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ON STRONGLY NONLINEAR
ELLIPTIC EQUATIONS WITH
WEAK COERCITIVITY CONDITION

LAszLS SiMoON

Abstract

We prove the existence and uniquencss of weak solutions of bound-
ary value problems in an unbounded domain §2 C B™ [or strongly
nonlinear 2m order elliptic differential equations.

In this paper it will be proved existence and uniqueness of solutions
of boundary value problems for the equation

©1) D (—)"D*|fulz, D*u)+
|ex|=+r2

+ > (-1)*D%galz,u,..., D, ) =FinQ

la)Em-1

i
where {2 is an unbounded domain in B*, o = {an,.. . ,0.), la| = E ay,
§=1

3 n

Function f, satisfies the Carathéodory conditions such that ¢, —
Folz, {a) is strictly monotone increasing, fo{z,0} = 0 and f,, g satisfy
the “weak” coercitivity condition

(0.2) D falzadat Y. galmi¥aZeo 3 {alf

lal=m |e|gm—1 . |e|=m

with some constants p > 1, ¢p > 0. Functions g, have some polynomial
growth in DPu, but on f, no growth restriction is imposed in D%w.

Similar result has been proved in [1] for the equation

> (=)D ga (D)) = F

lalZm
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in a bounded §i if the condition

Falla)la 2 collal? — ¢, e & m

is fulfilled with some constants p > 1, ¢; > 0. The proof of the existence
thecrem is based on a method called by F.E. Browder “clliptic super-
regularization” (see [1] - [3]). Our results can be extended to equations
of the form

S (=)D falzin, ., DPu, .+
|ex|=n
+ Z (_I)IQIDGIQQ(I:U‘---:Dﬁuv'“]:F

la)<m—1

where |8] £ m (see [2] - [B]).

It is to be mentioned that [6] is connected with our result where D.
Fortunato has considered cquation Lu + f{z,u) = 0; by L is denoted a
second order linear clliptic operator with weak coercitivity conditions in
an unbounded domain. Similarly to our consideration, in [6] the solution
u must satisfy the “asymptotic condition” [, |grad ul® dz < +o0.

1. The existence the_orem

Let 2 C RB® be an unbounded domain with bounded boundary 851,
having the uniform C™-regularity property and 2, = 10 B, where
B, ={z € B": |z| < r} (sce [7]). Denote by W (02} the usual Sobolev
space of real valued functions v whose distributional derivatives belong
to LP(§2). The norm on W (Q) is

Ve

el = ¢ > /ﬁm‘*u{%

lxjEm

By WTi,.(Q2) will be denoted the set of functions f such that ¢f €
Wi () for all p € C§°(R"), L.c. for all infinitely differentiable functions
w with compact support.

Denote by W »o{§2) the set of functions u € W}:‘bc(f}) satisfying the
conditions: D%u € LP(Q) if |a| = m and the trace of D74 on 80 equals

to 0 if [8] £ m ~ 1. The norm in W;‘I})(ﬂ) is defined by

\/p

g = § 3 [ 10wl do

ler|=m
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It is not difficult to show that W;’:B(Q) is a reflexive Banach space. Let
V be a closed linear subspace of W;’_‘U(Q).

Let N be the number of mmitiindices # = {51,. .., 8,) satisfying |8] =
m. Assume that

1. Functions f, : @ x R — R{|a] = m)} satisfy the Carathéodory
conditions, L.e. fo(z, (.} is measurable in z for cach fixed {, € R and it
is continuous in ¢, for almost all £ € £2.

1. fo(z,{s) is strictly monotone increasing with respect to {,,
fole,0) =0.

IIL. For any s > 0 there is a function f, s such that fa,s € LY, ) for
each r > 0 and

|f0($)<a| é for,s(i") if |CQ| g 8.

Further, there exist constants ¢1, ¢2 > 0 and a function f} € P (€2} such
that fora.c. x € 02

|fal2, )l S fale) + arlal?™" if ial € 2

with some p > 1.
IV. There exists a constant ¢q > 0 such that for all {, € R, ac. x € Q

| faliw,Cadl 2 caldal®™

V. Functions g, : 2 x BRY — R{|a] < m - 1) satisfy the Carathéodory
conditions.

VI. There exists a bounded domain £ C £ such that g, {x, () = 0 for
all ¢ € RY, a.c. z € Q\&Y; further,

Y galz,(¥a 20

le|Evee—1

VII. There cxist constants p)o(, functions @, € Lrlea (V) and a con-
tinuous function C, such that

(rn — lablp
P—1§P|a|<P—1+T,

Plal P
and forall ¢ €e RN, ae 2@

19a{z. O £ Cal(} [@alz) + (717

where { = (¢’ ("} and {’ consists of those {, for which |y| < m — n/p.
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Remark 1. Function f, satisfies conditions I - IV e.g. in the following
special case:

fal2:(a) = Xa(Z)Palla) + ¥alla)

where xo € L), xo 2 0; ¢a, ¥, are continuous functions, @, is
monotone increasing, ¥, is strictly monotone increasing, ¢o(0) = 0,
P,{0) =0 and -

clCal”™ £ 1¥alGall(Ca € RY, 1¥alCa)| S ECalP ! if Gl < 1

by ¢, € are denoted positive constants.

Theorem 1. Assume that conditions I - VII are fulfilled. Then for
any G € V* fi.e. for linear continuous functional over V') with compact
support there isu € V such that

(1.1) falz, Du)D%u € LY(Q),

(1.2)
lfalz, Dw)| S FO + 1O where U € LYQ), fO € L9(0), %+ % 1,

13 > ffa(x,D"u)D"vdm-i-

|ex| =7

+ > /ga(x,u,,,,,Dﬂu,.,,)D“vdr:(G,v)

for aillv e CP(R™) with vlg € V.

This theorem will be a simple consequence of Theorem 2 formulated
below.

Let V; be the closure in W {2} of
{elo, - p e C°(B)N V]

Then V; is a closed lincar subspace of W ({2,) and -extending function
u € V. as 0 to 0\Q,— the extensions belong to V. Let s > max{n,p}
then by Sobolev’s imbedding theorem W™*1(0.) is continuously and
also compactly imbedded into W (2,) and CE($2r) (see e.g. [7]} where
CT (8, ) denotes the set of m times continuously differentiable functions
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u with finite norm ||u|| = Z sup |D%u). Denote by W2} the

r

lalEwm
closure in W™HH{Q,) of

{ela, : ¢ € C5(B;)}.

[+]
Then —extending u € W7+{(Q,) as 0 to \Q, - the extension belongs
to WmHH(Q)). Further, let

W, = WhHQyn v,
with the norm of W™*(Q,). Then W, is a closed linear subspace of

W), ). Functions u € W, will be extended to 2\, as 0.
For any u, v € W, define

Sy = 3 / |DPul* =2 (D*u)( D) d

la|Sm+1

(L)) = 3 f fulw, D*u)DPu dz,
lalEm

(Qrlu),v) = Z / 9ol u,..., DPu,. . YD vdzx.
|a]Em—1

By Holder’s inequality, Sobolev's imbedding theorem, assumptions I, III,
V, VIL S, T,, @, : W, — W are bounded nonlinear operators i.e. they
map bounded sets of W, onto bounded sets of W,

Theorem 2. Assume that conditions I - VII ere fulfilled, G C V* has
compact support and inm ry = +oo. Then for sufficienily large | there
o0

exists at least one soluton w € W, of
1 .
(1.4} I(Sﬁ (), v) + (Try(wa), v} + {Qr {ua},v) = (G, ) for allve W,

Further, there is a subseguence {u]} of (v} which is weakly converging in
V lo a function u € V satisfying (1.1} - (1.3). If (1.1) - (1.8} may have
at most one solufion then also {w)) converges weakly to w.

Proof: Clearly, %S,, is a pseudomonotone operator. Since W, is com-
pactly imbedded into CF{$},,} thus by use of assumptions I, III, V, VII
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it is easy to show that also (-}-Sﬂ + Tr + Q)+ W — W/ is pseu-
domonotone. Assumptions II, IV, VI imply that for each u € W,
(1.5)

<(£Sn + Ty, +Qn) (w), u> 2 —|[un to Y / \Dup d,

la|=m

hence +S,, + T, + Qn, is coercive. So by the theory of pseudomonotone
opcrators (sce e.g. [8]) there is at least one solution u € Wr, of (1.4).

Since G has compact support {(contained in {3;) thus

(1.6)
1/p

(G W] ICIv-Tullwpan S clGlv-§ 3 / IDoufPdz 3 S

|a|=

/e

< Gy Z[ | D u|? dx

[ | =

for quf‘ﬁt-i( ntly large & (The norm in W]T'({};) is equivalent with
{ Z Dl dr}'/? for functions satisfying DPufr = 0 if |8} £

|| =mi
m—1)
From (1.4} - (1.6}, p > 1 it. follows that

1
(1.7) I||u1 ||f¢,«l_! is bounded and
{1.8) luelly is bounded.

Equality (1.4}, VI and (1.8) iinply that

{1.9) / falz, D®wy) do is bounded.

]a]‘(m

By Hélder's inequality, for any fixed 7, v € W,

1
Sl ol 3225

H(S,., (w), vy &

and so by (1.7}

{1.10) E1'1rn %(Sr, (), v) =0
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From (1.8} it follows that there are a subsequence {(u}) of (i) and w € V
such that

(1.11) (u}) — u weakly in V
and
(1.12) (DVup) — D"uac inQfor Jy| Sm—1

because by compact imbedding theorems it may be supposed that for
any fixed r > 0)

(1.13) {(Dupy — DYuin LP(Q,), v Sm—1
and by VII
(1.14) (DYup) — DM in L), |41 €m — 1

where q), is defined by
1 1

— =1

P/o G

Lemma 1. For oll ¢ end coch fized v > O the integrals
[ Vate, Dupl o
a2,

are uniformly bounded and the functions fo{z, D™u]} are uniformly equi-
integrable in §1,.

Proof: From II it follows that for any (o, Ca

Fol,Ca)a € Fal2,8a)a + falF, Ca)Ca-

Applying this inequality to f& = p sgn fo{z,(,) with arbitrary fixed
number g > 0 we obtain

ﬁ}[SgI1 f{}’(Ig Cf’)]-fa(‘l‘! Cﬂ) é fa(x’ CQ)C(X + f(x(‘?:)é()’){) Sg!l .f(}’(z’cﬁk’)
where |(5] = p. Thus by III we have

- o

[falz, (o) +fu,p(37)-

Combining this cstimation with (1.9) we obtain Lemma 1. M

By using the methods of (1], [2], [9] we obtain
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Lemma 2. There is a subsequence (w, ) of (uj) such that
(D%, ) — D% a.e. in 2 iflaf =
(Seec [4, Lemma 4] ).
Consider a fixed » € C(R™) such that v|n € V and apply {1.4) to this
v and [ = Ix. Then passing to the limit in (1.4), in virtue of I, ¥V, (1.10)
- {1.14), Lemma 1, Lemma 2, Vitali’s theorem and Hélder’s inequality

we obtain (1.3). (1.1) is a conseguence of {1.9), II and Fatou's lemma.
Since by 111

falz, )l 2 sup [falz, Gl + _[fu z,(a)lal £

|ﬂ—

< fia) + el 4+ $|fc.(m,ca)ca|

thus (1.1) implies {1.2).

2. The uniqueness theorem

In addtion to I - VII it will be assumed that the following conditions
are fulfilled:

VIII. There is a constant ¢q such that for all {, € R, lo| = m, aec
refl
| falz, Ca)| £ eqlfalm, —Cal-
IX. For cach ¢, { € R¥ ae. 2 € Q

> 106l 8) = galz, e — G 2 0.

|| Em—1
IX. For each ¢, 5 cRY aec ze
Z [ga(m: C) - ga(Ir é)]((:-:x - éo:) 2 0.
|e]Em—1

X. Q is a starlike domain in the following sense: there exist zo € R”
and & > 0 such that 1 < A < 1+ § implies 2 C {1 where

¥ = {zo+ Az — 10) 1 z € Q).
XI. There exist numbers 51, €9,¢5 >0and a functlon k € L9(§1) such

that for all C e RN  ae. z, 2/ € 0
|fu($:Crx)| < CSlfa-(*'{:’:Ca)l + k(z)

flr—r{Leyorifze’ =zp+ {('J: —rp) where 0 € A — 1 < g9, Tp 18
defined in X.
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Theorem 3. If conditions I - XI are fulfilled then prollem (1.1} -
(1.3) has o unigue solution ue V.

Remark 2. Functions f, satisfy the conditions of Theorem 3 e.g. in
the following special case:

folz,Ca) = hE\I) (Ca)Xalz) + h£x2) (Ca)
where th’ arc continucus, (for j = 2 strictly) monotone increasing fune-
tions, hgf)((]) = 0. Further, with suitable positive constants ¢} — ¢ we
have

b (—Call £ i REHCI, 31CalP™" S [REHCI
for [(o] <1 [AP{Ca)| € chlCal

Xa = 008 Xa > 0, e € LY and with some positive constants
£1, €2, Cs

Xa(Z) £ csxalz)) if lz — 2’| < & or £’ = zp + $(zr — Tp) where
0 <A —1< g3 xa satisfies the above conditions eg. if wp =0, xa is
continuous, positive and out of some B,  x.{z) = x)(|z]) where ¥} is
monotone decreasing and its derivative is bounded.

In the proof of Theorem 3 we need

Lemma 3. For each (., 5,1, a.e. xefl

|fo(xa Ca)€a| g Cq [frz(x: C&)‘:o: + fa(-’ﬁé&)gu]-
Proof: Define ¢ = |Cal{sgn Co) then II implies
Fal@, G + fal#,80)6a S falz, Cala + fulie, G,
whence by fa(,(a)(e 20, fu(2,()(5 20
falz, Ca)g.; £ falz,6a)Ca + fulz, E;)f;

Thus in virtue of f,{r, ()¢ 2 0, VIII we have

|falz, Ca)al = falz, Ca)C S
é fo(-ﬂ(a)(o + fo(g::é;.)ii; g fa(I,Ca)Ca + C4fa(ﬂ',‘, 6&).(—0:- »
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The Proof of Theorem 3: Assume that u = o’ and 1 = u” satisfy (1.1)
- {1.3). We shall show that {1.3) is fulfilled with v = o', v = %", This
will imply w’ = 4" a.e. since then

Z /[f,,(:c,D”‘u') — faulz, DD — D4y dz+
0

la|—m

+ Z [qu(x,u’,...,D’Bﬂ!,..,)—ga(.f.,u",.,,,DJB‘U.”:.“)]

[ex| w1

(D*v — D*uw")de =0

and so l)y II IX D! = D2y ae in Qif || = wm which implies v' = w”

a.c. as ', (S
Let A; be a sequence of munbers such that lim{A;) = Tand 1 -6 <
M <1, 7=1,2,... . Dcfine functions v; in R™ by

u (.‘I,‘() + l(ﬂ" - I())) ifxe Q)\j
Aj

0 otherwise

(2.1) vy(z) =

and consider the convolution v; + 1. where £ is a positive number and
e € C§(R™) is snch that e 2 0, e(z) =0 for |z| > £ and [nedr = 1.
Then v; * 5. € C™(R"*) and by Holder’s inequality for [a] = m

{2.2) D*(v; x 1) = D, «me € LP(R®) 1 LZ(RT)

since the trace of DPy; on 90, s 0t |4 S m— L

By using an idea of V. Komornik, we show that {1.3) holds with =
u”, v = x 7, if € > 0 is sufficiently small.

Let w = v; = 7. Further, consider a fixed function ¢ € C§°(R") such
that 0 S 0 £ 1, 9(z) =0if lr] 2 1, plx) = 1 if {r] £ 1/2 and define wy
by

we(r) = (%) wlx).
Then

{2.3) D%y (a) = Z 7k|ﬂ DY (k) DY)

TEox

whenee
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(2.4) I D% k]| oo mmy S Z o l‘;up|D T,
140

@5 D wlirany § Y A0 Tl
yEa

In order to estimate the right hand sides of (2.4), {2.5) we prove csti-
mations

(2.6) £l ¢ S const k' Y (1D fll o054y,
18]=1

(2.7) I i,y S const & Z 108 flismize)
8=t

if f{z) =0 in a neighbourhood of 0. Indeed, we have

and so
(2.8) Ny S WD Sl Loy
Further,
d T 1 b=l » tp
sans [ or () asats { [Clor(ef) ]
Jo 2] i [}

and, consequently, by using the notation S, = {x € R" : |z| =7}

" ’ Jz| -p
@9 1Moy < M ol {/ Df(l |)| dt}dax} dr

&
< [ o4 drID sy = S REID Vg 1 S
1]

1A

I\F
Sl=1 KlDflurny.
_(p) (P25 FRTT:W)

Applying (2.8) resp. (2.8) successively we obtain (2.6) resp. {2.7).
Clearly, without loss of gencrality, we may assume that (0 € 3¢ and
so for sufficiently small € > 0w = vw; * 1, is § in a neighbourhood of 0.
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Thus we may estimatc the right band sides of (2.4), (2.5) by (2.6) resp.
(2.7) and so (2.2) implies that

1D%wicll Losgnys 107wkl Le@mny
are bounded k = 1,2,... . Further, by the definition of w;

we = W in B%.

Therefore, applying (1.3) to u = u”, v = wy, by using Vitali’s theorem
we obtain as k — oo that (1.3) holds with u = %", v = v; * .

Now, we shall prove that (1.3) is valid also with u = u”, v = v;. Let
£x > 0 be such that limn{e;) = 0. Then for each fixed r 2 7o

lim ||v; * 7, — vkllwp (22:) =0
k—oo
(see e.g. (7]}, consequently, for a suitable subsequence (g5 of {gx)
(2.10) D*(u; e my) ~= D%u; (o] S m)
a.e. in {},. Applying this statement tor =rg, ro+ 1, ro+2,... we may
extract a subsequence {e}) such that (2.10) holds ae in Q.
Now we prove that for a fixed 7, |a| = m the sequence of functions

(21 . falz, Dou")D%(v; % nepr), k=1,2,...

is equiintegrable in (. According to (2.1) v;{y) = «'(®;(y)) where

O (y) = o + %(y — xy) (out of & w' is considered to be ). Con-
3

sequently, with some positive constant ¢g > (0 we obtain

D% (v + me (&) = | [ 0ty <

< [m D% (& () e ( ~ ) dy.

Therefore, by using Lemma 3, XI and fg. ey = 1, functions {2.11) can
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be estimated for sufficiently large & in the following way:
|falz, Du"(z)) D (u; * ney ) ()] <

<o [ 1l DO DD @50 Iy = — ) dy <
<crcs [ fola, DU @)D @y (= - v) dyt
mﬂ

+eacs [ fale, DU (BN D (@,(0)) 1y (o~ ) dy <
= cseefalz, D" (z)) Dou"(z)+

+ caches A Fal@;{y), D (@D (@5{y)ner {z — y) dy+
+ 2cacek(z) i | D6 {@;{y) ey (= — 4) dy.

In the last sum the first term is Lebesgue integrable in §2, the second
and third terms are equiintegrable in Q{k = 1,2,...)} since for some
GO0k

y = fal®(y), D/ (25(y)) D% (25(y)) € L' (),
D' (@;(y)) € LP(S), k € LU,
Thus the sequence of functions {2.11) is equiintegrable in € and so by
(2.10) and Vitali’s theorem we find
(2.12) Jclim / fala, D*u")D(v; + nep) dz = / folz, D)D"y, dz.

By uvsing {2.10), VI, VII, Sobolev’s imbedding theorem, Hélder's in-
equality and Vitali's theorem it is not difficult to show that for |o| £ m—1

(2.13) Jim ]Q’ galz,u”,..., DPu" . ) D™ (v; » Ter) dz =

= /g; galzou,. .., D%, D%y, da.
!’

Finally, [Jv; *ner [lv < (|2;]lv, thus it may be supposed: we have chosen
subsequence {€;) of {}) such that

2.14 Uy % M) — weakly in V.
2 k 7

Since (1.3) holds with u = ", v = v; * 77, thus from (2.12) - (2.14)
we obtain as & — co that (1.3} holds with u = v”, v = v;. Consequently,
similarly to the above arguments, we obtain as 7 — oo that (1.3} is valid
for u = v”, v = v'. Analogously can be considered cases v = o, v =
iu=u,v=1u resp. v’ N
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