GLOBAL DIMENSION IN NOETHERIAN RINGS AND RINGS WITH GABRIEL AND KRULL DIMENSION

JUAN JACOBO SIMÓN PINERO

Abstract _	
Z X SPOCE COLLIN	In this paper we compute the global dimension of Noetherian rings and rings with Gabriel and Krull dimension by taking a subclass of cyclic modules determined by the Gabriel filtration in the lattice of hereditary torsion theories.

Introduction

In this paper we exhibit a nice subclass of cyclic modules to compute the global dimension of a ring (see [9], [12], [13], [15]) whose origins are in [3] and [11]. In the first part, the left global dimension of a noetherian ring, R, is computed in terms of the injective dimensions of the following subclass of R-mod. If $\tau_{-1} < \tau_0 < \cdots < \tau_{\theta}$ is the Gabriel filtration in the lattice of hereditary torsion theories of R, i.e. R-tors [2], then the subclass consist of all the cyclic τ_{μ} -cocritical left R-modules whose injective dimension equals the injective dimension of every one of its submodules, with μ ranging over all the ordinals less than β . Also, we obtain some of the classical results for noetherian rings as consequences of our results. In the second part we note that all our results can be dualized.

Throughout this paper, R will denote an associative ring with 1 and R-mod the category of all unitary left R-modules. Torsion classes and torsion theories will always be hereditary; all terminology concerning torsion theories is quoted from [2]. Given a nonzero $M \in R$ -mod, $\mathrm{Id}(M)$ and $\mathrm{Pd}(M)$ denote respectively, the injective and projective dimensions of M, setting $\mathrm{Id}(0) = \mathrm{Pd}(0) = -\infty$. The left global dimension of R will be denoted by $lgl \dim(R)$, and the Gabriel dimension $G \dim(R)$. For further details on each of these dimensions we refer respectively to [13] and [2].

1. Injective dimension

The Strong Injective Dimension of a left R-module, M is defined as $\operatorname{Sid}(M) = \sup \{\operatorname{Id}(M') | 0 \to M' \to M \text{ is exact}\}.$ Following [11], given $n \in \mathbb{N}$, we will denote by \mathcal{L}_n the class of left R-modules M, with $\operatorname{Sid}(M) \leq n$. We define $\operatorname{Sid}(M) = \infty$ when for all $n \in \mathbb{N}$, there exists a submodule $M' \subseteq M$ such that $\operatorname{Id}(M') \geq n$ (with the convention $n < \infty$). Observe that if there exist $M' \subseteq M$ with $\mathrm{Id}(M') = \infty$, then $Sid(M) = \infty$. We remark [11] that if R is a left noetherian ring then the classes \mathcal{L}_n (n = 0, 1, ...) are torsion classes and [11] if R is the ring Rtaken as left R-module the Sid(R) = lgl dim(R).

Note that there is a chain of torsion classes $\mathcal{L}_0 \subseteq \mathcal{L}_1 \subseteq \cdots \subseteq \mathcal{L}_n \subseteq \cdots$ We add $\mathcal{L}_{-\infty} = \{0\}$ and $\mathcal{L}_{\infty} = R$ -mod. Let σ_n be the torsion theory corresponding to \mathcal{L}_n . Note that $M \in \mathbb{R}$ -mod is σ_n -torsionfree if and only if for all submodules $0 \neq M' \subseteq M$ there exist a submodule $N \subseteq M'$ such that Id(N) > n. Within the above chain there exists a strictly increasing subchain; that is, if $n_0 = -\infty$, then $\mathcal{L}_{n_0} \subset \cdots \subset \mathcal{L}_{n_j} \subset \cdots$ where the length of the subchain is at most ω .

1.1 Examples.

- (i) In $\mathbb Z$ we have $\mathcal L_{-\infty}=\mathcal L_0\subset\mathcal L_1=\mathbb Z\text{-mod}$. (ii) Let K be a field. For $R=\begin{pmatrix} K&K[X,Y]\\0&K[X,Y] \end{pmatrix}$ we have $\mathcal L_{-\infty}\subset\mathcal L_0\subset\mathcal L_0$ $\mathcal{L}_1 \subset \mathcal{L}_2 = R$ -mod.
- (iii) Let R be a commutative northerian regular local ring, with Jmaximal ideal. Suppose that Id(R/J) = n, then we have in this case $\mathcal{L}_{-\infty} = \mathcal{L}_0 = \cdots = \mathcal{L}_{n-1} \subset \mathcal{L}_n = R$ -mod.
- (iv) Let R be a left artinian left local ring [2]. Then R-mod has a chain as in (iii).
- (v) In [3], there are examples where all the inclusions in the chain are proper.
- (vi) In any left artinian ring which has at least two simple left Rmodules with different injective dimensions (as \mathbb{Z}_{12}) the Gabriel filtration has less terms than the subchain.
- **1.2 Lemma.** Let R be a left noetherian ring and \mathcal{L}_{n_j} $(j = -\infty,$ $(0, 1, \ldots)$ a term in the subchain such that $\mathcal{L}_{n_i} \neq R$ -mod. Then there exists a σ_{n_j} -cocritical left R-module M, such that $n_j < Id(M) = Id(M')$ for all submodules $0 \neq M' \subseteq M$.

Proof: Since R is noctherian and $\mathcal{L}_{n_j} \neq R$ -mod then there exist a σ_{n_j} -cocritical left R-module M. (a) If $\mathrm{Id}(M) > n_j$ (including ∞) then in each exact sequence $0 \to M' \to M \to M'' \to 0$ we have $\mathrm{Id}(M'') \leq n_j$ and $\mathrm{Id}(M) > n_j$, and so $\mathrm{Id}(M') = \mathrm{Id}(M)$; hence M is the required object. (b) If $\mathrm{Id}(M) \leq n_j$ then since $\mathrm{Sid}(M) > n_j$ then there exists a submodule $0 \neq M' \subset M$ such that $\mathrm{Id}(M') > n_j$ (including ∞) and since M' is also σ_{n_j} -cocritical we are again in case (a), and M' is now the required object. \blacksquare

1.3 Proposition. Let R be a left noetherian ring, \mathcal{L}_{n_j} (j = 0, 1, ...) $\mathcal{L}_{n_j} \neq R$ -mod and $m = \min\{Id(C)|C \text{ is cyclic } \sigma_{n_j}\text{-cocritical with }Id(C) > n_j\}$. Then $m = n_{j+1}$.

Proof: By hypothesis and Lemma 1.2 it is clear that \mathcal{L}_m always exists and that $\mathcal{L}_{n_j} \subset \mathcal{L}_m$. Suppose that there exists $k \in \mathbb{N}$ such that $\mathcal{L}_{n_j} \subset \mathcal{L}_k \subseteq \mathcal{L}_m$. Since R is noetherian [2] there exists a σ_{n_j} -cocritical σ_k -torsion left R-module M, and hence $n_j < \operatorname{Sid}(M) \le k$. So, by the part (a) in the proof of Lemma 1.2, there exists a cyclic submodule $C \subseteq M$ such that $\operatorname{Id}(C) = \operatorname{Sid}(M)$. Since C is also σ_{n_j} -cocritical and $\operatorname{Id}(C) > n_j$. Then, by the definition of m we must have $\operatorname{Id}(C) \ge m$. Hence $k \ge m$ and thus k = m.

Note that, in particular, if $m = \min\{\operatorname{Id}(S)|S \in R\text{-mod is simple}\}$ then $m = n_1$.

1.4 Observation. Since every subchain has at least two terms, it is natural to analyze the step $\sigma_{n_j} < \sigma_{n_{j+1}}$. In each of these steps there exists a σ_{n_j} -cocritical cyclic left R-module C, such that $\operatorname{Id}(C) = \operatorname{Id}(C') = \operatorname{Sid}(C) \geq n_{j+1}$ for all submodules $0 \neq C' \subseteq C$.

From here, Theorem C of B. Osofsky in [5] follows immediately. In the next theorem, we will see that we can to extract a nice subclass of the class of cyclic left R-modules, to compute the left global dimension.

1.5 Theorem. Let R be a left noetherian ring, such that $G \dim(R) = \beta$. Then $lgl \dim(R) = \sup\{Id(C)|C \text{ is cyclic, } Id(C) = Id(C'), \text{ for all } 0 \neq C' \subseteq C \text{ and } \tau_{\mu}\text{-cocritical, with } \mu < \beta\}.$

Proof: Let $\tau_{-1} < \tau_0 < \cdots < \tau_{\beta}$ be the Gabriel filtration in R-tors and let $lgl\dim(R) = n_k$ (or ∞). For any given j < k we have a step $\sigma_{n_j} < \sigma_{n_{j+1}}$ and by [2], there exists an ordinal $\alpha \leq \beta$ which is least with the property that $\tau_{\alpha} \not\leq \sigma_{n_j}$. Note that α is a successor. Then by Observation 1.4 and the fact that $\tau_{\alpha} \not\leq \sigma_{n_j}$ there exists a $\tau_{\alpha-1}$ -cocritical σ_{n_j} -cocritical left R-module C, such that $\mathrm{Id}(C) = \mathrm{Id}(C') \geq n_{j+1}$ for all

submodules $0 \neq C' \subseteq C$. Setting $\mu = \alpha - 1$ we have the result in view that the choice of j was arbitrary.

The next corollary is of particular importance inasmuch as there exist an abundance of examples where the subchain is finite.

1.6 Corollary. Let R be a left noetherian ring such that $G \dim(R) = \beta$. Suppose that we have finitely many terms in the subchain. Then $lgl \dim(R) = \sup\{Id(C)|C \text{ is cyclic, } Id(C) = Id(C') \text{ for all } 0 \neq C' \subseteq C \text{ and } \tau_{\mu}\text{-cocritical where } \mu < \beta \text{ is fixed}\}.$

Proof: Consider the last step in the subchain, $\sigma_{n_{j-1}} < \sigma_{n_j} = \chi$. Then there exists $\alpha \leq \beta$ such that $\tau_{\alpha} \not\leq \sigma_{n_{j-1}}$. Here, $\mu = \alpha - 1$.

1.7 Observation. Let R be a commutative noetherian ring. We take in this case the original definition of Krull dimension over the prime ideals of R. Suppose that now, for all $S \in R$ -mod simple we have that $S \in \mathcal{L}_n$ for some $n \in \mathbb{N}$ (fixed). Let J be any maximal ideal of R, then R/J is a simple left R-module and $\operatorname{Supp}(R/J) = J$; furthermore, $R/J \in \mathcal{L}_n$. Then, by [11] the local ring R_J is regular with $K \dim(R_J) \leq n$. By [13] we have $\operatorname{Sid}_{R_J}(R_J) = \lg \lg \dim(R_J) \leq n$, for all J. By [13] we have $\lg \lg \dim(R) \leq n$, hence $R \in \mathcal{L}_n$. That is, we have just proved that for any commutative noetherian ring, if $\sigma_{n_j} \neq \chi$ then $\tau_0 \not\leq \sigma_{n_j}$ and by Theorem 1.5 we have the well-known result: $\lg \lg \dim(R) = \sup \{ \operatorname{Id}(S) | S \text{ is simple } R\text{-module} \}$.

2. Projective dimension

When we compute the left global dimension as the supremum of the projective dimensions of cocritical and critical left R-modules we have analogous results to the above; furthermore, we can relax the noetherian condition on the ring R. The Strong Projective Dimension [11] is defined as $\mathrm{Spd}(M) = \sup\{\mathrm{Pd}(N)|M \to N \to 0 \text{ is exact}\}$. We have for all $n \in \mathbb{N}$, the classes $\mathcal{U}_n = \{M \in R\text{-mod} | \mathrm{Spd}(M) \leq n\}$. In this case [11] \mathcal{U}_n are torsion classes for an arbitrary ring R, and $lgl\dim(R) = \mathrm{Spd}(RR)$. We denote by ρn the torsion theory corresponding to \mathcal{U}_n . Again, we have a chain $\mathcal{U}_0 \subseteq \mathcal{U}_1 \subseteq \cdots \subseteq \mathcal{U}_n \subseteq \cdots$ and adding $\mathcal{U}_{-\infty}$ and \mathcal{U}_{∞} we can take a strictly ascending subchain $\mathcal{U}_{n_0} \subset \cdots \subset \mathcal{U}_{n_j} \subset \cdots$ with $n_0 = -\infty$. From here, we can do the dualization in a similar way to the first part and we can remove the noetherian condition. So, we will write only the principal result. For ρ_{n_j} -cocritical left R-modules C, such that $\mathrm{Pd}(C) \geq n_{j+1}$, the consequence $\mathrm{Pd}(C) = \mathrm{Pd}(C')$ for all submodules $0 \neq C' \subseteq C$ will be removed in view that all ρ_{n_j} -cocritical satisfy it.

2.1 Theorem. Let R be a ring with Gabriel dimension, suppose that $G \dim(R) = \beta$. Then

 $lgl \dim(R) = \sup\{Pd(C)|C \text{ is cyclic and } \tau_{\mu}\text{-cocritical, with } \mu < \beta\}.$

- **2.2** Examples. (i) In a non-noetherian ring R, with Gabriel dimension, the classes \mathcal{L}_n are not in general torsion classes, but they are Serre subcategories (see [5]). Even if subchains can be found, the results that we have seen do not hold. For example, let S be $(\mathbb{Z}_2)^{\mathbb{N}}$ and $R \subset S$ the subring generated by $(\mathbb{Z}_2)^{(\mathbb{N})}$ together with $1 \in S$. Then R is a commutative boolean semiartinian hereditary V-ring, having as chain $\mathcal{L}_{-\infty} \subset \mathcal{L}_0 \subset \mathcal{L}_1 = R$ -mod. Note that the torsion class generated by \mathcal{L}_0 is the same that \mathcal{L}_1 .
- (ii) Let R be a ring with Gabriel dimension and nonsingular as left R-module (Z(RR) = 0). Then if R is not semi-simple we have

$$lgl \dim(R) = \sup{Pd(C)|C \text{ is cyclic singular}}.$$

Proof: We shall prove that every C of Theorem 2.1 admits another singular module D such that $\operatorname{Pd}(D) \geq \operatorname{Pd}(C)$. By [4], in every non-singular ring, cyclic uniform modules are either singular or nonsingular. Since it is clear when C is singular, we assume that C is nonsingular. So take a left ideal I of R such that $R/I \cong C$. Because I is not large in R, there is a left ideal $0 \neq J$ of R with $I \oplus J$ large in R. By taking $D = R/I \oplus J$ we have $\operatorname{Pd}(D) = 1 + \operatorname{Pd}(I \ominus J) \geq 1 + \operatorname{Pd}(I) \geq \operatorname{Pd}(C)$ and R/I is singular.

- (iv) If R is left semiartinian, $lgl \dim(R) = \sup\{Pd(S)|S \text{ is simple}\}$ (see [8]). Semi-perfect rings are semiartinian, for instance.
- (v) Finally we refer to injective and projective dimension in left Fully Bounded Noetherian (FBN) rings without any other assumption (like the commonly used right coherence of [12], [15]). In this rings, the (two sided) prime ideals often have not hard descriptions and we can see how our classes work.

Let R be a left FBN ring and take $\mathcal{L}_{n_j} \neq R$ -mod $(\mathcal{U}_{n_k} \neq R\text{-mod})$. By the results above, there exists a cyclic σ_{n_j} -cocritical $(\rho_{n_j}\text{-cocritical})$ left R-module C. Take [14] the associated prime ideal ass(C) and note that by [14] if $x \in C$ is such that $R \cdot x = C$ then ass $(C) \subseteq l(x)$ (the left annihilator of x) and hence, $R/\text{ass}(C) \notin \mathcal{L}_{n_j}(R/\text{ass}(C) \notin \mathcal{U}_{n_k})$ and by [14] we have R/ass(C) is σ_{n_j} -torsionfree $(\rho_{n_k}$ -torsionfree). Since R is left FBN then, the injective hulls $E(R/\text{ass}(C)) \cong E(C)$ and hence there exists a copy of C, say C again, $C \subseteq E(R/\text{ass}(C))$. Take $K = C \cap R/\text{ass}(C)$ and note that since $K \subseteq C$ then K has the properties

of modules in Theorems 1.5 and 2.2. Since $R/\operatorname{ass}(C)$ is a left order in a simple ring [7], [14] then for any $x \in K$ we have $(R/\operatorname{ass}(C)) \cdot x \cong R/\operatorname{ass}(C)$ as left $R/\operatorname{ass}(C)$ -modules and hence as left R-modules. This implies that $\operatorname{Id}(R/\operatorname{ass}(C)) = \operatorname{Id}(C)$ ($\operatorname{Pd}(R/\operatorname{ass}(C)) = \operatorname{Pd}(C)$). So we have that if R is a left FBN ring then

$$lgl \dim(R) = \sup \{ \operatorname{Id}(R/I) | I \in \operatorname{Spec}(R) \} = \sup \{ \operatorname{Pd}(R/I) | I \in \operatorname{Spec}(R) \}. \blacksquare$$

Note. The author thanks the referee for reporting him about the existence of [6].

References

- 1. M.F. ATIYAH AND I.G. MACDONALD, "Introduction to commutative algebra," Addison-Wesley, Reading, Mass., 1969.
- 2. J.S. GOLAN, "Torsion theories," Longman Scientific & Technical John Wiley & Sons, 1986.
- 3. J.S. GOLAN AND Z. PAPP, Cocritically nice rings and Boyle's conjecture, Comm. Algebra 8(18) (1980), 1775-1798.
- 4. K.R. GOODEARL, "Ring Theory," Marcel Dekker, New York, 1976.
- 5. R. GORDON AND J.C. ROBSON, Krull dimension, Mem. Amer. Math. Soc. 133 (1973).
- J.J. KOKER, Homological dimension of rings with Krull and Gabriel dimension, Ph.D. Thesis, University of Wisconsin-Milwaukee, 1990.
- 7. J.C. Mc Connell and J.C. Robson, "Noncommutative noetherian rings," John Wiley & Sons, Chichester New York Brisbane Toronto Singapore, 1987.
- 8. C. Năstăsescu, Dimension globale des anneaux semi-artiniens, C.R. Acad. Sci. Paris, Sér. A-B 268 (1969), A685-A688.
- 9. B.L. OSOFSKY, Global dimension of valuation rings, Trans. Amer. Math. Soc. 127 (1967), 136-149.
- I. Palmér and J.-E. Roos, Formules explicites pour la dimension homologique des anneaux de matrices generalisées, C.R. Acad. Sci. Paris, Sér. A-B 273 (1971), A1026-A1029.
- 11. Z. PAPP, On the strong injective (projective) dimension of modules, *Arch. Math.* **25** (1974), 354-360.
- 12. J. RAINWATER, Global dimension of fully bounded noetherian rings, Comm. Algebra 15(10) (1987), 2146–2156.
- 13. J. ROTMAN, "An introduction to Homological Algebra," Orlando, Academic Press, 1979.

- 14. BO STENSTRÖM, "Rings of quotients," Springer-Verlag, Berlin, Heidelberg, New York, 1975.
- 15. M. Teply, Global dimensions of right coherent rings with left Krull dimension, Bull. Austral. Math. Soc. 39, no 2 (1989), 215-223.

Departamento de Matemáticas Universidad de Murcia 30071 Murcia SPAIN

Primera versió rebuda el 8 de Juliol de 1991, darrera versió rebuda el 15 d'Octubre de 1991