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A bstract

WORK OF PERE MENAL

ON NORMAL SUBGROUPS

F . A . ARIANGHAUS AND L . N . VASERSTEIN

We describe subgroups of CL2A which are normalized by elemen-
tary matrices for rings A satisfying the first stable range condition,
Banach algebras A, ven Neumann regular rings A, and other rings
A .

Let A be an associative ring with 1 and, for any natural number n,
let GLnA be the group of all invertible n by n matrices with entries in
A (thus GLlA is the group of units of A) . Let En A be the subgroup
of GLnA generated by all elementary matrices ai,3, where a E A and
1<i :7~ j<n.

For any subset X of A, let EnX denote the subgroup of GLnA gen~
erated by all elementary matrices with entries in X, and let En(A, X)
denote the normal subgroup of EnA generated by EnX. If n >_ 3 and
B is an ideal of A, then En (A, B) is generated by elements of the form
ai,ib~,2(--a)2,j, where a E A, b E B, and 1 < i :7~ j < n.
Denote by Gn (A, B) the inverse image of the center of GLn (A/B)

under the canonical homomorphism GLn A -> GLn (A/B) ; if n >_ 2, then
Gn (A, B) consists of all matrices of GLnA which, reduced modulo B,
are scalar matrices xI with x in the center of A/B .

For various classes of rings A (see [3], [36]-[38]) including all von
Neumann regular rings, all Banach algebras, all commutative rings, and
all stable range 1 rings, one has a complete description of all subgroups
H of GLnA which are normalized by EnA for n >_ 3 . Namely, for any
subgroup H of GLnA:

(a) If there exists an ideal B of A such that En (A, B) CH CGn (A, B),
then En (A, B) = [EnA, EnB] = [H, En A] = [G, (A, B), En A] and
so II is normalized by EnA.

(b) If H is normalized by EnA, then there is
satisf'ying

En (A, B) C H C Gn (A,B) .

a unique ideal B of A
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Note that these cannot be extended to arbitrary rings A when n >_ 3
(see [10]), nor are they true when n = 2 . In fact, the structure of E2A is
intractable even for the integers Z (see [9], [18], [27]-[32]) . Since there
are nonstandard normal subgroups of E2A when A is a field of 2 or 3
elements (see [8]), the same is true of any ring A with a residue field of
2 or 3 elements .
A ring A is called von Neumann regular if for every a E A there is an

x E A with axa = a . By using xax instead of x, if necessary, we have
axa = a and xax = x .
Some partial positive results about the structure of E2A were known

for von Neumann regular rings (see [37]), Banach algebras (see [38]),
and rings with stable range 1 (see [3]), including all commutative rings
A with stable range 1 (see [5], [20], [34], [43]) .

In particular, it was proved in [37] that for A/rad A von Neumann
regular and B an ideal of A, then [E2A, G2 (A, B)] C E2 (A, B) . This
inclusion implies that every subgroup H of GL2A satisfying condition
(a) with n = 2 for some ideal B is normalized by E2A . However, these
results excluded those normal subgroups of E2A which do not satisfy any
ladder condition E2 (A, B) C H C G2 (A, B) for any ideal B, for example
when A is the field of 2 or 3 elements and H = [E2A, E2A] .

	

In [24],
Menal and Vaserstein replaced E2 (A, B) by [E2A, E2 (A, B)] to obtain
the following complete description of normal subgroups of E2A for any
von Neumann regular ring A .

Theorem 1. Let A be a von Neumann regular ring and H a subgroup
of GL2A:

(a) If there is an ideal B of A with [E2A, E2 B] C H C G2 (A, B),
then

and

[H, E2A] C E2B = E2 (A, B),

[G2 (A, B), [E2A, E2A]] = [E2A, [E2A, H]] =
= [H n E2A, E2A] = [E2A, E2B] = [E2B, E2B]

C H.

	

In particular, H is normalized by [E2A, E2A] and both
H n E2A and HE2B are normalized by E2A;

(b) If [H, E2A] C H, then there is a unique ideal B of A such that

[E2A, E2B] C H C G2(A, B) .

This gives the following classification result .
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Corollary . Let A be a von Neumann regular ring . Then a subgroup
H of E2A is normal if and only if there is an ideal B of A such that
[E2 A, E2 B] C H C G2 (A, B) .

In the case of a commutative regular ring A this result was proved by
Costa and Keller in [5] . Note that in this case A has stable range 1 (see
[11, cor . 4.5]), so E2A= SL2A. In general, the stable range of A is not
always 1 (see [23]), and it remains an open problem as to whether A is
always a GE-ring, Le ., GL,A is generated by elementary and diagonal
matrices .
The uniqueness of the ideal B in the theorem is easy to see . This is a

consequence of the following fact which is true for an arbitrary ring A :
if H is a subgroup of GL2A such that [E2A, E2B] C H C G2 (A,B) for
some ideal B of A then B= {x E A : x1,2 x2,1 E H} . To verify this fact,
observe that x 1,2x2,1 = [x1,2 , 11,2(-1 )2,1 11,2] E [E2B,E2A] C H for any
x E B. Finally, since both offdiagonal entries of the matrix are x, the
inclusion x 1,2x2,1 E G2 (A, B) implies that x E B.

In general, the intersection HnE2A in the theorem cannot be replaced
by H because [E2B, E2A] =,/= [H, E2A] when H = G2 (A,B) and A = B
is the field of these elements . However, when E2A is perfect (Le ., E2A =
[E2A, E2A]), the theorem implies that [E2A, E2B] = [G2(A, B), E2A] .
In this case, a subgroup H of GL2A is normalized by E2A whenever
[E2 A, E2 B] C H C G2 (A, B) for an ideal B of A.
In the same paper, Menal and Vaserstein also applied these techniques

to Banach algebras . However, it was shown in [39, section 4] that there
are normal subgroups of E2A corresponding to any quasi-ideal Y o£ A
which do not satisfy any ladder condition [E2 A, E2 B] C H C G2 (A, B)
for an ideal B of A if Y is not itself an ideal, for example, E2 (A, Y) (see
[33, prop . 4.2]) .

Recall that a quasi-ideal of A is an additive subgroup Y of A such
that aya E Y and yay E Y for any y E Y and a E A. Note that in
many cases, every quasi-ideal is an ideal, for example, when 2A =A and
A is commutative [39, lemma 4.1], but that this is not true in general .
In fact, if 2A =?~ A, then quasi-ideals appear even in commutative local
rings (see [1]) .
The previous results did not use quasi-ideals because every quasi-ideal

of a von Neumann regular ring is an ideal . This is also the case for
every Banach algebra which is simple or commutative (see [38], [39]),
but is not true for an arbitrary Banach algebra . However, the exterior
(Grassman) algebra on a 2-dimensional real vector space is an example
of a 4-dimensional algebra with a quasi-ideal that is not an ideal .

Let C2 (A, Y) be the set of all g E GL2A with [g, E2A] C E2 (A, Y) .
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Clearly C2 (A, B) C G2 (A, B) for any ring A and any ideal B of A;
the equality C2(A, B)

	

=

	

G2(A, B)

	

is equivalent to the inclusion
[E2A, G2(A, B)] C E2(A, B) .

	

Menal and Vaserstein then proved the
following description of normal subgroups .

Theorem 2 . Suppose that 2A = A and that for any a E A there
is a finite sequence x l, x2, . . ., xn in A with xl + x2 + . . . + xn = 1 and
1 - axi E GLIA for all i . Let H be a subgroup of GL2A.

(a) If there is a quasi-ideal Y of A with E2 (A, Y) C H C C2(A, Y)
then E2(A, Y) = [E2A, E2Y] = [E2A, E2 (A, Y)] = [E2A, H] =
[E2A,C2(A,Y)] C H and so H is normalized by E2A . Further-
more, when Y is an ideal, C2 (A, Y) = G2 (A, Y) ;

(b) If H is normalized by E2A, then there is a unique quasi-ideal Y
of A such that E2(A, Y) C H C C2(A, Y) .

This leads to the following classification result .

Corollary . Suppose that 2A = A and that for any a E A there is
a finite sequence XI, x2, . . ., xn in A with XI + x2 + . . . + xn = 1 and
1 - axi E GLlA for all i . A subgroup H of E2A is normal if and only if
there is a quasi-ideal Y of A such that E2(A, Y) C H C C2 (A, Y) .

Menal and Vaserstein proved some parts of the theorem under weaker
hypotheses on the ring A. It should also be noted that under slight1y
different hypotheses on the ring A, the theorem was proved in [39] in
the case when every quasi-ideal of A is an ideal .
The hypotheses of Theorem 2 are satisfied not only by Banach algebras

but also by many other rings, for example, the ring of all bounded smooth
functions on any smooth manifold . In fact, these hypotheses are satisfied
by any connected topological ring A with GLl A open in A .
Theorem 2 can also be extended te other classes of rings . We call A

semilocal if A/rad A is a (not necessarily finite) direct product of matrix
rings over division rings - for example, any Artinian ring is semilocal .
Menal and Vaserstein showed in [24] that the semilocal rings satisfying
the hypotheses of Theorem 2 are precisely those rings A with 2A = A
and which contain no factor ring isomorphic to a matrix ring Mn(Z/3Z),
which extends Theorem 2 to any subgroup H of GL2A in the following
manner .

Corollary . Let 2A = A be a semilocal ring without factor rings iso-
morphic to a matrix ring Mn(Z/3Z) . Then the conclusions of Theorem
2 hold for any subgroup H of GL2A .
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For a commutative local ring, the corollary was proved in ([1], [13],
[15], [16], [19], [21], [33]) ; results for commutative semilocal rings can
be found in ([2], [7]) . Kolotilina and Vavilov showed in [14] that for any
normal subgroup H of GL2A there is a unique ideal B of A such that
E2 (A, B) C H C G2(A, B), provided that A is a semilocal ring satisfying
two conditions . First, the center of A must contain a unit E such that
1 - E is also a unit ; second, that A has neither factor rings which are
division algebras with centers of cardinality less than 5 nor factor rings
which are isomorphic to M2(Z/2Z) .
The use of quasi-ideals opens up a wider range of rings . Many authors

had some treatment of commutative local rings, but the results that
Menal and Vaserstein obtained in [24] included noncommutative local
rings A for which 2A = A. In [26], they extended their results to local
rings A such that A/rad A contained at least 4 elements .
We call a ring A local if A/rad A is a division ring, where rad A denotes

the Jacobson radical of A . Note that in a local ring A, if Y is a quasi-
ideal of A and Y :,,~ A, then Y C rad A, since A = yAy CY if Y contains
a unit y .

Let A be the exterior (Grassman) algebra on a vector space V over a
field F with dinIFV >_ 2 and let Y be the F-subspace of A spanned by
the monomials of odd degree . Then A is a local ring with A/rad A = F
and Y is a quasi-ideal which is not an ideal . If 2F = F, then 2A = A and
A is not commutative . If 2F = 0, then 2A = 0 and A is commutative .

For any quasi-ideal Y :,A A of an arbitrary ring A denote by T2 (A, Y)
the set of all elements of the form x2,1 diag(u, v)y1,2 , where x, y E Y,
u, v E GLjA, and v-lau-a, uav -1 -a E Y for all a E A . Set T2(A, A) =
GL2A. When A is local, it is clear that T2 (A, B) = G2(A, B) for every
ideal B of A . Note that for any ring A, G2 (A, 0) is the center of GL2A =
G2 (A, A) which consists of scalar matrices over the center of the ring A .
Moreover, G2(A, 0) is the centralizer of E2A in GL2A.
Then Menal and Vaserstein proved the following result .

Theorem 3 . Suppose A is a local ring such that A/rad A has at least
4 elements . Then:

(a) E2 (A, Y) = [E2A, E2Y] = [E2A, E2(A, Y)] _ [E2A, T2 (A, Y) ] for
any quasi-ideal Y of A;

(b) If H is a subgroup of GL2A which is normalized by E2A, then
there exists a unique quasi-ideal Y of A such that E2(A, Y) C
H C T2 (A, Y) .

This result uses the following lemma, which follows from T2 (A, Y)
being a subgroup of GL2A invariant under conjugation by E2A .
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Lemma. Let A be a local ring, Y a quasi-ideal of A. Then T2 (A, Y)
is a subgroup of GL2A and [E2A,T2(A,Y)] C E2(A,Y) C T2(A,Y) .
Therefore [H, E2A] C H for any subgroup H of GL2A such that
E2 (A, Y) C H C T2 (A, Y) for some quasi-ideal Y of A .

The unique quasi-ideal in part (b) of Theorem 3 is in fact the level
of H, L(H) = {a E A : a1,2 E H} which plays an important role
in most classification theorems . The uniqueness of Y is easy to see,
because Y C L (H) whenever E2 (A, Y) C H, and L(H) C Y whenever
H C T2 (A, Y) . This is true for an arbitrary ring A and a subset Y ;
however in general it is not true that E2 (A, Y) C T2 (A, Y) .

If card (A/rad A) < 4, then E2A maps onto the group E2F = SL2F
where F = A/rad A is a field, and since E2F is not perfect (see [8]),
E2A is not perfect .

Furthermore, in this case, H = [E2 A, E2A] is a normal subgroup
of E2A such that no quasi-ideal Y of A exists with E2 (A, Y) C H C
T2 (A, Y) . In fact, if A is the field of 2 elements, then H is a non-central
normal subgroup of GL2A containing no nontrivial elementary matrices .

In the case of a commutative local ring A, the theorem is essentially
due to Abe (see [1]) . This case was also treated in ([13], [15], [16],
[19], [21], [33]) . When 2A = A, the theorem is contained in Menal and
Vaserstein (see [24]) . The main difficulties in proving the theorem lie in
the case when A/rad A is a small field of characteristic 2 .

It was shown in [42] that for any local ring A with A/rad A having at
least 3 elements and any normal subgroup H of GL2A there is a unique
ideal B of A such that E2(A, B) C H C G2 (A, B) . Under the additional
condition that the center of A/rad A has at least 7 elements, this was
proved previously by Kolotilina and Vavilov in [14] . However, it is not
true in general that every subgroup H of GL2A such that E2 (A, B) C
H C G2 (A, B) for an ideal B of A is normal (see [42]) . By the lemma,
such a subgroup H is always normalized by E2A .

In [25], Menal and Vaserstein used these methods on stable range
one rings . In this paper they generalized to noncommutative rings the
description of E2A-normalized subgroups given by Costa and Keller in
[5] . The quasi-ideals which appear in the results of Menal and Vaserstein
do not appear in many previous results as every quasi-ideal is an ideal
in the commutative case with 2A = A.
A ring A satisfies the first Bass stable range condition if for any a, b E A

with aA+ bA = A, there is an r E A such that (a + br)A = A (see [35]) .
Equivalently, this means that there is an r such that a+br is a unit . We
denote this by sr(A) <_ 1 . A result of Kaplansky [40] says that when
sr(A) < 1 every one-sided unit in A is a unit .
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In [12], Goodearl and Menal proved the stable range one condition
for many classes of rings and algebras . They used a strong form of
stable range one, unit 1-stable range (replace the r above by a unit u
to obtain the definition), which followed from the following condition on
a ring A : given any x, y E A, there is a unit u E A such that x - u
and y - u-1 are both units . Verification of this condition yields stable
range one in the following cases : (1) any algebra over an uncountable
field, in which all elements are zero-divisors or units and there are no
uncountable direct sums of nonzero one-sided ideals ; (2) any algebra over
an uncountable field, in which there are only countably many primitive
factor rings, all of which are Artinian ; (3) the endomorphism ring of any
noetherian module over an algebra as in (2) ; (4) any algebraic algebra
over an infinite field ; (5) any integral algebra over a commutative ring
which modulo its (Jacobson) radical is algebraic over an infinite field ; (6)
any von Neumann regular algebra over an uncountable field, which has
a rank function . They also use other techniques to prove stable range 1
for other rings, including finite Rickart C*-algebras and certain strongly
7r-regular rings . For more examples of stable range one rings, see [3], [6],
[35], [40], [41] .
When sr(A) <_ 1, more is known about the structure of GL,,A. In [3],

Bass showed

[E,A, E,, B] = [E, A, G,,(A, B)] = [GL,,A, GLm B] = En (A, B)

for any ideal B of A and any n >_ 3, where the principal congruente
subgroup GL�B is defined as the kernel of the homomorphism GLnA -->
En(A/B) . Generally, [GL,A, Gn(A,B)1 :7' En(A, B) even for local rings
A. Moreover, G, (A, B)/GLnB = G2(A, B)/GL2B for n > 2, hence this
group does not depend on n, and it is an abelian group isomorphic to
the group of units of the center of the ring A/B.
The group GLnB/E,(A, B) = K1 (A, B) = GLIB/W(A, B) is also

an abelian group which does not depend on n for n >_ 2, where
W(A, B) is the subgroup of GLlA generated by the elements of the
form (a + c + abc) (a + c + cba) -1 with a E B, b E A, c E 1 + B (see
[17], [22]) . So the group G,(A, B)/E�(A, B), which classifies all sub-
groups H of GL,,A normalized by EnA and with the same "leveF B, is
two-step nilpotent . When A is commutative, E� (A, B) = SLnB for all
ideals B of A, G,(A, B)/GLnB = G1(A, B)IGLI B = GL1 (AIB), and
GLnB/En (A, B) = K1 (A, B) = GL1B .
The next theorem [25] gives more information about the structure of

E2 (A, Y) and C2 (A, Y) for rings A with sr(A) < 1 and quasi-ideals Y
of A. Part (b) generalizes to quasi-ideals a result of [15] describing the
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kernel of the Whitehead determinant GLlB --> Kj (A,B) for ideals B
(the case B =A had been done in [18]) .

Theorem 4. Let A be an associative ring with sr(A) < 1 . Then for
any quasi-ideal Y of A:

(a) the group E2 (A, Y)

	

is generated

	

by

	

elements

	

of the forms
a1,2y2,1(-a)1,2 and a2,1y1,2(-a)2,1 with a E A and y E Y;

(b) the group E2(A,Y) consists of all elements of the form
x1,2y2,1z1,2d where x, y, z E Y, and d is a diagonal matrix which
is a product of diagonal matrices of the form diag(a+c+abc, (a+
c + cba) -1 ) with a, b, c E A, a + c + cba E

	

GL,A and either
a-1,cEYora,c-1EY ;

(c) when Y is an ideal of A, C2 (A, Y) = G2(A,Y) and this group
consists of all elements of the form x1,2y2,1z1,2d with x, y, z E Y
and a diagonal matriz d = diag(u, v) with u, v E GLlA such that
v-t au - a, uav-1 - a E Y for all a E A.

Under the additional condition 2A = A, Menal and Vaserstein proved
the second conclusion of Theorem 4(c) for any quasi-ideal Y of A:

Theorem 5. Let A be an associative ring with 1 such that sr(A) <
1 and 2A = A. Then for any quasi-ideal Y of A, the group C2(A,Y)
consists of all elements of the form x1,2y2,1z1,2d with x, y, z E Y and
a diagonal matrix d = diag(u, v) with u, v E GL l A such that v-lau -
a, uav-1 - a E Y for all a E A.

In this case, Menal and Vaserstein obtained the following result .

Theorem 6. Let A be an associative ring with 1 such that 2A = A
and sr(A) <_ 1. Then a subgroup H of E2A is normal if and only if
[E2A, E2(A, Y)] C H C C2 (A,Y) for some quasi-ideal Y of A .

This classification result follows from :

Theorem 7. Let A be an associative ring with 1 such that 2A = A
and sr(A) < 1 .

(a) If H is a subgroup of GL2A normalized by E2A, then there is
a unique quasi-ideal Y of A such that [E2A,E2(A,Y)] C H C
C2 (A,Y) ;

(b) If Y is a quasi-ideal of A, then [E2A,E2 V] = [E2A,C2(A,Y) f1
E2A] .
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For a stable range 1 ring A and n >_ 3, (GLnA),,b, the abelianization
of the linear group GLnA is well-known . Specifically, it is KlA which
is isomorphic to GL I A/W(A), which is described above . In [4], Berrick
and Menal computed the abelianization of GL2A, showing that Kl A is
a direct summand of (GL2A)ab in the following result .

Theorem 8. If I is an ideal of A with stable range 1, then every
element g E GL2I can be written in the form g = diag(u,v)a2,lb1,2C2,1~
where u, v E GL2I and a, b, c E I. Moreover, there is a group isomor-
phism of (GL2 I) ab with (I/I2) 3 ® I2 /L ® GL1I/Wl (I, I), where L is the
ideal of I generated by (x2 - x)I and I(x2 - x) for all x E I .

In [42], the problem of developing a "sandwich theorem" for normal
subgroups of GL2A similar to the one for GLnA with n >_ 3 was explored .
In this paper, results previously discussed were generalized to rings A
which satisfy one of three conditions ; either A is a stable range 1 ring,
or Arad A is non Neumann regular, or for every a E A there is a
finite sequence xl, X2, . . ., xn in A such that xl + x2 + . . . + xn = 1 and
1- axz E GL 1 A for all i . In this case, the following theorem was proved .

Theorem 9. Suppose A is a ring satisfying one of the abone three
conditions such that no proper one-sided ideal of A contains all u - 1,
where u E GLl A, and every element of A is a sum of units. Then
for every subgroup H of GL2A which is normalized by GE2A there is a
unique ideal B ofA such that [E2A, E2B] C H C G2 (A, B) .

Here GE2A is the subgroup of GL2A generated by all its diagonal and
elementary matrices . If A is a stable range 1 ring, then GE2A = GL2A.
When no proper one-sided ideal of A contains all u - 1, E2 (A, B) C
[E2B, GE2A] for every ideal B of A .
While the converse to this theorem is not always true, the same paper

contains the following modification .

Theorem 10. Suppose A satisfies one of the aboye three conditions .
Then

[G2(A, B), [E2A, E2A]] C E2(A, B)

for any ideal B of A. Therefore, if H is a subgroup of GL2A such that
E2(A, B) C H C G2(A, B) for an ideal B of A, then [H, [E2A, E2A]] C
E2(A, B), hence H is normalized by [E2A, E2A] .
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