satisfies the necessary hypothesis to ensure that if $f_{1}=F\left(z_{0}, x\right) \chi_{A^{c}}(x)$,

$$
\begin{aligned}
& G^{\prime}\left(z_{0}, x\right)=f(x) \chi_{A^{c}}(x)-f_{1}(x)\left(p\left(z_{0}\right) w^{\prime}\left(z_{0}\right) \log \left|f_{1}(x)\right|\right)+ \\
&+p\left(z_{0}\right) w^{\prime}\left(z_{0}\right) f_{1}(x) \log \left\|f_{1}\right\| E(0)+H_{\mu}\left(z_{0}, x\right) f_{1}(x)
\end{aligned}
$$

is in $E(0)$ with norm $\leq 2\|F\|_{\mathcal{F}} / d\left(z_{0}, \Gamma\right)$.
Combinating the previous results and joining all the terms of $E(0)$ in a single function f_{0}, we obtain the desired results as well as one of the inequalities of (4).

Conversely, let $f=f_{0}+f_{1}\left(H_{\mu}\left(z_{0}\right)+w^{\prime}\left(z_{0}\right) p\left(z_{0}\right) \log \left|f_{1}\right|\right)=f_{0}+g$. If we consider the function $H_{f_{1}}$, we obtain, from the previous lemma, that if $F \in \mathcal{F}\left(L_{\mu(\cdot)}^{p(\cdot)} ; \Gamma\right)$ satisfies $F\left(z_{0}, x\right)=f_{1}$, then

$$
\begin{aligned}
& f_{1}^{*}(x)=F^{\prime}\left(z_{0}, x\right)-H_{f_{1}}^{\prime}\left(z_{0}, x\right)= \\
& =F^{\prime}\left(z_{0}, x\right)-f_{1}(x)\left(p\left(z_{0}\right) w^{\prime}\left(z_{0}\right) \log \left|f_{1}(x)\right|-\right. \\
& \left.\quad-p\left(z_{0}\right) w^{\prime}\left(z_{0}\right) \log \left\|f_{1}\right\|_{L_{\mu\left(z_{0}\right)}^{p\left(z_{0}\right)}}+H_{\mu}\left(z_{0}, x\right)\right)= \\
& =F^{\prime}\left(z_{0}, x\right)+f_{1}(x) p\left(z_{0}\right) w^{\prime}\left(z_{0}\right) \log \left\|f_{1}\right\|_{E(0)}-g(x)
\end{aligned}
$$

is in $E(0)$ and, thus, $g \in E(1) . E(0)$ being continuously embedded in $E(1)$ we obtain the desired algebraic equality. Moreover,

$$
\begin{aligned}
& \|f\|_{E(1)}=\left\|f_{0}+g\right\|_{E(1)}= \\
& =\left\|f_{0}-f_{1}^{*}+F^{\prime}\left(z_{0}, x\right)+f_{1} p\left(z_{0}\right) w^{\prime}\left(z_{0}\right) \log \right\| f_{1}\left\|_{E(0)}\right\|_{E(1)} \leq \\
& \leq\left\|f_{0}+f_{1} p\left(z_{0}\right) w^{\prime}\left(z_{0}\right) \log \right\| f_{1}\left\|_{E(0)}\right\|_{E(1)}+\left\|f_{1}^{*}-F^{\prime}\left(z_{0}, \cdot\right)\right\|_{E(1)} \leq \\
& \leq C\left\|f_{0}+f_{1} p\left(z_{0}\right) w^{\prime}\left(z_{0}\right) \log \right\| f_{1}\left\|_{E(0)}\right\|_{E(0)}+ \\
& +\frac{1}{d\left(z_{0}, \Gamma\right)}\left(\|F\|_{\mathcal{F}}+\left\|f_{1}\right\|_{E(0)}\right)+\|F\|_{\mathcal{F}} .
\end{aligned}
$$

Now, (4) follows easily.
Proposition 5. $f \in\left[L_{\mu(\cdot)}^{p(\cdot)}\right]\left[\delta^{(n)}\left(z_{0}\right)\right]$ if and only if there exist f_{0}, \ldots, f_{n} in $L_{\mu\left(z_{0}\right)}^{p\left(z_{0}\right)}$ such that $f(x)=f_{0}(x)+H_{1}^{\prime}\left(z_{0}, x\right)+\cdots+H_{n}^{(n)}\left(z_{0}, x\right)$, where $H_{j}=H_{f_{j}}$.

Proof:

$E(n)$ still denotes the space $\left[L_{\mu(\cdot)}^{p(\cdot)}\right]\left[\delta^{(r)}\left(z_{0}\right)\right]$ as in the preceeding proof.

It is already known that the result is true for $n=0$ and $n=1$. Assume that it is true for $n-1$ and let us see it for $n>1$.

Let $f \in E(n)$ and $F \in \mathcal{F}\left(L_{\mu(\cdot)}^{p(\cdot)}, \Gamma\right)$ with $F^{(n)}\left(z_{0}, \cdot\right)=f$. Consider the set

$$
A=\left\{x \in X ; F\left(z_{0}, x\right)=0\right\}
$$

and assume the following
Claim. If F satisfies the hypothesis of Lemma 3, then we get that $F^{(n)}\left(z_{0}, \cdot\right) \in E(n-1)$.

It is clear then, that $\left(F\left(z_{,} \cdot\right) \chi_{A}(\cdot)\right)^{(n)}\left(z_{0}\right)$ is in $E(n-1)$ and if $f_{n}=$ $F\left(z_{0}, \cdot\right) \chi_{A^{c}}$ and $H_{n}=H_{f_{n}}$, then $G_{n}(z, x)=F(z, x) \chi_{A^{c}}(x)-H_{n}(z, x)$ satisfies the hypothesis of the claim and therefore, $G_{n}^{(n)}\left(z_{0}, \cdot\right) \in E(n-1)$.

Consequently, if we call $g(\cdot)=\left(F(z, \cdot) \chi_{A}(\cdot)\right)^{(n)}\left(z_{0}\right)+G_{n}^{(n)}\left(z_{0}, \cdot\right)$ we have, from the induction hypothesis, that there exist f_{0}, \cdots, f_{n-1} in $E(0)$ such that

$$
g(x)=f_{0}(x)+\sum_{j=1}^{n-1} H_{j}^{(j)}\left(z_{0}, x\right)
$$

Finally, as $f(x)=g(x)+H_{n}^{(n)}\left(z_{0}, x\right)$, the desired result is obtained. The converse is quite similar.

Proof of the claim:
We know that the claim is true for $n=1$. Let us consider the set $B=\left\{x \in X ; F^{\prime}\left(z_{0}, x\right)=0\right\}$. Then, from the induction hypothesis, $\left(F(z, \cdot) \chi_{B}(\cdot)\right)^{(n)}\left(z_{0}\right)$ is in $E(n-2)$.

Let now $x \notin B$. One can consider the function

$$
G_{F}(z, x)=\frac{F(z, x)}{z-z_{0}} \chi_{B^{c}}(x)-H_{F}(z, x)
$$

where $H_{F}=H_{F^{\prime}\left(z_{0},\right) \chi_{B^{c}}}$.
Because G_{F} satisfies the hypothesis of Lemma 3, $G_{F}^{(n-1)}\left(z_{0} ; \cdot\right)$ is in $E(n-2)$ and, thus, as

$$
\left(F(z, x) \chi_{B^{c}}\right)^{(n)}\left(z_{0}\right)=n\left(G_{F}^{(n-1)}\left(z_{0}, x\right)+H_{F}^{(n-1)}\left(z_{0}, x\right)\right)
$$

and $H_{F}^{(n-1)}\left(z_{0}, \cdot\right) \in E(n-1)$, we get that $F^{(n)}\left(z_{0}, \cdot\right)$ is in $E(n-1)$.

Corollary 6. Let $J(z, x)=\left(\mu\left(z_{0}, x\right) / \mu(z, x)\right)^{1 / p}$. Then, the space $\left[L_{\mu(\cdot)}^{p}\right]\left[\delta^{(n)}\left(z_{0}\right)\right]$ is equivalent to

$$
\begin{aligned}
L^{p}\left(\mu\left(z_{0}\right)\right)+L^{p}\left(\mu\left(z_{0}\right)\left(J^{\prime}\left(z_{0}, x\right)\right)^{-p}\right) & +\cdots+L^{p}\left(\mu\left(z_{0}\right)\left(J^{(n)}\left(z_{0}, x\right)\right)^{-p}\right) \equiv \\
& \equiv L^{p}\left(\mu\left(z_{0}\right)\left(\sum_{j=1}^{n}\left|J^{(j)}\right|\left(z_{0}, x\right)\right)^{-p}\right)
\end{aligned}
$$

Proof:
Let us denote $\mu_{k}=\mu\left(z_{0}\right) J^{(k)}\left(z_{0}, x\right)^{-p}$ for every $k \in \mathbf{N}$.
If $p(\gamma)=p, H_{f}(z, x)=J(z, x) f(x)$ and, as $f \in L^{p}\left(\mu_{0}\right)$,

$$
H_{f}^{(k)}\left(z_{0}, x\right)=f(x) J^{(k)}\left(z_{0}, x\right) \in L^{p}\left(\mu_{k}\right)
$$

Now we see the equivalence of the norms. Assume initially that $n=1$ and let $f \in\left[L_{\mu(\cdot)}^{p}\right]\left[\delta^{\prime}\left(z_{0}\right)\right]$. Let $F \in \mathcal{F}\left(L_{\mu(\cdot)}^{p}, \Gamma\right)$ with $F^{\prime}\left(z_{0}, x\right)=f(x)$ and consider $G(z, x)=F(z, x)-J(z, x) F\left(z_{0}, x\right)$. It is satisfied that $G\left(z_{0}, \cdot\right)=0$ and, therefore, $G^{\prime}\left(z_{0}, \cdot\right) \in L^{p}\left(\mu_{0}\right)$. Moreover,

$$
\left\|G^{\prime}\left(z_{0}, \cdot\right)\right\|_{L^{p}\left(\mu_{0}\right)} \leq \frac{1}{d\left(z_{0}, \Gamma\right)}\left(\|F\|_{\mathcal{F}}+\left\|F\left(z_{0}, x\right)\right\|_{L^{p}\left(\mu_{0}\right)}\right) \leq \frac{2\|F\|_{\mathcal{F}}}{d\left(z_{0}, \Gamma\right)}
$$

Thus, $F^{\prime}\left(z_{0}, x\right)=G^{\prime}\left(z_{0}, x\right)+J^{\prime}\left(z_{0}, x\right) F\left(z_{0}, x\right)=f_{0}(x)+f_{1}(x)$ with f_{0} in $L^{p}\left(\mu_{0}\right)$ and f_{1} in $L^{p}\left(\mu_{1}\right)$. Moreover,

$$
\left\|f_{0}\right\|_{L^{p}\left(\mu_{0}\right)}+\left\|f_{1}\right\|_{L^{p}\left(\mu_{1}\right)} \leq \frac{2\|F\|_{\mathcal{F}}}{d\left(z_{0}, \Gamma\right)}+\|F\|_{\mathcal{F}}=\left(1+\frac{2}{d\left(z_{0}, \Gamma\right)}\right)\|F\|_{\mathcal{F}}
$$

that, a fortiori, yields the equivalence of the norms. Now, assume that the result is true for $n-1$ and let $f \in\left[L_{\mu(\cdot)}^{p}\right]\left[\delta^{(n)}\left(z_{0}\right)\right]$ and F in $\mathcal{F}\left(L_{\mu(\cdot)}^{p}, \Gamma\right)$ with $F^{(n)}\left(z_{0}, x\right)=f(x)$. The function $G^{(n)}\left(z_{0}, x\right)=f(x)-J^{(n)}\left(z_{0}, x\right) F\left(z_{0}, x\right)$ is in $\left[L_{\mu(\cdot)}^{p}\right]\left[\delta^{(n-1)}\left(z_{0}\right)\right]$ and, from the induction hypothesis, there exist $f_{j} \in L^{p}\left(\mu_{0}\right)(0 \leq j \leq n-1)$ such that
$f(x)=f_{0}(x)+f_{1}(x) J^{\prime}\left(z_{0}, x\right)+\cdots+f_{n-1}(x) J^{(n-1)}\left(z_{0}, x\right)+J^{(n)}\left(z_{0}, x\right) F\left(z_{0}, x\right)$.
Moreover,
$\left\|f_{0}\right\|_{L^{p}\left(\mu_{0}\right)}+\cdots+\left\|f_{n-1}\right\|_{L^{p}\left(\mu_{n-1}\right)} \ll\left\|G^{(n)}\left(z_{0}, x\right)\right\|_{\left[L_{\mu(\cdot)}^{y}\right]\left[\delta^{(n+1)}\left(z_{0}\right)\right]} \ll\|F\|_{\mathcal{F}}$.
Now, the proof is easily ended.

Corollary 7. Let w_{0}, w_{1} be two positive measurable functions on X. Then f is in $\left[L^{p_{0}}\left(w_{0}\right), L^{p_{1}}\left(w_{1}\right)\right]_{\delta^{\prime}(\theta)}$ if and only if there exist f_{0}, f_{1} in $L^{p}(w),\left(1 / p=(1-\theta) / p_{0}+\theta / p_{1}\right.$ and $\left.w=w_{0}^{p(1-\theta) / p_{0}} w_{1}^{p \theta / p_{1}}\right)$ such that $f(x)=f_{0}(x)+f_{1}(x)\left(\frac{1}{p_{0}} \log w_{0}(x)-\frac{1}{p_{1}} \log w_{1}(x)\right)+f_{1}(x) \log \left|f_{1}(x)\right|$.

Proof:
Given $0<\theta<1$, there exists a measurable set $\Gamma_{1} \subset \Gamma$ such that $\int_{\Gamma_{1}} d P_{z_{0}}(\gamma)=\theta$. So, if we consider $A(\gamma)=L^{p_{0}}\left(w_{0}\right)$ for each $\gamma \in \Gamma \backslash \Gamma_{1}$ and $A(\gamma)=L^{p_{1}}\left(w_{1}\right)$ for each $\gamma \in \Gamma_{1}$, we have $A(\gamma)=\left[L^{p_{0}}\left(w_{0}\right), L^{p_{1}}\left(w_{1}\right)\right]_{\alpha(\gamma)}$ with $\alpha(\cdot)=\chi_{\Gamma_{1}}(\cdot)$.

It is known (see $[11,1.18 .5]$) that $A(\gamma)=L_{\mu(\gamma, x)}^{p(\gamma)}$, where, for each $\gamma \in \Gamma$;

$$
\begin{aligned}
\frac{1}{p(\gamma)} & =\frac{1-\alpha(\gamma)}{p_{0}}+\frac{\alpha(\gamma)}{p_{1}} \quad \text { and } \\
\mu(\gamma, x) & =w_{0}^{p(\gamma)(1-\alpha(\gamma)) / p_{0}} w_{1}^{p(\gamma) \alpha(\gamma) / / p_{1}} .
\end{aligned}
$$

Moreover, α attains the values 0 and 1 , and thus, as we have proved in [2] in quite analogy with the reiteration results of [3], if $T=\delta^{(n)}\left(z_{0}\right)$ $(n \in N)$ and $w^{\prime}\left(z_{0}\right) \neq 0$, then

$$
A[T] \equiv\left[L^{p_{0}}\left(w_{0}\right), L^{p_{1}}\left(w_{1}\right)\right]_{S}
$$

where $S(\varphi)=T(\varphi \circ w)$ and $\left[L^{p_{0}}\left(w_{0}\right), L^{p_{1}}\left(w_{1}\right)\right]_{S}$ is defined like in the interpolation method of [10]. So,

$$
\left[L^{p_{0}}\left(w_{0}\right), L^{p_{1}}\left(w_{1}\right)\right]_{S} \equiv\left[L^{p_{0}}\left(w_{0}\right), L^{p_{1}}\left(w_{1}\right)\right]_{\delta^{\prime}\left(\alpha\left(z_{0}\right)\right)}=\left[L^{p_{0}}\left(w_{0}\right), L^{p_{1}}\left(w_{1}\right)\right]_{\delta^{\prime}(\theta)}
$$

Hence, the space we want to identify is a particular case of Proposition 5. But, in this case,

$$
\mu(z, x)=w_{0}^{p(z)(1-w(z)) / p_{0}} w_{1}^{p(z) w(z) / p_{1}}
$$

If we call $B(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{1}{p(\gamma)} d P_{z}(\gamma)$ and $\mathcal{B}(z)=B(z)+i \bar{B}(z)$ with $\tilde{B}\left(z_{0}\right)=0$, we have

$$
\mu\left(z_{0}, x\right)^{\mathcal{B}(z)} \mu(z, x)^{-B(z)}=w_{0}^{((w(z)-1)+(1-\theta) p \mathcal{B}(z)) / p_{0}} w_{1}^{(p \mathcal{B}(z) \theta-w(z)) / p_{1}}
$$

Now we can apply Proposition 4 to end the proof.

Remark. In view of the Corollary 6 and the above calculation, one can easily obtain that

$$
\left[L^{p}\left(w_{0}\right), L^{p}\left(w_{1}\right)\right]_{\delta^{(n)}(\theta)} \equiv L^{p}\left(w_{0}^{1-\theta} w_{1}^{\theta}\left(1+\left|\log \left(w_{0} / w_{1}\right)\right|^{n}\right)^{-p}\right)
$$

as it is said in [7].

Remark.

Let $\varphi(x, t)$ be a function that, for each $x \in M$, is an increasing function of t in $0 \leq t<\infty$, and $\varphi(x, 0)=0$. Denote by $\varphi(X)$ the class of measurable functions g on M such that there exist $\lambda>0$ and $f \in X$ with $\|f\|_{X} \leq 1$ and

$$
|g(x)| \leq \lambda \varphi(x, \lambda|f(x)|) \quad \text { a.e. } x \in M \text {. }
$$

Define the "norm" of $g,\|g\|_{\varphi(X)}$, as the infimun of the values λ for which such an inequality holds.

It is known (see [1]) that if $\varphi(x, t)$ is a concave function of t and change the previous norm by

$$
\|g\|=\inf \{\lambda>0 ;|g(x)| \leq \lambda \varphi(x,|f(x)|) \quad \text { a.e. } x \in M\}
$$

then $(\varphi(X),\|\cdot\|)$ is a Banach Lattice. In our case, we can only assure that the space $\varphi(X)$ is a Frechet Lattice.

We say that a function f is equivalent to g in R^{+}if and only if there exist $a, b>0$ such that

$$
a f(x) \leq g(x) \leq b f(x) \quad \text { a.e. } x \in X
$$

It is also known that $L_{\mu(\gamma)}^{p(\gamma)}=\varphi_{\gamma}\left(L^{1}\right)$, where

$$
\varphi_{\gamma}(x, t)=\mu(\gamma, x)^{-1 / p(\gamma)} t^{1 / p(\gamma)}
$$

Consider the function

$$
\varphi_{z}(x, t)=\exp \left(\frac{1}{2 \pi} \int_{\Gamma} \log \varphi_{\gamma}(x, t) d H_{z}(\gamma)\right)
$$

Then $\varphi_{z}(x, t)=\mu(z, x)^{-1 / p(z)} t^{\omega(x)}$.
Finally we assume that, for each $1 \leq k \leq n$, the function $\varphi_{k}(x, t)=$ $\left|\delta^{(k)}\left(z_{0}\right)\left(\varphi_{z}(x, t)\right)\right|$ is equivalent to an increasing function that we shall continue denoting by φ_{k}.

Proposition 8. If $T=\delta^{(n)}\left(z_{0}\right)$, the space $\left[L_{\mu(\cdot)}^{p(\cdot)}\right][T]$ is equivalent to $\sum_{k=0}^{n} \varphi_{k}\left(L^{1}\right)$.

Proof:
Let $f \in \varphi_{k}\left(L^{1}\right)$ and let $h \in L^{1}$ with $\|h\|_{L^{1}} \leq 1$ and $\lambda>0$ such that $|f(x)| \leq \lambda \varphi_{k}(x, \lambda|h(x)|)$.

We have

$$
\varphi_{k}(x, \lambda|h(x)|)=\left|\delta^{(k)}\left(z_{0}\right)\left(\mu(z, x)^{-1 / p(z)}(\lambda|h(x)|)^{\omega(z)}\right)\right|
$$

It is easy to see that the function $F(z, \cdot)=\mu(z, \cdot)^{-1 / p(z)}(\lambda|h(x)|)^{\omega(z)}$ is in $\mathcal{F}\left(L_{\mu(\cdot)}^{p(\cdot)}\right)$, and hence, f is in $\left[L_{\mu(\cdot)}^{p(\cdot)}\right]\left[\delta^{(k)}\left(z_{0}\right)\right]$.

Moreover, $\|f\|_{\left[L_{\mu(\cdot)}^{p(\cdot)}\right]\left[\delta^{(k)}\left(z_{0}\right)\right]} \leq \lambda\|F\|_{\mathcal{F}}$. So it is clear that if $\left(f_{n}\right)_{n}$ converges to zero in $\varphi_{k}\left(L^{1}\right),\left(f_{n}\right)_{n}$ converges to zero in $\left[L_{\mu(\cdot)}^{p(\cdot)}\right]\left[\delta^{(k)}\left(z_{0}\right)\right]$.

Converscly, from Proposition 5, one can obtain that if $f \in\left[L_{\mu(\cdot)}^{p(\cdot)} \|^{(n)}\left(z_{0}\right)\right]$, $f(x)=g(x)+H_{n}^{(n)}\left(z_{0}, x\right)$ where $\left|H_{n}^{(n)}\left(z_{0}, x\right)\right| \equiv \varphi_{n}\left(x,\left|g_{n}(x)\right|\right)$ with $g_{n}=$ $\left|f_{n}\right|^{p\left(z_{0}\right)} \mu\left(z_{0}\right) \in L^{1}$. An induction ends the proof.

2. Applications

Example 1.

If $b \in B M O$ has a norm enough small s, then $W=e^{b}$ and W^{-1} are weight of A_{p}. Furthermore. for any Calderón Zygmund integral operator (CZO), L,

$$
L: L^{p}(W) \longrightarrow L^{p}(W) \quad \text { and } \quad L: L^{p}\left(W^{-1}\right) \longrightarrow L^{p}\left(W^{-1}\right)
$$

(See [8]).
Proposition 9. Under the previous hypothesis, for each $b \in B M O$,

$$
\int_{\mathbf{R}^{n}}|L(g(x)|b(x)|)|^{p} \frac{1}{\left(\|b\|_{=}+\mathbf{s}|b(x)|\right)^{p}} d x \ll \frac{1}{\mathbf{s}^{p}}\|g\|_{p}^{p} \quad \forall g \in L^{p}
$$

Proof:

It is a trivial consequence of the fact that

$$
L:\left[L^{p}(W), L^{p}\left(W^{-1}\right)\right]_{\delta^{\prime}(\theta)} \longrightarrow\left[L^{p}(W), L^{p}\left(W^{-1}\right)\right]_{\delta^{\prime}(\theta)}
$$

$$
\text { Interpolation of families }\left\{L_{\mu(\gamma)}^{p(\gamma)}, \gamma \in \Gamma\right\}
$$

and that for $\theta=1 / 2$,

$$
\left[L^{p}(W), L^{p}\left(W^{-1}\right)\right]_{\delta^{\prime}\left(\frac{1}{2}\right)} \equiv L^{p}\left((1+|b|)^{-p}\right) .
$$

So, if $f \in L^{p}\left((1+|b|)^{-p}\right\rangle,\|L(f)\|_{L^{p}\left((1+|b|)^{-p}\right)} \ll\|f\|_{L^{p}\left((1+|b|)^{-p}\right)}$.
On the other hand, if $g \in L^{p}, L(g) \in L^{p}$ and

$$
\|L(g)\|_{L^{p}\left((1+|b|)^{-p}\right)} \leq\|L(g)\|_{p} \leq c\|g\|_{p} .
$$

The combination of all these results ends the proof.
Corollary 10. If L is a CZO,

$$
\sup _{b \in B M O}\left(\int_{X}|L(|b(x)|)|^{p} \frac{1}{\left(\|b\|_{*}+\mathbf{s}|b(x)|\right)^{p}} d x\right)^{\frac{1}{p}} \ll \frac{1}{s}|X|,
$$

for any Lebesgue measurable set X and $|X|$ its measure.

Example 2.

Consider $0<\gamma<n, 1<p_{1}<(n / \gamma)$ and $1 / p_{2}=1 / p_{1}-\gamma / n$. If $b \in B M O$, it is proved in [9] that if $L_{\gamma}=*|x|^{\gamma-n}$ (Riesz Potentials), then

$$
\begin{aligned}
& L_{\gamma}: L^{p_{1}}\left(e^{b}\right) \longrightarrow L^{p_{2}}\left(e^{b}\right) \text { and } \\
& L_{\gamma}: L^{p_{1}}\left(e^{-b}\right) \longrightarrow L^{p_{2}}\left(e^{-b}\right) .
\end{aligned}
$$

Thus, with an argument quite similar to the one of Proposition 9, we get the following result.

Proposition 11. Under the previous conditions,

$$
\sup _{b \in B M O}\left(\int_{X}\left|L_{\gamma}\right| b(x)| |^{p_{2}} \frac{1}{\left(\|b\|_{*}+\left.\mathrm{s}|b(x)|\right|^{p^{2}}\right.} d x\right)^{\frac{1}{p_{2}}} \ll \frac{1}{\mathrm{~s}}|X|^{\frac{1}{p_{1}}} .
$$

Example 3.

Let $1<p_{1}<p_{2}<\infty$ and $p=2\left(p_{1}^{-1}+p_{2}^{-1}\right)^{-1}$. If $g \in L^{p}\left(\mathbf{R}^{\mathbf{n}}\right)$ and g^{*} is the Maximal function of Hardy-Littlewood, there exists α such that $\left(g^{*}\right)^{ \pm \alpha}$ are weights in the classes $A_{p_{1}}$ and $A_{p_{2}}([4$, Prop. 2]). Consequently, if L is a CZO,

$$
\begin{aligned}
& L: L^{p_{1}}\left(\left(g^{*}\right)^{ \pm \alpha}\right) \longrightarrow L^{p_{1}}\left(\left(g^{*}\right)^{ \pm \alpha}\right) \quad \text { and } \\
& L: L^{p_{2}}\left(\left(g^{*}\right)^{ \pm \alpha}\right) \longrightarrow L^{p_{2}}\left(\left(g^{*}\right)^{ \pm \alpha}\right) .
\end{aligned}
$$

Proposition 12. Under the previous conditions, for each $f \in L^{p}\left(\mathbf{R}^{\mathbf{n}}\right)$ $\left(p_{1} \leq p \leq p_{2}\right)$,

$$
\left(\int_{\mathbf{R}^{\mathbf{n}}}\left|L\left(f\left|\log g^{*}\right|\right)\right|^{p} \frac{1}{\left(1+\alpha\left|\log g^{*}\right|\right)^{p}} d x\right)^{\frac{1}{p}} \ll \frac{1}{\alpha}\|f\|_{p}
$$

Example 4. On the Hardy-Littlewood maximal operator.
Let M be the Hardy-Littlewood maximal operator. If $0<\alpha<1$, then

$$
f(x)=M\left(\|x\|^{-\alpha n}\right)\left(1+\left|\log M\left(\|x\|^{-\alpha n}\right)\right|\right)^{-1} \in L^{1 / \alpha}\left(\mathrm{R}^{\mathrm{n}}\right) .
$$

If we take $p=1 / \alpha$ and $u=1$, it will be a particular case of the following result.

Proposition 13. Let $u \in A_{2}$ and $p>1$. If $f(1+|\log | f| |)^{-1} \in$ $L^{p}\left(u^{-1}\right)$ and $g=M\left(f u^{-1}\right) u$, then $g(1+|\log | g| |)^{-1} \in L^{p}\left(u^{-1}\right)$.

Proof: Let $\alpha: \Gamma \longrightarrow(0,1)$ a measurable function such that

$$
\frac{1}{p}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{1}{1+\alpha(\gamma)} d \gamma .
$$

Then
(a) $u^{\alpha(\gamma)} \in A_{\alpha(\gamma)+1}$ (see [5]) and, therefore, if $p(\gamma)=1+\alpha(\gamma)$

$$
M: L^{p(\gamma)}\left(u^{\alpha(\gamma)}\right) \longrightarrow L^{p(\gamma)}\left(u^{\alpha(\gamma)}\right)
$$

(b) By interpolation

$$
M:\left[L^{p(\cdot)}\left(u^{\alpha(\cdot)}\right)\right]\left[\delta^{\prime}(0)\right] \longrightarrow\left[L^{p(\cdot)}\left(u^{\alpha(\cdot)}\right)\right]\left[\delta^{\prime}(0)\right] .
$$

(c) If

$$
u:\left[L^{p(\cdot)}\left(u^{\alpha(\cdot)}\right)\right]\left[\delta^{\prime}(0)\right] \longrightarrow L_{\phi}\left(u^{-1}\right)
$$

is defined by $u(f)=u f$, then u is an isomorfism, where $L_{\phi}\left(u^{-1}\right)$ is the Orlicz space associated to $\phi(t)=\varphi^{-1}(t)^{p}$, and $\varphi(t)=t(1+|\log t|)$. This result is a consequence of Proposition 4 with $H_{\mu}(0, x)=p w^{\prime}(0) \log u$ and from the fact that $L_{\phi}\left(u^{-1}\right)$ is the space of the measurable functions such that $f(1+|\log | f| |)^{-1} \in L^{p}\left(u^{-1}\right)$.

Now the proof ends from (a), (b) and (c).

References

1. Calderón, A. P., Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113-190.
2. Carro, M. J. and Cerdà, J., Complex Interpolation and L^{p} Spaces, Studia Math. 99 (1) (1991), 57-67.
3. Coifman, R., Cwikel, M., Rochberg, R., Sagher, S. and Weiss, G., A theory of complex interpolation for familics of Banach spaces, Advances in Math. 43 (1982), 203-229.
4. Coifman, R., Rochberg, R., Another characterization of $B M O$, Proc. Amer. Math. Soc. 79 (1980), 249-254.
5. Garcia-Cuerva, J. and Rubio de Francia J. L., "Weighted norm inequalities and related topics," North-Holland, Mathematics studies, 1985.
6. Hernández, E., Intermediate spaces and the complex method of interpolation for families of Banach spaces, Ann. Scuola Norm. Sup. Pisa 13 (1986), 245-366.
7. Lions, J. L., Quelques procédés d'interpolation d'operateurs linéaires et quelques applications, Séminaire Schwartz II (1960/61), 2-3.
8. Mikhlin, S. And Phössdorf, S., "Singular integral operators," Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1986.
9. Muckenhoupt, B. And Wheeden, R., Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc. 192 (1972), 261-274.
10. Schechter, M., Complex Interpolation, Comp. Math. 18 (1967), 117-147.
11. Triebex, H., "Interpolation theory, function spaces, differential operators," North Holland, Amsterdam-New York-Oxford, 1978.

Departament de Matemàtica Aplicada i Anàlisi Universitat de Barcelona Gran Via de les Corts Catalanes 585 08071 Barcelona SPAIN

[^0]: 1980 Mathematics Subject Clasification (1985 Revision) 46M35, 46 E 30 .

